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The quark gluon plasma (QGP) at zero temperature and high baryon number is a system that may be

present inside compact stars. It is quite possible that this cold QGP shares some relevant features with the

hot QGP observed in heavy ion collisions, being also a strongly interacting system. In a previous work we

have derived from the QCD Lagrangian an equation of state (EOS) for the cold QGP, which can be

considered an improved version of the MIT bag-model EOS. Compared to the latter, our EOS reaches

higher values of the pressure at comparable baryon densities. This feature is due to perturbative

corrections and also to nonperturbative effects. Here we apply this EOS to the study of neutron stars,

discussing the absolute stability of quark matter and computing the mass-radius relation for self-bound

(strange) stars. The maximum masses of the sequences exceed two solar masses, in agreement with the

recently measured values of the mass of the pulsar PSR J1614-2230, and the corresponding radii of around

10–11 km.
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I. INTRODUCTION

In spite of the rapid progress in the field, the region of
the QCD phase diagram with low temperature and high
chemical potential is still not well understood. According
to the current status, supported by different model calcu-
lations, there is a low temperature deconfined phase of
quarks and gluons, the cold QGP, in which we may have
color superconducting phases [1]. One of the open ques-
tions concerning the cold QGP is how free are quarks and
gluons in this phase. In the simple picture based on theMIT
bag-model quarks and gluons do not interact except when
they hit the bag wall. In the opposite corner of the QCD
phase diagram, i.e., at zero chemical potential and high
temperature, the equivalent picture of a hot ideal gas of
noninteracting quarks and gluons was dramatically
changed after the series of experiments with relativistic
heavy-ion collisions conducted at RHIC and now at LHC.
In the new picture, quarks and gluons form a strongly
interacting system in which nonperturbative physics persist
even after twice the critical temperature. In particular, the
gluon condensates do not disappear very rapidly as pre-
viously expected. In the case of the cold QGP, experiments
in laboratories cannot be performed directly, since com-
pression of cold nuclear matter up to these tremendous
densities cannot be achieved. However this compression
occurs presumably in the core of dense stars and the idea
that we might find cold QGP in neutron stars has been
around already for some decades [2–4]. It is even conceiv-
able that a whole star, not only its core, be made of quark
matter [5]. This possibility will be explored in this work.

The existence of a deconfined quark phase in the core of
neutron stars [3,4] depends crucially on the EOS. On the
theoretical side there is still considerable freedom, since it

is easy to calculate the mass and the radius of a star for a
given EOS. Changing parameters in the proposed EOS
one can arrive at rather different curves in the mass-radius
diagram. On the observational side it is very difficult to
obtain the mass and the radius of one single object.
However, once this combined information is available it
will provide a very strong constraint on the EOS of dense
matter. The most recent data already impose some limits
on the EOS parameters [6–8]. A previous analysis of the
observational data from the neutron star EXO 0748-676
presented in Ref. [9] concluded that most of the EoS are
too soft and therefore unable to support the existence of
neutron stars with a quark phase. In spite of this conclu-
sion being disputed [7], new precise measurements of the
pulsar PSR J1614-2230 carried out in Ref. [10] yielded
a mass of 1:97� 0:03M� for this object and led to
the idea of interacting quarks if a core is present [11].
Alternatively, a self-bound star, composed entirely of
quark matter, could explain a massive pulsar if the pairing
interactions and vacuum energy fall in the right range [6],
depending on the value of the radius which is still under
discussion. It is then interesting to explore the existence
of a self-bound deconfined quark phase made of non-
interacting quarks [10], as suggested in previous attempts
[7,12].
In this paper we consider a quark star consisting of u, d,

and s quarks. Heavier quarks are not present in neutron
stars [13]. We shall further assume that the masses of
the quarks are mu ¼ 5 MeV, md ¼ 7 MeV, and ms ¼
150 MeV, complying with the generally accepted assump-
tion of two light flavors and a heavier s quark. We first
study the absolute stability parameter space of the EOS
derived in Ref. [14], which describes the quark gluon
plasma at zero temperature. Stability requirements restrict
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the range of parameter values, which are subsequently used
in the construction of the mass-radius diagram.

This text is organized as follows. In Sec. II we briefly
review the EOS for the cold QGP. In Sec. III we introduce
the stability conditions and discuss its consequences. In
Sec. IV we present the Tolman-Oppenheimer-Volkoff
(TOV) equations for stellar structure calculations and their
numerical solutions. Finally, in Sec. V we present some
comments and conclusions.

II. EOS OF THE COLD QGP

In Ref. [14] EOS derivation started with the assumption
that the gluon field can be decomposed into low (‘‘soft’’)
and high (‘‘hard’’) momentum components. The expecta-
tion values of the soft fields were identified with the gluon
condensates of dimension two and four, respectively. The
former generates a dynamical mass, mG for the hard glu-
ons, and the latter yields an analogue of the ‘‘bag constant’’
term in the energy density and pressure. Given the large
number of quark sources, even in the weak coupling
regime, the hard gluon fields are strong, the occupation
numbers are large, and therefore these fields can be
approximated by classical color fields. The effect of the
condensates is to soften the EOS whereas the hard gluons
significantly stiffens it, by increasing both the energy
density and pressure. With these approximations it was
possible to derive [14] an analytical expression for the
EOS, called here MFTQCD (Mean Field Theory of QCD).

To proceed for the stellar conditions, we consider quarks
u, d, s and electrons in chemical equilibriummaintained by
the weak processes [15]:

uþ e� ! dþ �e;

uþ e� ! sþ �e;

d ! uþ e� þ ��e;

s ! uþ e� þ ��e; and

sþ u ! dþ u: (1)

As usual, the neutrinos are assumed to escape and do not
contribute to the pressure and energy density. In chemical
equilibrium we have

�d ¼ �s � � and �d þ�e ¼ �: (2)

The charge neutrality and baryon number conservation
require

2

3
�u ¼ 1

3
�d þ 1

3
�s þ �e; (3)

and

�B ¼ 1

3
ð�u þ �d þ �sÞ; (4)

where �B is the total baryon density and �i is the density of
quarks of flavor i (i ¼ u, d, s) defined by the corresponding
Fermi momentum ki given by

�i ¼
�Q

2�2
k3i (5)

(note that we impose a local conservation of the charges).
The electron density is

�e ¼ �e

6�2
k3e; (6)

where �Q and �e are the quark and electron degeneracy

factors given by �Q ¼ �e ¼ 2 due to spin (the sum over

color states was already performed). From (1)–(7) we find
a set of four algebraic equations for Fermi momentum
calculation for each particle:
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(7)

for a fixed baryon density �B. The energy density is finally
given by [14]
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and the pressure is

p ¼
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where me ¼ 0:5 MeV is the electron mass, mG is the
dynamical gluon mass, and g is the coupling constant
ð�s ¼ g2=4�Þ in QCD. Our analogue of the bag constant,
called here BQCD, is given by
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B QCD ¼ 9

128
�4

0 ¼
�
1

4
Fa��Fa

��

�
; (10)

where �0 is an energy scale associated with the energy
density of the vacuum and with the gluon condensate [14].
In (8) and (9) the summation over quark colors has already
been performed. Throughout this work we employ the
natural units ℏ ¼ 1, c ¼ 1.

III. STABILITY CONDITIONS FOR THE EOS

We are interested in studying star models with stable
strange quark matter. In this case, we have two stability
conditions. The first one is that the energy per baryon of the
deconfined phase (for P ¼ 0 and T ¼ 0) is lower than the
nonstrange infinite baryonic matter defined in Ref. [7,15].
Following these works we impose that:

EA � "

�B

� 934 MeV: (11)

Since this condition must hold at the zero pressure point,
from (8) and (9) we can numerically derive a relation
between the bag constant BQCD and the ratio � ¼ g=mG.

We solve (9) obtaining �B ¼ �BðBQCD; �Þ, which is then

inserted into (8). The resulting expression is used to write
the condition "ðBQCD; �Þ=�BðBQCD; �Þ ¼ 934 MeV, which
defines one ‘‘stability frontier’’. This last equation is re-
written as � ¼ �ðBQCDÞ, is plotted in Fig. 1 (solid line) and
denoted by the 3-flavor line. Points in the BQCD � � plane

located on the right of the solid line are discarded since
they do not satisfy (11). The solid line, corresponding to
the maximal value of EA ¼ 934 MeV, determines the
maximum value ofBQCD ’ 75:7 MeV=fm3. The minimum

value of BQCD ’ 38 MeV=fm3 is determined by the sec-

ond stability condition, which requires nonstrange quark
matter in the bulk to have an energy per baryon higher than
the one of nonstrange infinite baryonic matter. By impos-
ing that

EA � "

�B

� 934 MeV (12)

for a two flavor quark matter at ground state, we ensure that
atomic nuclei do not dissolve into their constituent quarks.
The constraint (12) defines the dotted line in theBQCD � �

plane, denoted by the 2-flavor line in Fig. 1. Points located
on the left of this line are excluded because they do not
satisfy (12). The region between the two lines in Fig. 1
defines our stability window.
The requirement of strange quark matter stability at

finite pressure, in the interior of the stars, demands the
introduction of another criterion. We shall assume that
among the quark matter phase and the hadron phase,
represented here by two hadronic models, the most stable
is the one which has the highest pressure for the same value
of the chemical potential. The curves p versus�B obtained
with three EOS are shown in Fig. 2. As can be seen, our
quark matter is more stable than the matter described by
the hadronic models studied here.
From Fig. 2 we can conclude that, at increasing chemical

potential (and density), quark matter becomes more and
more favored with respect to the hadronic matter studied
here.
We performed the causality check for BQCD ¼

38 MeV=fm�3 (close to the minimum value) and for (the
maximum value) BQCD ¼ 75:7 MeV=fm�3. These two

FIG. 1. Values of � ¼ g=mG as a function of BQCD for differ-
ent values of the energy per baryon.

FIG. 2. Pressure as a function of the chemical potential for the
three EOS: MFTQCD [14], Skyrme [21], and Walecka [22].

FIG. 3. EOS for the cold quark—gluon plasma.
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values of the bag constant define the stability range.
Using these two values in Fig. 1 as entries to the dotted
line and to the solid line, respectively, we can read in
the vertical axis the two corresponding values of the vari-
able �, which are � ¼ 0:007293 MeV�1 for BQCD ¼
38 MeV=fm�3 and � ¼ 0:000657 MeV�1 for BQCD ¼
75:7 MeV=fm�3. Having fixed these parameters, we go
back to (8) and (9) and, obtaining " and p for successive
values of �B, we construct the EOS in the form p ¼ pð"Þ,
plotted in Fig. 3. In this type of plot the slope is the speed of
sound, which, due to causality, can not exceed unity. This
limit is shown by the full line in the figure.

IV. NUMERICAL SOLUTIONS OF
THE TOV EQUATION

In order to describe the structure of a static, non-rotating
compact star we solve the Einstein equations [16]:

G�� ¼ �8�GT��; (13)

for a spherical, isotropic, static, and general relativistic
ideal fluids in hydrostatic equilibrium. This particular so-
lution of (13) leads to the Tolman-Oppenheimer-Volkoff
(TOV) equation for the pressure pðrÞ:
dp

dr
¼ �G	ðrÞMðrÞ

r2

�
1þ pðrÞ

	ðrÞ
	�

1þ 4�r3pðrÞ
MðrÞ

	

�
�
1� 2GMðrÞ

r

	�1
; (14)

where G is the Newton gravitational constant. The en-
closed mass MðrÞ of the compact star is given by the
mass continuity equation:

dMðrÞ
dr

¼ 4�r2	ðrÞ: (15)

Equations (14) and (15) express the balance between the
gravitational force and the internal pressure acting on a
shell of mass dMðrÞ and thickness dr.

We solve numerically (14) and (15), which are coupled
nonlinear equations for pðrÞ and MðrÞ, to obtain the
mass-radius diagram. The pressure and the energy density
in (14) and (15) are given by the MFTQCD expressions (9)
and (8), respectively. We take the central energy density to
be 	ðr ¼ 0Þ ¼ 	c and then we integrate out (14) and (15)
from r ¼ 0 up to r ¼ R, where the pressure at the surface is
zero: pðr ¼ RÞ ¼ 0. In Fig. 4 we show the mass-radius
diagram for several values of BQCD and � respecting the

stability condition.
Table I summarizes the values of mass, radius, and

central energy density obtained for the several values of
BQCD shown in Fig. 4. At this point, the relationship of this

parameter to other commonly employed quantities (i.e., the
MIT bag constant) is difficult to assess, and the reasonable
values obtained for the stability window to hold are quite
encouraging.

V. CONCLUSION

In this paper we have applied an EOS of the cold QGP to
the study of compact stars. We note that when gluon
interactions are switched off, we recover the standard
MIT bag model EOS. The inclusion of gluon interactions
generates more pressure and energy density, rendering the
equation of state harder than the MIT bag model one and
able to support stellar sequences with larger maximum
masses. Indeed, our solutions of the TOV equations yield
stars with two solar masses, in agreement with recent
observations [10]. In the present paper we have improved
a previous one [17] in several aspects. The most important
one was to introduce the requirement of stability, which
strongly constrained the range of possible parameters.
However, even after this strong restriction of parameter
choice, we were still able to find stable quark stars with
acceptable masses and radii. The latter is never too large
(R � 12 km), even for stellar sequences with maximum
masses of 	2:5M�, therefore determinations of radii
underway [18–20] have the potential of constraining or
even ruling out this type of theory in the near future.
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FIG. 4. Mass-radius diagram for several values of BQCD and �
allowed by the stability condition.

TABLE I. Bag, Maximum Mass, and Radius of the quark star.

BQCDðMeV=fm3Þ �ðMeV�1Þ MðM�Þ RðKmÞ
62 0.003658 2.56 11.97

72 0.002034 1.99 10.17

75.7 0.000657 1.82 9.69

FRANZON et al. PHYSICAL REVIEW D 86, 065031 (2012)

065031-4



[1] M.G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer,
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