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Abstract
Breeding miscanthus for biomass production and composition is essential for targeting high-yielding genotypes suited to 
different end-uses. Our objective was to understand the genetic basis of these traits in M. sinensis, according to different 
plant ages and environmental conditions. A diploid population was established in two locations according to a staggered-
start design, which distinguished the plant age effect from climatic condition effect. An integrated genetic map of 2602 SNP 
markers distributed across 19 LGs was aligned with the M. sinensis reference genome and spanned 2770 cM. The QTL 
mapping was based on best linear unbiased predictions estimated across three climatic conditions and at least three ages in 
both locations. A total of 260 and 283 QTL were related to biomass production and composition traits, respectively. In each 
location, 40–60% were related to biomass production traits and stable across different climatic conditions and ages and 30% 
to biomass composition traits. Twelve QTL clusters were established based on either biomass production or composition 
traits and validated by high genetic correlations between the traits. Sixty-two putative M. sinensis genes, related to the cell 
wall, were evidenced in the QTL clusters of biomass composition traits and orthologous to those of sorghum and maize. 
Twelve of them were differentially expressed and belonged to gene families related to the cell wall biosynthesis identified 
in other miscanthus studies. These stable QTL constitute new insights into marker-assisted selection (MAS) breeding while 
offering a joint improvement of biomass production and composition traits.
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Introduction

Miscanthus is a perennial C4 crop that produces valuable 
lignocellulosic biomass, mainly for bioenergy end-uses, bio-
based products, and animal bedding [1–5]. However, only 
one clone of a Miscanthus × giganteus interspecific hybrid 

(2n = 3x = 57) is currently available for commercialization 
in Europe and the USA [6, 7]. It originates from a natural 
interspecific cross between a tetraploid M. sacchariflorus 
(2n = 4x = 76) and a diploid M. sinensis (2n = 2x = 38) [8] 
and obtains high biomass yields under various environ-
mental conditions [9, 10]. As M. × giganteus is sterile, the 
potential risk of invasiveness from the seeds spreading to 
a new environment is avoided, but this hampers the breed-
ing of the crop [11, 12]. Moreover, such narrow genetic 
variability can be risky in case of pest adaptation, and the 
corresponding phenotypic variability may not be sufficient 
for the different end-use requirements [8]. The two parents 
of M. × giganteus, originating from East Asia, present high 
genetic variability and are adapted to extended environmen-
tal conditions [13–16]. For example, M. sinensis reaches the 
same amount of biomass production as M. × giganteus under 
specific conditions [17]: this makes it a relevant candidate 
for breeding new varieties at an intraspecific level, or for 
creating new M. × giganteus clones at an interspecific level, 
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despite its self-incompatibility [18]. Breeding miscanthus 
aims to improve biomass production and composition traits 
by creating new cultivars, adapted to a range of different 
environments. However, the optimal time to collect reliable 
phenotypic data for these traits is a major point of concern 
in miscanthus breeding. Indeed, the yield-building phase of 
the plants can last 3 years after crop establishment, and even 
this can vary between miscanthus species [19]. The plants 
then reach a yield plateau phase during which biomass pro-
duction is more stable [20]. Selecting plants only on their 
phenotype during the yield-building phase may thus be unre-
liable (Raverdy et al., submitted to BioEnergy Research), 
especially since the different progenies may reach their full 
growth potential at different times. Marker-assisted selec-
tion programs would thus be a helpful tool for improving 
the breeding efficiency in miscanthus, as they would make 
it possible to select young plants on the basis of their genetic 
information, without waiting for them to reach the yield-
plateau phase.

Because of its self-incompatibility, miscanthus is an out-
crossing species with a high level of heterozygosity. There-
fore, the genetic mapping methods that were initially devel-
oped based on inbred line populations have to be adapted to 
full-sib (F1) populations, as done for other perennial crops 
such as sugarcane or rubber tree [21–23]. Full-sib diploid 
populations have a maximum of four different segregating 
alleles per locus. This makes the haplotype phase estimation 
more complex than for inbred lines populations, for which a 
maximum of two alleles segregate.

The initial traditional method for building genetic maps in 
full-sib populations was the “pseudo-testcross” strategy [24], 
which was based on separate linkage maps for each parent. 
Later, Wu et al. [25, 26] developed a method that generates 
an integrated genetic map and for which the estimation of 
linkage distances and phases between markers and locations 
of the quantitative trait loci (QTL) are improved. Moreover, 
Gazaffi et al. [27] proposed a method based on compos-
ite interval mapping and multipoint genetic mapping using 
molecular markers with different segregation patterns. This 
last method can reveal QTL that segregates in any pattern 
and identify dominance effect.

The initial miscanthus genetic map was developed by 
Atienza et al. [28] based on an M. sinensis population, by 
using random amplified polymorphic DNA (RAPD) mark-
ers, and was composed of 28 linkage groups (LGs). This 
unsaturated map was used to detect QTL for morphological 
traits, biomass yield, and combustion quality [29–32]: how-
ever, the 28 LGs that constitute the genetic map, compared 
to the base chromosome number in miscanthus (x = 19), as 
well as the small population size of 89 F1 individuals, make 
it difficult to compare the QTL with recent studies in which 
saturated maps are presented with the expected number of 19 
LGs. Ma et al. [33] created a high-resolution linkage map of 

M. sinensis and identified 19 LGs for the first time. Gifford 
et al. [34] identified 72 QTL associated with biomass pro-
ductivity, by using the integrated genetic map of M. sinensis 
constructed by Swaminathan et al. [35]. It was also made 
up of 19 LGs. Dong et al. [36] developed six high-density 
parental genetic maps using the pseudo-testcross strategy 
and two consensus maps which integrated M. sinensis and 
M. sacchariflorus. Using these maps derived from three 
interconnected miscanthus populations, they identified 109 
to 288 QTL for 14 biomass production traits which mapped 
into 86 to 157 meta-QTL. Van der Weijde et al. [37] con-
structed two parental maps of M. sinensis using also the 
pseudo-testcross strategy and identified 86 QTL related to 
biomass composition and conversion efficiency traits. Most 
of these studies identified QTL of M. sinensis biparental 
populations derived from crosses between different het-
erozygous parents. These populations were evaluated dur-
ing 2 years in one location. In apple trees, another peren-
nial species, Segura et al. [38] carried out QTL mapping 
on an F1 progeny and demonstrated that the QTL detected 
are related to genetic, ontogenetic, and climatic factors: this 
was possible by a staggered-start design [39–41], which par-
titioned the year effect into age and growing season effects. 
The growing season effect itself corresponded to soil and 
climatic condition effects.

In a previous study, we estimated the heritability values 
and genetic and phenotypic correlations of an M. sinensis 
population. We highlighted moderate to high heritability val-
ues for biomass production and composition traits. Both age 
and climatic condition effects were considered, based on a 
staggered-start design carried out in two contrasted locations 
(Raverdy et al., submitted in BioEnergy Research). We thus 
expected the phenotypic data of this population to be rel-
evant for undertaking QTL mapping. The objectives of the 
present study were then (1) to construct an integrated link-
age map based on single-nucleotide polymorphism (SNP) 
markers according to the miscanthus reference genome and 
(2) to detect QTL for biomass production and composition 
traits and identify stable QTL, while considering the range 
of years (i.e., climatic conditions), ages, and locations evalu-
ated. To reach these goals, the same population has therefore 
been analyzed, based on the staggered-start design that was 
established in two contrasting locations. The growing season 
effect corresponded to climatic condition effect as the stands 
were staggered twice in a single field in both locations. A 
genotyping-by-sequencing (GBS) approach was initially 
used to discover SNP markers according to the alignment 
with the miscanthus reference genome that was released in 
2017 [42]. A next step was the development of an integrated 
linkage map for the population. QTL were then detected 
for both biomass production and composition traits over 
5 consecutive years. To our knowledge, it is the first mis-
canthus genetic map that considers the alignment with the 
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miscanthus reference genome. It is also the first miscanthus 
study for which the QTL of biomass production and compo-
sition traits are jointly detected for more than 2 years and in 
two contrasted locations. This will make it possible to assess 
marker-trait associations during and after the theoretical 
establishment phase of miscanthus and according to different 
ages and climatic conditions. Based on the staggered-start 
design per location, the “year” effect was partitioned into 
“plant age” and “climatic condition” effects, which made it 
possible to detect QTL related to such conditions for the first 
time in miscanthus.

Materials and Methods

Mapping Population and Experimental Design

Two diploid ornamental M. sinensis cultivars, “Malepartus” 
(Mal) and “Silberspinne” (Sil), were crossed in order to get 
an F1 full-sib progeny for mapping studies. These two orna-
mental parents putatively originate from central to southern 
Japan [15, 16]. Each seed of the population was germinated 
in vitro, which provided 248 initial genotypes. These plants 
were propagated in vitro according to a protocol of shoot 
organogenesis and regeneration [43]. All seedlings were 
planted in a greenhouse that offered suitable growing con-
ditions before being transplanted to the field. Due to variable 
genotype ability for in vitro propagation, only 157 genotypes 
were available for the field trial. However, 248 genotypes 
were available for genotyping.

The F1 full-sib progeny and the two parental genotypes 
were cultivated with single plants, in two locations in France. 
These locations presented contrasting soil and climatic con-
ditions. Experimental design in both locations was based on 
a staggered-start design [39]. One of the experiments was 
established at the “GCIE” INRAE (National Institute for 
Research on Agriculture, Food and Environment) experi-
mental unit of Estrées-Mons (49°53′N, 3°00′E) in a deep 
loam soil (Orthic Luvisol according to the World Reference 
Base for Soil Resources, WRB). The other experiment was 
established at the “GBFOr” INRAE experimental unit of 
Orléans (47°49′N, 1°54′E) in a sandy soil (Dystric Cambi-
sol, WRB). Each staggered-start design was made up of two 
stands or groups of genotypes that were organized in two 
plots established in 2 successive years in the same field: the 
first group of genotypes (G1) was established in 2014, while 
the second group (G2) was established in 2015 (Fig. 1). In 
each location, each plot was adjacent to the other plot in the 
field and separated by a border row: soil conditions were 
therefore similar between the two groups. In Estrées-Mons, 
157 genotypes and the two parents were cultivated, with 
82 genotypes common to each group (G1 and G2) (Fig. 1 
and Table S2). The two parents and 104 genotypes of those 

cultivated in Estrées-Mons were also cultivated in Orléans. 
These 106 genotypes included 59 common to G1 and G2 
(Fig. 1 and Table S2). Finally, 57 genotypes were common 
both to G1 and G2 and between locations (Table S2). The 
number of genotypes was unbalanced due to the recalci-
trance of some genotypes concerning the propagation and 
establishment steps, as described previously. In both loca-
tions and each plot that corresponded to each group of geno-
types sequentially established, single plants were organized 
in an incomplete randomized block design [44] with five 
blocks. The genotypes were thus replicated in four of the 
five blocks on average, except the two parents, which were 
replicated in all blocks of the two stands. Plant density was 
1 plant per square meter, with single plants equally spaced 
1 m apart within and between rows. For both locations, more 
details about the experimental design and the climatic con-
ditions that correspond to the plant cycle are available in 
Raverdy et al. (submitted in BioEnergy Research).

Development of Single‑Nucleotide Polymorphism 
Markers

The genomic DNA of the 248 individuals of the progeny 
and of the two parents was extracted from seedlings at the 
INRAE Gentyane Genomic Service platform (Clermont-
Ferrand, Puy-de-Dôme, France), using a sbeadex™ livestock 
kit (LGC Group, United Kingdom). A GBS approach was 
used to discover SNP markers which corresponded to the 
population. It was carried out according to the protocols 
of Elshire et al. [45] and Cormier et al. [46], at the CIRAD 
(French Agricultural Research Centre for International 
Development) Genotyping platform core facility (GPTR, 

ESTREES-MONS 29 82 48

159 genotypes (G1 + G2)

ORLEANS

G1
(2014)

G2
(2015)

5 59 42

106 genotypes (G1 + G2)

G1
(2014)

G2
(2015)

Fig. 1   A staggered-start design was established in Estrées-Mons and 
Orléans. The total number of M. sinensis genotypes (including the 
two parents) is indicated for each staggered-start design. The number 
of genotypes for each group (G1 and G2) and the genotypes common 
to both groups (at the intersection of blue and red circles) are also 
specified for each location
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Montpellier, Hérault, France). The 96-plex libraries were 
prepared by digestion of the 250 DNA extractions using the 
PstI restriction enzyme. The single-end sequencing was then 
carried out in three lanes on a HiSeq™ 3000 sequencer (Illu-
mina® Inc., San Diego, CA, USA), at the “GenoToul GeT” 
platform (Auzeville, Haute-Garonne, France). The quality 
check of the reads was conducted using the “FastQC” soft-
ware v.0.11.2 [47].

The “TASSEL 5 GBS” pipeline [48] was used in order 
to analyze the sequencing data. The raw reads of the indi-
viduals were initially grouped in tags. By using the “Bowtie 
2” v.2.3.2 software [49], tags with a minimum count of 10 
reads were retained and aligned with the M. sinensis refer-
ence genome sequence that was released in December 2017 
[42]. The resulting variant call format file, which contains 
the markers and information regarding the individuals, 
was then filtered. The filtering was carried out using the 
“vcf2pop.1.0.py” software [50] and was based on a minor 
allele frequency threshold of 0.05 and a maximum of 25% 
missing data per marker. Three marker types were available 
for the genetic map construction: first, markers that were 
heterozygous in both parents (ab × ab), called “Bridge” 
(Bri) markers and that segregated in a 1:2:1 ratio (aa, ab, 
bb); second, “Mal” markers that were heterozygous in the 
Malepartus parent and homozygous in the Silberspinne par-
ent (ab × aa); and lastly, “Sil” markers that were homozygous 
in Malepartus and heterozygous in Silberspinne (aa × ab). 
The latter two marker types segregated in a 1:1 ratio (aa, ab). 
According to the classification of Wu et al. [25], “Bri” mark-
ers were named B3.7, “Mal” markers were named D1.10, 
and “Sil” markers were named D2.15.

Genetic Map Construction

An integrated genetic map was constructed based on the 
mapping population, by using the “OneMap” R package 
[51, 52]. First, the redundant markers were removed from 
the analysis. The remaining markers were tested accord-
ing to expected Mendelian segregation by using a chi-
square test with a global α = 0.05, corrected for multiple 
testing with Bonferroni correction. The recombination 
fraction between all pairs of markers was then determined 
according to two-point tests [25]. The markers were then 
grouped based on their position on the reference genome 
chromosomes and a maximum recombination frequency 
of 0.35. Based on this grouping, 19 linkage groups (LGs) 
were obtained, which corresponded to the base chromo-
some number of miscanthus (x = 19). A high homology 
was highlighted between the markers grouped in each 
LG and their original position in accordance with the 
alignment with the reference genome chromosomes. For 
example, 90% of the markers grouped in LG1 were ini-
tially identified in correspondence with chromosome 1 of 

the miscanthus reference genome sequence. The marker 
grouping for each of the 19 LGs was thus refined, by only 
keeping the markers that were in accordance with the 
corresponding chromosome of the miscanthus reference 
genome. This ensured that each marker was grouped in 
the right LG.

The segregation-distorted markers that were kept for 
the optimization of the marker grouping step were then 
discarded for marker ordering and phasing. This met the 
QTL mapping model assumption of Mendelian segrega-
tion. Marker ordering was then tested according to three 
different methods, and the Kosambi mapping function was 
used [53]. These different marker ordering methods were 
based either on heuristic algorithms or physical positions 
within the miscanthus reference genome. They had to be 
tested independently in order to find the best marker order 
among them. The best order was defined with the inspection 
of the expected pattern in the resulting recombination frac-
tion matrix between markers, visualized in heatmaps. The 
ordering methods have already been investigated in differ-
ent studies, with the aim of getting the best marker order: 
it was yielded either by the marker ordering algorithms or 
the physical positions within a reference genome [54, 55].

The first marker ordering method consisted of the 
ordering of the most informative markers (1:2:1) using an 
exhaustive search tool. It consisted of comparing all pos-
sible orders, and the remaining markers were positioned 
according to the “TRY” algorithm [56]. The resulting 
marker order was unsatisfactory according to the heatmaps 
(data not shown), even though the “RIPPLE” algorithm [56] 
was used in order to improve it. A second marker order-
ing method was thus tested based on the multi-dimensional 
scaling (MDS) method [57, 58] that was implemented in 
the OneMap software [51, 52]: although it improved the 
marker order, this approach did not provide the means to 
get a satisfactory marker order (data not shown). However, 
this approach made it possible to refine marker filtering, by 
removing some markers according to the principal curves 
method from the “MDSMap” R package [57, 58]. Finally, 
the third method consisted in ordering the markers according 
to their positions identified within the miscanthus reference 
genome. In addition, the marker order was adjusted based 
on recombination fractions between the markers. This final 
method was retained, as it yielded the best marker order 
quality among the three methods.

Once the ordering was defined, the genetic distance was 
estimated based on multipoint approaches using hidden 
Markov models [56] that consider outcrossing species [26]. 
The presence of genotyping errors was managed, as often 
carried out in mapping studies [54, 59–61]. Thus, a geno-
typing error probability of 5% was considered in the hidden 
Markov model emission function. This function was imple-
mented in the OneMap software, which made it possible 
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to consider uncertainties between observed and estimated 
genotypes [62].

Phenotypic Data Analysis of Biomass Production 
and Composition Traits

Five biomass production traits and five biomass composition 
traits (expressed as a percentage of dry matter, %DM, or cell 
wall content, %CW) were studied. These phenotypic data 
were acquired over 5 successive years between 2014 and 
2019 in Estrées-Mons and 4 successive years between 2014 
and 2018 in Orléans (Fig. 2). In order to name each trait in a 
relevant manner, a miscanthus ontology was developed at the 
INRAE BioEcoAgro research unit of Estrées-Mons (https://​
urgi.​versa​illes.​inra.​fr/​ephes​is/​ephes​is/​ontol​ogypo​rtal.​do) by 
using the GnpIS multispecies integrative information system 
from the INRAE-URGI of Versailles [63]. Four morpho-
logical traits were evaluated: canopy height (CH_cm), plant 
maximum height (HMax_cm), plant stem number (PSNb), 
and plant circumference (C50_cm). The aboveground bio-
mass yield (ABM_tDMha) was measured after the winter 
harvest in late February and was expressed as tDM/ha. The 
biomass composition–related traits were assessed based 
on near-infrared spectroscopy (NIRS) predictions for all 
plants of the population and a set of calibration samples for 
which the composition traits were assessed. These samples 
were analyzed by the LANO laboratory (Saint-Lô, France) 
according to a protocol adapted from the Van Soest method 

[64] and described in Belmokhtar et al. [65]. Three frac-
tions were determined: neutral detergent fiber (NDF), acid 
detergent fiber (ADF), and acid detergent lignin (ADL). The 
NDF fraction, which corresponds to the cell wall content 
(CW), is considered to represent cellulose, hemicelluloses, 
and lignin. The ADF consists of cellulose and lignin, and the 
ADL consists of lignin [64]. The cellulose content (CL) was 
estimated by subtracting ADL from ADF, hemicelluloses 
content (HEM) was obtained by subtracting ADF from NDF, 
and finally, lignin content corresponded to ADL. The dry 
matter content of each calibration sample was determined 
at 103 °C to express all of the previous values (NDF, ADF, 
ADL, CL, and HEM) in percentage of dry matter (% DM). 
The traits were also expressed as percentage of cell-wall, 
excepting NDF. 

For each location considered separately, the staggered-
start design made it possible to analyze the phenotyping data 
by distinguishing the “plant age” effect from the “climatic 
condition” effect, according to two linear mixed models [66]. 
An initial model (1), which takes into account the “age” 
effect, was applied to three data subsets in each location 
(2016-year, 2017-year or 2018-year data subsets in Fig. 2). 
A second model (2), which accounts for the “climatic condi-
tion” effect, was used with three other data subsets in Orlé-
ans (age 1, age 2, or age 3 data subsets in Fig. 2), and a 
fourth additional subset in Estrées-Mons (age 4 data subset). 
The two models were assessed using the restricted maxi-
mum likelihood (REML) approach, known to be suitable 

G1
(2014)

Year 2015 2016 2017 2018
Age 1 2 3 4Year considering

the age effect

Model 1
G2

(2015)
Year - 2016 2017 2018
Age - 1 2 3

Age considering the 

climate effect

Model 2

G1
(2014)

Year 2015 2016 2017 2018 2019

Age 1 2 3 4 -

a

b
G2

(2015)

Year - 2016 2017 2018 2019

Age - 1 2 3 4

Model 1 used in 
each location

Model 2 used in 
each location

Model 2 used in 
Estrées-Mons

Fig. 2   For each location considered separately, the corresponding 
staggered-start design was analyzed according to two statistical mod-
els: a) the age effect model per growing season or year (i.e., climatic 
condition) for Model 1 and b) the climatic condition effect model per 
age for Model 2. These models were based on two different subsets of 
the data. For example, case (a) was based on year 2016 considered for 
G1 and G2, with the age effect modeled according to 2-year-old gen-
otypes in G1 and 1-year-old genotypes in G2. In this case, plants of 

different ages grew under the same climatic condition during a single 
year. While case (b) was based, for example, on genotypes with the 
same age (2-year-old), according to genotypes of G1 which grew in 
the year 2016 and genotypes of G2 which grew in the year 2017. For 
this case, plants of the same age grew under two different climatic 
conditions, related to each year considered for each group. The group 
year establishment is specified in brackets below each group name
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for analyzing unbalanced datasets, and the corresponding 
function was implemented in the “breedR” R package [67]. 
Model 1 was specified as follows:

in which Yijk represents the phenotypic value measured on 
plant k of genotype i at age j; μ is the overall mean; αi is the 
random effect of genotype i; βj is the fixed effect of age j; 
(αβ)ij is the random interaction between genotype i and age 
j; and εijk is the random residual for plant k of genotype i at 
age j.

Model 2 was specified as follows:

where each term is similar to those of Model 1, excepting 
age effect βj which is replaced by climatic condition effect 
γl of year l, and the interaction between genotype i and age j 
(αβ)ij which is replaced by the interaction between genotype 
i and climatic condition effect of year l (α’γ)il. The terms α’i, 
and ε′ikl  were different from the effects given by the previ-
ous Model 1 because they were estimated based on different 
subsets of the data.

In both models, spatial effects were accounted for using 
an autoregressive correlation structure, based on x and y 
coordinates in the field, to partition the covariance matrix of 
each residual εijk and ε′ikl into a spatially dependent compo-
nent and an independent remaining residual variance [68]. In 
order to minimize the border effect, the trial was surrounded 
by one row of border plants, which were accounted for in the 
estimation of the autoregressive model. However, the cor-
responding genotypes were discarded for subsequent QTL 
detections, once the best linear unbiased predictions (BLUP) 
of all genotypes of the trial were calculated.

(1)Yijk = � + �i + �j + (��)ij + �ijk

(2)Yikl = � + �
�

i
+ �l +

(

�
�

�
)

il
+ �

�

ikl

Block and spatial effects were both initially included 
in each model. As the models that only considered the 
spatial effect yielded the best Akaike information crite-
rion (AIC) [69], the model was simplified and the block 
effect was finally not considered. It can be noted that the 
low performance of a statistical model that includes a 
block effect reinforced the similarity in the soil conditions 
between both stands of the staggered-start design. Based 
on each model described above, the BLUP of the random 
genotype (G) effect were estimated in order to carry out 
the QTL mapping of miscanthus biomass production and 
composition traits. For each location, the BLUP of the G 
effect that were estimated using Model 1 were related to 
the climatic condition of each studied year (i.e., data sub-
set). They were considered as independent from the age 
effect between G1 and G2 groups, i.e., represented by the 
fixed effect of the age and the random interaction between 
genotype and age (Fig. 2). Reciprocally, the BLUP of the 
G effect estimated using Model 2 were related to each 
age (i.e., data subset). They were considered as independ-
ent from the climatic condition effect between G1 and G2 
groups, i.e., represented by the fixed effect of the climatic 
condition and the random interaction between genotype 
and climatic conditions (Fig. 2). For biomass production 
and composition traits, the G effects estimated based on 
these two models were previously shown to account for the 
highest part of the variance components analyzed accord-
ing to the staggered-start design in each location (Raverdy 
et al., submitted to BioEnergy Research) (Figs. 3 and 4).

For each trait and each condition, the distribution of 
the BLUP along with the parental values and phenotypic 
means were observed: as the data were normally distrib-
uted, no data transformation was needed (Fig. S5a, S5b, 
S5c, S5d and S5e).

Fig. 3   Illustration of the dif-
ferent types of QTL stability 
according to the 13 conditions 
studied LG

LEGEND

Stability: at least 2 QTL in…

Different years

Different ages

Different years
and ages

• In each location
• Across the two locations
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Quantitative Trait Loci Mapping

The BLUP of the five biomass production traits and the 
five biomass composition traits (expressed as %DM or 
%CW) previously cited were used for QTL mapping. Each 
data subset of the staggered-start design per location was 
considered separately (Fig. 2). As miscanthus is an out-
crossing species, a specific CIM model adapted to full-
sib progeny was carried out by using the “fullsibQTL” R 
package [27, 70]. Outcrossing segregation patterns were 
considered in the model based on a multipoint approach 
which estimated three genetic effects according to three 
contrasts: two contrasts concerned the additive effects of 
the QTL alleles for each parent, and the third one was 
related to the intra-locus interaction (dominance) between 
additive effects on each parent. The conditional multipoint 
probabilities of QTL genotypes were obtained for every 
1-cM interval. For each linkage group, the cofactors were 
selected using multiple linear regression with a stepwise 
procedure. The associated model selection was based 
on the AIC [69]. The QTL were defined for a threshold 
based on a significance level of 5% across distributed 
LOD scores that were obtained by selecting the second 
LOD profile peak from 1000 permutations [71]. How-
ever, although some QTL were defined according to the 
same method, the corresponding threshold was based on a 

significance level of 10% in order to detect a supplemental 
set of stable QTL between conditions (Fig. S1). The QTL 
impacted by this methodology were displayed with a “*” 
in the results section (Fig. 5). The three genetic effects 
previously detailed, the linkage phases, segregation pat-
terns, and the proportion of genotypic variation explained 
by each QTL (R2) were estimated based on the CIM model. 
The QTL confidence intervals were calculated using the 
2-LOD drop-off method [72].

As QTL mapping was carried out for each climatic condi-
tion and each age in each location separately, it was possible 
to highlight QTL that were stable according to these condi-
tions. The QTL were defined as stable for a given trait when 
they co-localized under at least two conditions (Fig. 3). QTL 
could be stable across different climatic conditions in each 
location, for example, a QTL detected in 2017 and 2018 
in Estrées-Mons. QTL could also be stable across different 
ages in each location, for example, if a QTL was detected 
at age 3 and age 4 in Estrées-Mons. Moreover, QTL could 
also be stable across climatic conditions and ages in a given 
location: for example, when a QTL was detected in 2017 
and at age 4 in Estrées-Mons. Finally, stable QTL were also 
identified when they co-localized under at least four condi-
tions across the two locations: for example, (1) two QTL 
detected under two climatic conditions in each location, (2) 
two QTL detected for two ages in each location, and, lastly, 
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Fig. 4   Summarized distributions of best linear unbiased predictors 
(BLUP) and the associated phenotypic means (P.Mean), for bio-
mass production and composition traits for each condition. The red 

and blue lines represent the parental BLUP, which correspond to 
Malepartus and Silberspinne, respectively
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(3) two QTL detected for one climatic condition and one age 
in each location (Fig. 3).

For each trait, the proportion of stable QTL across cli-
matic conditions, ages, and/or locations was then deter-
mined: in Estrées-Mons, for example, the number of stable 
QTL that was detected under at least two climatic conditions 
was divided by the total number of QTL detected across the 
different climatic conditions in Estrées-Mons, in order to 
calculate the corresponding percentage.

QTL clusters were identified for a given climatic condi-
tion or a given age in each location. These clusters corre-
sponded to the co-localization of at least three QTL for dif-
ferent traits: the biomass composition traits that were either 
expressed as %DM or %CW were not considered as different 
traits. QTL clusters were made up of biomass production 
traits, biomass composition traits, and both biomass pro-
duction and composition traits. The reliability of these QTL 
clusters was verified according to the Pearson correlation 
coefficients based on BLUP. They were computed by using 
the “stats” R package and visualized using the “corrplot” R 
package [73].

Identification of Putative Cell Wall–Related Genes 
in M. sinensis

Putative cell wall–related genes were identified in M. sin-
ensis based on the orthologous relationships between M. 
sinensis and sorghum and between M. sinensis and maize. 
These two species are indeed relatives of miscanthus and can 
be considered as genetic models for miscanthus. This offers 
the opportunity to take into account the genetic knowledge 
that is currently available for maize and sorghum.

Orthologous M. sinensis genes were initially identified 
based on two cell wall–related gene lists, hereafter referred 
to as search lists, that were composed of 2148 candidate 
genes for sorghum and 2470 for maize (Virlouvet, personal 
communication). Secondly, these M. sinensis genes that are 
located between the two markers flanking each QTL cluster, 
i.e., flanking the region where the most extreme QTL con-
fidence intervals within a cluster overlapped, were selected. 
This selection was based on the annotation file Msinen-
sis_497_v7.1.gene.gff3 from Phytozome, the Plant Compar-
ative Genomics portal of the Department of Energy’s Joint 

Genome Institute (https://​phyto​zome.​jgi.​doe.​gov), which 
contains 67,789 genes. Among these positional M. sinensis 
genes, the genes that were orthologous to cell wall–related 
genes in sorghum and maize could finally be identified by 
comparison with the initial search lists.

Results

Single‑Nucleotide Polymorphism Calling 
and Filtering

The sequencing of GBS libraries produced 1,161,537,843 
raw reads based on a read length of 150 bp. Nineteen indi-
viduals out of the 248 were removed from the analysis, due 
to the low quality of the corresponding sequencing data: a 
total of 229 individuals was thus considered for the genetic 
map construction. The SNP calling and the alignment with 
the M. sinensis reference genome made it possible to identify 
a final set of 149,741 biallelic SNP markers. The filtering of 
these markers then provided a selection of 9330 high-quality 
SNP markers available for genetic mapping. The details of 
the markers according to their segregation type and coding 
[25] are available in Table 1.

Genetic Map Construction

The grouping of the SNP markers resulted in 3774 SNP 
markers distributed across 19 LGs. Based on the initial 
marker dataset, redundant markers were removed, and markers 
unlinked to any of the 19 LGs were thus not considered for 
the analysis. It can be noted that LG12 was partitioned into 
two LGs, because it was not possible to group all three marker 
types together due to the presence of only four B3.7 available 
markers (i.e., heterozygous in both parents): for that reason, 
LG12a was made up of “Bri” and “Mal” markers on the one 
hand, while LG12b was made up of “Bri” and “Sil” markers on 
the other. Finally, all LGs corresponded to the 19 chromosomes 
of the miscanthus reference genome, when checking each 
marker provenance according to their physical position in 
relation to the original alignment step. Segregation-distorted 
markers were initially kept in order to optimize the grouping 
phase, but they were then removed before the ordering step: 

Table 1   Characteristics of SNP 
markers after the filtering steps 
and which are available for the 
construction of the integrated 
genetic map

Bridge (Bri) Malepartus (Mal) Silberspinne (Sil) Total

SNPs number 2,488 3,833 3,009 9,330
Marker type B3.7 D1.10 D2.15 -
Parental cross type ab × ab ab × aa aa × ab -
Observed bands in the progeny a, 2ab, b (ab × ab) a, ab (ab × a) a, ab (a × ab) -
SNPs
segregation type

1:2:1 1:1 1:1 -
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3262 non-distorted SNP markers thus constituted the 19 LGs. 
Moreover, a supplemental analysis using the principal curves 
method led to the removal of an extra set of 290 markers. After 
the ordering of the SNP markers according to the physical 
positions within the miscanthus reference genome, a few badly 
ordered markers were moved or removed according to the 
recombination fractions between them. The final integrated 
map was made up of 2602 markers and had a total length 
of 2770 cM (Table 2 and Fig. S2). The different markers on 
the map were as follows: 613 “Bri” markers of B3.7 type, 
1256 “Mal” markers of D1.10 type, and 733 “Sil” markers 
of D2.15 type. In the 19 LGs, LG1 was the largest with a 
length of 217.3 cM and LG12a and LG12b were the shortest 
with a length of 49.3 and 32.6 cM, respectively. The average 
inter-marker distance was 1.06 cM when considering the 19 
LGs. LG4 showed the highest density with a mean interval of 
0.72 cM between markers, which was in accordance with the 
highest number of 271 markers mapped on this LG (Table 2). 
For each LG, the heatmap showed the good quality of the 
marker order (Fig. S3).

Transgressive Segregation Was Observed 
for Biomass Production and Composition Traits

The distribution of the BLUP and phenotypic means of 
the progeny were observed for biomass production and 

composition traits for each condition (Fig.  4; Fig.  S4; 
Fig. S5a, S5b, S5c, S5d and S5e). These conditions were 
related to the climatic condition that occurred across the 
year, the age of the plants, and the location in which they 
were established. This resulted in a total of 13 conditions. 
Parental BLUP were reported for each trait and each condi-
tion. For both biomass production traits and composition 
traits, transgressive segregation was observed for each con-
dition, except for the plant stem number (PSNb). In fact, 
the two parents of the population were chosen and crossed 
based on their highly contrasted stem number, as shown in 
Fig. 4. High genetic variability was observed for each of the 
biomass production traits: this was illustrated at age 3 by the 
BLUP range expressed as a percentage of its correspond-
ing phenotypic mean. These percentages ranged between 
35% for the plant maximum height (HMax_cm) in Estrées-
Mons and 186% for the aboveground biomass yield (ABM_
tDMha) in Orléans. This variability tended to increase over 
the years (i.e., climatic conditions) and ages for most of the 
biomass production traits.

Regarding biomass composition traits, their genetic vari-
ability was lower than the genetic variability observed for 
biomass production traits: the BLUP range, expressed as 
a percentage of its corresponding phenotypic mean, var-
ied between 5% for NDF_%DM in Estrées-Mons and 30% 
for ADL_%DM in Orléans. In contrast to the biomass 

Table 2   Descriptive statistics 
related to the integrated genetic 
map. The marker type is coded 
according to the notation of Wu 
et al. [25]

Linkage group
(LG)

Number of 
markers

Average 
inter- marker
interval 
(cM)

Marker segregation
type

Marker type
Length (cM)

1 105 217.3 2.07 1:2:1; 1:1 B3.7; D1.10; D2.15
2 256 191.6 0.75 1:2:1; 1:1 B3.7; D1.10; D2.15
3 161 152.6 0.95 1:2:1; 1:1 B3.7; D1.10; D2.15
4 271 194.4 0.72 1:2:1; 1:1 B3.7; D1.10; D2.15
5 205 202.7 0.99 1:2:1; 1:1 B3.7; D1.10; D2.15
6 201 193.1 0.96 1:2:1; 1:1 B3.7; D1.10; D2.15
7 240 212.3 0.88 1:2:1; 1:1 B3.7; D1.10; D2.15
8 152 148.0 0.97 1:2:1; 1:1 B3.7; D1.10; D2.15
9 69 109.4 1.59 1:2:1; 1:1 B3.7; D1.10; D2.15
10 94 130.2 1.39 1:2:1; 1:1 B3.7; D1.10; D2.15
11 103 128.1 1.24 1:2:1; 1:1 B3.7; D1.10; D2.15
12a 60 49.3 0.82 1:2:1; 1:1 B3.7; D1.10
12b 5 32.6 6.52 1:2:1; 1:1 B3.7; D2.15
13 110 102.3 0.93 1:2:1; 1:1 B3.7; D1.10; D2.15
14 88 108.3 1.23 1:2:1; 1:1 B3.7; D1.10; D2.15
15 38 120.1 3.16 1:2:1; 1:1 B3.7; D1.10; D2.15
16 112 105.0 0.94 1:2:1; 1:1 B3.7; D1.10; D2.15
17 108 124.2 1.15 1:2:1; 1:1 B3.7; D1.10; D2.15
18 67 79.9 1.19 1:2:1; 1:1 B3.7; D1.10; D2.15
19 157 168.5 1.07 1:2:1; 1:1 B3.7; D1.10; D2.15
Total 2602 2770 1.06
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production traits, this genetic variability did not increase 
across the years or ages.

Stable QTL Were Mainly Detected Across Climatic 
Conditions and Ages for Biomass Production Traits, 
While Few Stable QTL Were Detected for Biomass 
Composition Traits

A total of 260 QTL was detected for biomass production 
traits (Tables 3 and S1) and 283 QTL for biomass compo-
sition traits (Tables 4 and S1). The number of QTL was 
reported for each trait under each condition (Tables 3 and 
4). For each location, stable QTL (i.e., QTL that co-local-
ized under at least two conditions) were highlighted across 
the years, ages, and for both years and ages. An example is 
given with the solid red triangle in LG8 (37 cM) in Fig. 5: 
in Estrées-Mons, three stable QTL for aboveground biomass 
yield (ABM_tDMha) co-localized in 2016, 2017, and 2018, 
and three QTL also co-localized for age 2, age 3, and age 
4. Six QTL thus co-localized for this trait and were either 
related to years and/or ages.

For biomass production traits considered in each location, 
the average proportion of stable QTL detected according to 
different climatic conditions or different ages was similar 
and around 30% (Table 3). These proportions were mainly 
consistent between traits and conditions. The stable QTL 
were not necessarily the QTL that displayed the highest 
percentage of genotypic variance accounted for (R2), or the 
most significant QTL. In each location, the proportion of 
stable QTL detected by considering years and ages together 
was higher than stable QTL that only considered years or 
ages separately. This proportion was 59% in Estrées-Mons 
and 39% in Orléans. Thus, QTL detected in a given year 
(e.g., for the climatic condition in 2017 when G1 plants 
were 3 years old and G2 plants were 2 years old), were also 
detected for a given age (i.e., age 3 for plants grown in 2017 
for G1 and 2018 for G2). Regarding the stability of QTL 
across the two locations, no stable QTL were identified for 
biomass production traits (Table 3).

For the biomass composition traits evaluated in each loca-
tion, the proportion of stable QTL was globally higher for 
the QTL related to the different climatic conditions, than for 

Table 3   Number of QTL detected for each of the biomass production traits for each condition. The number of stable QTL across conditions was 
written in brackets and the related proportions in italic. Here, the “year” refers to the climatic condition that occurred in each year

CH_cm HMax_cm PSNb C50_cm ABM_tDMha Sum

E
ST

R
E

E
S-

M
O

N
S

Year 2016 2 6 6 7 6 27

2017 6 6 6 3 4 25

2018 5 4 5 5 7 26

Total (Stable) 13 (6) 16 (0) 17 (4) 15 (5) 17 (7) 78 (22)
Stable (%) 46% 0% 24% 33% 41% 28%

Age Age 1 6 7 7 NA 5 25

Age 2 7 4 4 4 6 25

Age 3 4 5 3 6 4 22

Age 4 4 4 NA 5 5 18

Total (Stable) 21 (4) 20 (5) 14 (5) 15 (6) 20 (7) 90 (27)
Stable (%) 19% 25% 36% 40% 35% 30%

Year and Age Total (Stable) 34 (20) 36 (21) 31 (17) 30 (21) 37 (20) 168 (99)
Stable (%) 59% 58% 55% 70% 54% 59%

O
R

L
E

A
N

S

Year 2016 NA 3 5 4 4 16

2017 3 3 4 3 3 16

2018 5 4 5 3 2 19

Total (Stable) 8 (0) 10 (4) 14 (5) 10 (4) 9 (3) 51 (16)
Stable (%) 0% 40% 36% 40% 33% 31%

Age Age 1 NA 5 6 NA 3 14

Age 2 NA 3 3 3 2 11

Age 3 3 3 3 5 2 16

Total (Stable) 3 (0) 11 (4) 12 (6) 8 (0) 7 (2) 41 (12)
Stable (%) 0% 36% 50% 0% 29% 29%

Year and Age Total (Stable) 11 (2) 21 (8) 26 (8) 18 (9) 16 (9) 92 (36)
Stable (%) 18% 38% 31% 50% 56% 39%

E
ST

R
E

E
S-

M
O

N
S 

an
d 

O
R

L
E

A
N

S Year Total (Stable) 21 (0) 26 (0) 31 (0) 25 (0) 26 (0) 129 (0)
Stable (%) 0% 0% 0% 0% 0% 0%

Age Total (Stable) 24 (0) 31 (0) 26 (0) 23 (0) 27 (0) 131 (0)
Stable (%) 0% 0% 0% 0% 0% 0%

Year and Age Total (Stable) 45 (0) 57 (0) 57 (0) 48 (0) 53 (0) 260 (0)
Stable (%) 0% 0% 0% 0% 0% 0%
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the QTL related to the different ages (Table 4). However, 
these proportions were relatively low and never exceeded 
15% on average, with some traits showing no stable QTL 
at all. As for biomass production traits, the consideration 
of successive climatic conditions and ages together made it 
possible to increase the proportion of stable QTL for bio-
mass composition traits to up to around 30% in each loca-
tion. No stable QTL were identified across the two locations, 
similarly to biomass production traits (Tables 4 and 5).

QTL Clusters Were Identified for Biomass Production 
Traits and Biomass Composition Traits

Many QTL for one trait co-localized with QTL for another 
trait under each of the 13 conditions. Therefore, QTL clus-
ters were defined when at least three QTL for different traits 
co-localized. This led to the identification of 12 QTL clus-
ters, which were either specific to biomass production traits, 
biomass composition traits, or both (Fig. 5 and Table 6).

Five QTL clusters were identified for biomass production 
traits and were located in LG4, LG7, and LG18 (Fig. 5 and 
Table 6). Four of these clusters were made up of QTL for 
canopy height (CH_cm), plant circumference (C50_cm), 
and aboveground biomass yield (ABM_tDMha). One of the 
clusters, located in LG7, was made up of QTL for canopy 
height, plant maximum height (HMax_cm), and aboveground 
biomass yield. All these clusters for biomass production traits 
were identified in Estrées-Mons, in 2018, and at ages 1, 2, 

and 4. In LG18, a particularly stable cluster, based on the 
same component traits, was detected in 2018, at age 2 and age 
4. The reliability of the clusters was confirmed based on the 
large positive correlations between the BLUP of the traits that 
belonged to the clusters identified for each condition. These 
correlations were all statistically significant at the 0.05 prob-
ability level and ranged from 0.65 to 0.96 (Fig. 6).

Regarding biomass composition traits, six QTL clusters 
were identified (Fig. 5 and Table 6): three of them were 
located in LG4, LG5, and LG15 and were made up of QTL 
for cellulose, hemicellulose, and lignin contents (expressed 
as %DM or %CW). Two other clusters were made up of QTL 
for ADF_%DM, cellulose (as %DM or %CW), and hemicel-
luloses (as %CW) and were located in LG13 and LG15. The 
last cluster was located in LG16 and was made up of QTL 
related to ADF_%DM, CL_%DM, and ADL_%DM. As for 
biomass production traits, the QTL clusters were confirmed 
by the high, positive, or negative correlations between the 
biomass composition traits, statistically significant at the 
0.05 probability level (Fig. 6): they ranged from − 0.55 
to − 0.96 for negative values and from 0.48 to 0.98 for posi-
tive values (except for the correlations between cellulose and 
lignin, which ranged from 0.37 to 0.47). Stable QTL clusters 
were detected in LG15, for QTL detected in 2017 and at age 
2 in Orléans. The other QTL clusters were detected in 2017, 
at age 2 and age 3 in Estrées-Mons, and in 2018 in Orléans.

Interestingly, a QTL cluster made up of both biomass 
production and composition traits was detected in LG15, 

Table 4   Number of QTL detected for each of the biomass composition traits under each condition. The number of stable QTL across conditions 
was written in brackets and the related proportions in italic. Here, the “year” refers to the climatic condition that occurred in each year

NDF_%DM ADF_%DM CL_%DM HEM_%DM ADL_%DM CL_%CW HEM_%CW ADL_%CW Sum

S
E

E
R

TS
E

-M
O

N
S

Year 2016 - - - - - - - -
2017 3 4 3 3 4 1 4 5 27
2018 4 5 5 3 2 2 4 3 28

Total (Stable) 7 (2) 9 (4) 8 (0) 6 (0) 6 (2) 3 (0) 8 (0) 8 (0) 55 (8)
Stable (%) 29% 44% 0% 0% 33% 0% 0% 0% 15%

Age Age 1 - - - - - - - - -
Age 2 3 5 4 3 5 3 4 3 30
Age 3 5 4 5 4 2 5 5 4 34
Age 4 5 3 1 7 3 7 3 8 37

Total (Stable) 13 (0) 12 (0) 10 (4) 14 (2) 10 (0) 15 (0) 12 (2) 15 (0) 101 (8)
Stable (%) 0% 0% 40% 14% 0% 0% 17% 0% 8%

Year and Age Total (Stable) 20 (3) 21 (5) 18 (6) 20 (7) 16 (0) 18 (2) 20 (13) 23 (4) 156 (40)
Stable (%) 15% 24% 33% 35% 0% 11% 65% 17% 26%

S
N

A
E

L
R

O

Year 2016 - - - - - - - - -
2017 5 5 5 1 4 5 2 3 30
2018 2 5 2 3 4 4 4 6 30

Total (Stable) 7 (0) 10 (0) 7 (2) 4 (0) 8 (2) 9 (2) 6 (0) 9 (0) 60 (6)
Stable (%) 0% 0% 29% 0% 25% 22% 0% 0% 10%

Age Age 1 - - - - - - - - -
Age 2 5 3 3 5 4 3 4 5 32
Age 3 2 2 3 6 9 6 5 2 35

Total (Stable) 7 (0) 5 (0) 6 (0) 11 (0) 13 (0) 9 (0) 9 (2) 7 (0) 67 (2)
Stable (%) 0% 0% 0% 0% 0% 0% 22% 0% 3%

Year and Age Total (Stable) 14 (4) 15 (4) 13 (7) 15 (2) 21 (6) 18 (5) 15 (7) 16 (2) 127 (37)
Stable (%) 29% 27% 54% 13% 29% 28% 47% 13% 29%

S
E

E
R

TS
E

- dna
S

N
O

M O
R

L
E

A
N

S

Year Total (Stable) 14 (0) 19 (0) 15 (0) 10 (0) 14 (0) 12 (0) 14 (0) 17 (0) 115 (0)
Stable (%) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Age Total (Stable) 20 (0) 17 (0) 16 (0) 25 (0) 23 (0) 24 (0) 21 (0) 22 (0) 168 (0)
Stable (%) 0% 0% 0% 0% 0% 0% 0% 0% 0%

Year and Age Total (Stable) 34 (0) 36 (0) 31 (0) 35 (0) 37 (0) 36 (0) 35 (0) 39 (0) 283 (0)
Stable (%) 0% 0% 0% 0% 0% 0% 0% 0% 0%
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for the year 2018 (i.e., climatic condition) in Orléans 
(Fig. 5). These QTL were related to canopy height (CH_
cm), NDF_%DM and hemicelluloses (HEM_%CW). This 
was consistent with the statistically significant correlations 
between the corresponding BLUP: 0.44 between CH_cm and 
NDF_%DM and − 0.55 between CH_cm and HEM_%CW 
(Fig. 6).

QTL Effects of Biomass Production and Composition 
Traits Were Found to Be Stronger in Orléans Than 
in Estrées‑Mons

According to the QTL identified for each of the biomass pro-
duction and composition traits, the minimum and maximum 
for additive effects of each parent and dominance effects 

Fig. 5   Representation of eight 
LGs out of 19. The QTL were 
detected according to 13 condi-
tions. A part of the stable QTL 
is illustrated, as well as QTL 
clusters. The QTL detected for 
a threshold based on a 10% 
significance level are marked 
with a “*” (see the “Materials 
and Methods” section for more 
details). The length of each LG 
is specified to the left of the LG 
in cM
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Table 5   Summary statistics of the QTL identified for each trait in both locations

Trait Location Additive effect 
for Mal

Additive effect 
for Sil

Dominance 
effect

Proportion of significant 
effects from all QTL of 
the trait

R2 range (%) LOD
range

 Min Max  Min Max  Min Max Mal Sil Dominance

CH_cm Estrées-Mons  − 8.23 6.28  − 5.04 6.06  − 4.06 6.72 0.35 0.29 0.36 1.4–15.9 4.8–11.2
Orléans  − 6.31 4.05  − 4.98 6.53  − 8.10 9.16 0.32 0.32 0.36 4.5–24.5 5.4–11.0

HMax_cm Estrées-Mons  − 9.21 3.94  − 6.59 8.73  − 5.40 5.28 0.26 0.42 0.32 3.5–16.9 4.7–11.8
Orléans  − 11.78 5.95  − 13.39 9.73  − 14.11 8.23 0.28 0.38 0.34 0.1–19.6 5.2–11.4

PSNb Estrées-Mons  − 18.53 33.95  − 29.46 12.09  − 24.58 21.79 0.34 0.29 0.37 3.6–17.4 4.6–11.1
Orléans  − 37.33 21.53  − 20.86 34.68  − 35.97 39.52 0.27 0.33 0.40 0.5–19.9 5.6–13.8

C50_cm Estrées-Mons  − 1.54 1.15  − 1.84 1.69  − 1.94 1.24 0.23 0.43 0.34 2.2–16.8 4.6–11.4
Orléans  − 0.94 1.83  − 1.69 2.32  − 3.07 2.63 0.14 0.40 0.46 2.8–20.1 5.4–9.8

ABM_tDMha Estrées-Mons  − 0.97 0.87  − 0.98 0.97  − 1.14 0.94 0.25 0.39 0.36 3.9–19.5 4.7–11.2
Orléans  − 0.79 1.19  − 0.64 1.25  − 0.82 1.20 0.26 0.39 0.35 6.4–20.1 5.9–13.5

NDF_%DM Estrées-Mons  − 0.32 0.20  − 0.28 0.29  − 0.32 0.33 0.36 0.31 0.33 3.2–16.1 4.8–12.6
Orléans  − 0.19 0.72  − 0.94 0.54  − 0.47 0.52 0.32 0.29 0.38 2.3–21.0 5.7–12.4

ADF_%DM Estrées-Mons  − 0.58 0.87  − 0.60 0.61  − 0.30 0.43 0.38 0.31 0.31 2.8–19.3 4.6–11.9
Orléans  − 0.95 0.57  − 0.46 0.41  − 0.56 0.50 0.35 0.32 0.32 8.9–26.1 5.7–13.6

CL_%DM Estrées-Mons  − 0.45 0.27  − 0.31 0.23  − 0.31 0.53 0.34 0.29 0.37 3.2–15.9 4.8–9.4
Orléans  − 0.73 0.19  − 0.32 0.35  − 0.56 0.40 0.31 0.28 0.41 3.7–24.0 5.6–14.1

HEM_%DM Estrées-Mons  − 0.30 0.33  − 0.36 0.22  − 0.17 0.34 0.36 0.36 0.27 3.4–15.8 4.6–10.4
Orléans  − 0.16 0.19  − 0.16 0.23  − 0.24 0.18 0.28 0.31 0.41 0.9–17.2 5.3–10.9

ADL_%DM Estrées-Mons  − 0.11 0.12  − 0.10 0.13  − 0.09 0.07 0.34 0.37 0.29 4.2–14.1 4.8–9.6
Orléans  − 0.44 0.29  − 0.25 0.24  − 0.15 0.22 0.33 0.31 0.35 0.7–21.8 5.1–15.6

CL_%CW Estrées-Mons  − 0.31 0.24  − 0.29 0.32  − 0.26 0.17 0.32 0.37 0.32 1.0–12.0 4.7–7.8
Orléans  − 0.41 0.50  − 0.46 0.47  − 0.36 0.41 0.32 0.37 0.32 1.7–29.4 5.2–14.0

HEM_%CW Estrées-Mons  − 0.29 0.45  − 0.43 0.28  − 0.40 0.36 0.35 0.33 0.33 5.4–12.4 4.6–9.8
Orléans  − 0.21 0.44  − 0.43 0.39  − 0.52 0.34 0.32 0.38 0.30 5.9–25.2 5.8–12.4

ADL_%CW Estrées-Mons  − 0.11 0.09  − 0.07 0.16  − 0.11 0.11 0.31 0.31 0.38 4.0–14.8 4.7–8.6
Orléans  − 0.19 0.14  − 0.13 0.23  − 0.17 0.17 0.38 0.32 0.29 7.2–21.9 5.4–13.0

Table 6   List of the QTL clusters that were identified in different LGs and conditions. See the “Materials and Methods” section for trait names. 
EM = Estrées-Mons and ORL = Orléans

Cluster Flanking marker interval 
positions (cM)

Trait type of the cluster Traits in the cluster R2 range (%) Condition

LG4_cluster1 51.0–62.2 Production CH, C50, ABM 7.1– 16.4 EM_2018
LG4_cluster2 80.3–90.9 Composition CL, HEM, ADL 11.3–15.9 EM_Age3
LG5_cluster1 32.7–48.7 Composition CL, HEM, ADL 9.3–14.8 EM_2017
LG7_cluster1 144.7–164.3 Production CH, HMax, ABM 6.1–15.9 EM_Age2
LG13_cluster1 47.2–59.0 Composition ADF, CL, HEM 5.9–11.9 ORL_2018
LG15_cluster1 93.7–119.3 Composition CL, HEM, ADL 6.7–29.4 ORL_2017
LG15_cluster2 80.7–111.0 Production/Composition CH, NDF, HEM 6.2–10.0 ORL_2018
LG15_cluster3 93.7–119.3 Composition CL, HEM, ADF 16.0–24.4 ORL_Age2
LG16_cluster1 18.0–42.6 Composition ADF, CL, ADL 6.8–11.4 EM_Age2
LG18_cluster1 43.7–57.0 Production CH, C50, ABM 9.1–13.3 EM_2018
LG18_cluster2 35.8–57.0 Production CH, C50, ABM 7.0–12.4 EM_Age2
LG18_cluster3 43.7–57.0 Production CH_ C50, ABM 7.5–10.1 EM_Age4
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were reported for each location in Table 5, as well as the 
ranges of R2 and LOD threshold values. The proportion of 
significant additive and dominance effects found based on all 
QTL corresponding to each trait was also reported.

The QTL were detected according to a LOD threshold 
that ranged from 5.0 to 11.5 on average. For biomass pro-
duction traits, the highest percentage of genotypic variance 
explained by the QTL (R2) of each trait ranged from 15.9 
to 19.5% in Estrées-Mons and from 19.6 to 24.5% in Orlé-
ans. The QTL detected in Orléans thus tended to explain 
more genotypic variance than the QTL detected in Estrées-
Mons: this was consistent with the values of additive and 
dominance effects, which were often higher in Orléans 
than in Estrées-Mons. For example, a maximal dominance 
effect of 8.2 cm was highlighted for total plant height in 
Orléans, compared to a BLUP of 5.3 cm in Estrées-Mons. 
Interestingly, most of the significant QTL effects identified 
for each production trait in both locations were either due 
to dominance effects or additive effects of the Silberspinne 
parent. This was notably observed for plant circumference 
(C50_cm), for which 43% of the significant effects origi-
nated from the Silberspinne allelic effect in Estrées-Mons 
and 46% originated from the dominance effect in Orléans.

Concerning biomass composition traits, the highest per-
centage of genotypic variation explained by the QTL of each 
trait ranged from 12 to 19.3% in Estrées-Mons and from 17.2 
to 29.4% in Orléans. As for biomass production traits, the 
QTL identified in Orléans explained a higher percentage of 
the genotypic variation than the QTL identified in Estrées-
Mons: this was also consistent with the higher allelic and 
dominance effects often observed in Orléans than in Estrées-
Mons. As an example, the maximum dominance effect for 
cellulose (%CW) was 0.41% in Orléans compared to 0.17% 
in Estrées-Mons. In contrast to the proportion of significant 
effects observed for biomass production traits, the maxi-
mum proportion of significant effects observed for biomass 
composition traits were either due to the Malepartus allelic 
effect, Silberspinne allelic effect, or dominance effect, and 
that was the case in both locations. This can be shown for 
hemicellulose content (%DM) in Orléans, with 41% of the 
significant effects originating from the dominance effect. 
Concerning cellulose content (%CW) in Estrées-Mons, 37% 
of the significant effects originated from the Silberspinne 
allelic effect. Regarding lignin content (%CW), 38% of the 
significant effects originated from the Malepartus allelic 
effect.

Fig. 6   Significant correlations between BLUP that corresponded 
to traits within the QTL clusters, among all significant correlations. 
The significance level was assessed according to a p value < 0.05. 
The blanks represent correlations that were not shown because the 
corresponding traits were not identified in the clusters. The condi-
tions under which the QTL clusters were identified are described as 

EM17, Estrées-Mons in 2017; EM18, Estrées-Mons in 2018; EMA2, 
Estrées-Mons at age 2; EMA3, Estrées-Mons at age 3; EMA4, 
Estrées-Mons at age 4; O17, Orléans in 2017; O18, Orléans in 2018; 
and OA2, Orléans at age 2. See the “Materials and Methods” section 
for details of trait names
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Some M. sinensis Genes Within the QTL Clusters 
Were Orthologous to Sorghum and Maize Cell Wall–
Related Genes

A total of 809 and 494 M. sinensis genes within the QTL 
clusters were determined to be orthologous to genes in sor-
ghum and maize, respectively. The QTL clusters contained 
62 of these M. sinensis genes that were orthologous to cell 
wall–related genes in sorghum and maize (Table 7), know-
ing that the QTL clusters were either related to miscanthus 
biomass production or composition traits (Tables 6 and 7). 
It must be noted that some genes are repeated in Table 7 
as they belong to different QTL clusters. The QTL cluster 
located in LG5 did not contain any M. sinensis genes that 
were orthologous to cell wall–related genes in sorghum and 
maize. Regarding the other clusters, some underlying genes 
were identified for different climatic conditions and different 
ages (Tables 6 and 7). The 62 M. sinensis genes belonged to 
three main categories: 15 genes (24%) coded for enzymes 
involved in polysaccharide biosynthesis, 11 genes (18%) 
coded for enzymes involved in the phenylpropanoid path-
way that provides precursors for the biosynthesis of lignin, 
and five genes (8%) coded for cell-wall proteins. Finally, 17 
transcription factors (27%) were also identified based on the 
miscanthus literature review (Table 7). Finally, twelve genes 
among these 62 genes belong to families that were previ-
ously found to contain genes involved in the secondary cell 
wall (SCW) biosynthesis of miscanthus and are highlighted 
in bold in Table 7

Discussion

The stability of the QTL detected for biomass production 
and composition traits was investigated based on 13 different 
conditions related to the staggered-start design established 
in each of the two locations. The QTL of both types of traits 
were found to be more stable for successive climatic condi-
tions and ages considered together, compared to successive 
climatic conditions or successive ages considered separately. 
The evaluation of each climatic condition and each age was 
made possible based on the staggered-start design: usually, 
other types of designs such as “single-start” designs lead 
to the evaluation of plants for a given year, in which the 
related age and climatic condition cannot be distinguished. 
According to our design, the biomass production traits 
appeared to be more stable than the biomass composition 
traits across the conditions evaluated. However, there was 
no stable QTL highlighted across both contrasted locations. 
The QTL clusters representing co-localizations of QTL for 
biomass production and/or composition traits were identified 
across 13 different conditions. The corresponding intervals 

were screened for the underlying genes that correspond to 
orthologous cell wall–related genes known in sorghum and 
maize.

Three main points will be discussed in this section: (1) 
the stability of biomass production and composition traits 
highlighted across the ages and the climatic conditions of the 
successive years studied, based on the staggered-start design 
established in each location; (2) the clusters of QTL for bio-
mass production and composition traits that are consistent 
with the moderate to high genetic correlations highlighted 
between these traits; and (3) the different orthologous cell 
wall–related genes that are known in sorghum and maize, 
two relatives of miscanthus, and that were found in the 
regions of the clusters highlighted.

Stable QTL of Biomass Production and Composition 
Traits Were Highlighted Across Climatic Conditions 
and Ages Based on the Staggered‑Start Design 
of Each Location, While No Stable QTL Were 
Detected Across the Two Locations

In each location, stable QTL that corresponded to the QTL 
detected for a given trait that co-localized under at least two 
conditions across different climatic conditions and/or across 
different ages, were identified for biomass production and 
composition traits. The assessment of QTL stability was an 
important objective of the study. This is why the staggered-
start design was analyzed according to two different linear 
mixed models, related to each climatic condition and each 
age. It also made it possible to consider all the genotypes of 
the population in each location. Regarding biomass produc-
tion traits, the different climatic conditions and ages consid-
ered together in each location led to highlight 59% and 39% 
of stable QTL in Estrées-Mons and Orléans, respectively. 
These results can be compared to those reported by Gifford 
et al. [34] and Dong et al. [36], in which each of the years 
studied in their experimental designs was not partitioned 
into age and climatic condition effects. Gifford et al. [34] 
studied 13 biomass production traits in a M. sinensis popu-
lation over 2 successive years, among which they identified 
61% of stable QTL: 22 QTL re-discovered in 2012 out of 
36 QTL detected in 2011. Dong et al. [36] established three 
interconnected miscanthus populations and carried out four 
different QTL analysis methods, either related to CIM or 
stepwise analyses. This led to the detection of 288, 264, 
133, and 109 QTL for 14 biomass production traits across 
2 years. In 2013, they re-identified from 48 to 56% of the 
QTL that had already been detected in 2012. When climatic 
conditions and ages were considered separately in each loca-
tion of our study, around 30% of stable QTL were identified 
either over the years or across the ages, regardless of the 
location. Accordingly, these lower proportions result from 
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Table 7   List of the miscanthus genes that were related to orthologous 
cell wall–related genes in sorghum and maize (Virlouvet et  al., per-
sonal communication). Each miscanthus gene was detected in at least 
one cluster that was detected for a specific condition. When a gene 
is detected in two clusters, it corresponds to two different conditions. 
Accordingly, the corresponding stability type is specified. Two types 
of orthologous relationships were assessed: miscanthus with sor-
ghum and miscanthus with maize. A miscanthus gene can thus cor-
respond to an orthologous sorghum gene that can also have a maize 
ortholog (in blue). In addition, a miscanthus gene can correspond to 
an orthologous maize gene that can also have a sorghum ortholog (in 

green). The black color corresponds to a miscanthus gene that was 
directly identified based on orthologous relationships with both sor-
ghum and maize. A miscanthus gene ID starts with the root “Misin-”, 
a sorghum gene ID starts with the root “Sobic.0-” and contains a “G” 
among the gene numbers and a maize gene ID starts with the root 
“Zm00001d-”. A miscanthus gene written with a * corresponds to an 
identical miscanthus gene, which is displayed in two different rows 
as the gene was identified in two clusters with different trait types. 
The miscanthus genes highlighted in bold belong to a gene family for 
which cell-wall candidate genes were identified in miscanthus by Hu 
et al. [79] and Zeng et al. [80]
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the partition of each year studied into the corresponding cli-
matic condition on the one hand, and the age on the other.

Regarding biomass composition traits, a higher propor-
tion of stable QTL was also identified across the climatic 
conditions and ages when they were considered together 
rather than separately. However, these different proportions 
ranged from 3 to 29%, which was relatively low compared 
to biomass production traits. Van der Weijde et al. [37] 
studied an M. sinensis population for traits related to bio-
mass composition and conversion efficiency. They reported 
23% of stable QTL in 2 successive years: 20 out of 86 QTL 
were detected in 2013 and 2014. These proportions confirm 
that, in miscanthus, the QTL of biomass composition traits 
seem to be less stable across different years (and ages) than 
those of biomass production traits. This may be explained 
by strong genotype x climatic condition or genotype x age 
interactions, as significant genotype x year interactions have 
already been highlighted for miscanthus biomass composi-
tion traits [74, 75].

In each location studied, the proportion of stable QTL 
for both types of traits across the climatic conditions and/
or ages was rather low: this could be expected, as biomass 
production and composition traits can be affected by the 
variability related to plant age and environmental factors, 
such as the related climatic conditions that occur each year 
[74, 75]. However, these stable QTL mapped across the cli-
matic conditions and/or ages would lead to the identifica-
tion of relevant targets for MAS programs. Among these, 
a relevant example was highlighted in LG8 (37 cM) for 
plant circumference (C50_cm) and aboveground biomass 
yield (ABM_tDMha), symbolized with a solid red triangle 
in Fig. 5: these stable QTL are relevant in terms of their 

stability over different ages and climatic conditions of suc-
cessive years in Estrées-Mons, especially as they are stable 
for age 2, 3, and 4. It means that future genetic material 
could be screened at a young age, in order to select indi-
viduals that show beneficial alleles according to this QTL. 
It could thus speed up miscanthus breeding when based on 
an early selection of such individuals.

The proportion of stable QTL depends on environmental 
conditions, plant age and the genetic material considered, 
which is specific to each miscanthus study [34, 36, 37]. 
However, these prior studies did not detect QTL for more 
than 3 years after establishment and did not distinguish the 
age effect from climatic condition effect. Segura et al. [38] 
used a staggered-start design and carried out QTL mapping 
in order to dissect the apple tree architecture into genetic, 
ontogenetic, and environmental effects. This made it pos-
sible to determine the genetic determinism of related traits, 
with regard to tree ontogeny and climatic conditions. To our 
knowledge, the present study uses a staggered-start design in 
miscanthus for the first time, in order to detect stable QTL in 
different climatic conditions and/or at different ages. Moreo-
ver, a staggered-start design was established in each of the 
two contrasting locations, which led to the examination of 
QTL stability across locations as well, as had never been 
done before in miscanthus.

Accordingly, when considering the different years (i.e., 
climatic conditions) and ages together across locations, 
no stable QTL were identified for biomass production and 
composition traits. Thus, it shows that the QTL detected are 
specific to each location studied. These QTL are relevant for 
miscanthus breeding programs, as they express themselves 
in specific conditions related to a given location. It indicates 

Table 7   (continued)
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that other environmental effects interact with the genetic 
basis of biomass production and composition traits across 
locations. The different climatic and soil conditions could 
explain that, as the staggered-start design was established 
in a deep loam soil in Estrées-Mons, it was established in 
a sandy soil in Orléans. In addition, the climate in Estrées-
Mons is more influenced by the ocean than in Orléans: the 
differences in climatic conditions between both locations are 
presented according to different periods of the plant cycle 
in Raverdy et al. (submitted to BioEnergy Research). Thus, 
significant genotype × location interactions may explain the 
lack of stable QTL across locations. In a study comparing 
different miscanthus species across five different locations 
in Europe, Clifton-Brown et al. [76] and Lewandowski et al. 
[77] indeed highlighted genotype × location interactions 
for biomass production and biomass composition traits. 
Moreover, 53 additional progenies were grown in Estrées-
Mons compared to Orléans (Fig. 1): the genetic variability 
was therefore not identical between the two locations. This 
can also be a reason why the genotypic variances (R2) 
explained by the QTL detected in Orléans were mostly 
higher than those explained by the QTL detected in Estrées-
Mons. The establishment effect can impact QTL detection 
power, as miscanthus is mature from around 2 to 3 years [19] 
or 5 years after establishment [78]: a substantial number of 
QTL were detected from young to old plants in our study, 
which suggests that the effect due to the establishment 
may be limited within the location. However, the different 
establishment conditions between locations could also 
explain the lack of stable QTL across locations. Tejera 
et al. [41] used a staggered-start design and showed that the 
M. × giganteus yield response to fertilization was influenced 
by establishment conditions in each location but not by the 
plant age.

In this study, each staggered-start design makes it 
possible to highlight a higher proportion of stable QTL for 
a range of climatic conditions and ages considered together 
rather than separately. However, the stability of QTL under 
these conditions is higher for biomass production traits 
than for biomass composition traits, studied together for 
the first time in a miscanthus mapping population. Across 
locations, no stable QTL were identified, which may be 
due to different environmental conditions such as climate, 
soil, and establishment effects. This brings new insights 
into miscanthus breeding, as stable QTL are needed from 
different genetic material evaluated across different ages 
and climatic conditions: the comparison of stable QTL 
between studies would lead to the identification of the 
most significant genomic regions associated with biomass 
production and composition traits. Such QTL that are 
specific to a given location will benefit to the breeding of 
miscanthus, notably to target the conditions encountered in 
a particular region.

Clusters of QTL for Biomass Production and Composition 
Traits Were Consistent with the Moderate to High Genetic 
Correlations Highlighted Between These Traits

The QTL clusters identified for biomass production and 
composition traits were in agreement with the moderate to 
high genetic correlations between the traits. The QTL clus-
ters related to biomass production traits were identified in 
LG4, LG7, and LG18. They were made up of QTL that over-
lapped at similar positions, for traits such as canopy height, 
total plant height, plant circumference, and aboveground 
biomass yield. The corresponding significant and moderate 
to high genetic correlations suggest that QTL overlapping 
is not random. Moreover, the stability of the QTL cluster 
is shown in LG18, as QTL were detected in 2018 and at 
ages 2 and 4 in Estrées-Mons. This is possible based on 
each staggered-start design evaluated over 5 years in two 
locations. Gifford et al. [34] identified QTL clusters in LG3 
and LG6, which were re-identified in 2 subsequent years 
and that were consistent with high genetic and phenotypic 
correlations as well. These clusters were made up of QTL 
related to the plant circumference, stem diameter, plant stem 
number, aboveground biomass yield, or characteristics of 
the leaves such as leaf width, length, and area. These QTL 
identified for leaf-related traits are relevant: as canopy height 
refers to the height of the different leaves of the plant that 
contributes to yield, the QTL identified for canopy height 
in our study can in fact be related to different phenotypic 
characteristics of the leaves. However, none of their different 
QTL clusters were common to our QTL clusters. Dong et al. 
[36] identified different QTL clusters in their three intercon-
nected miscanthus populations: these clusters were related to 
plant height, plant circumference, stem volume and density, 
and the aboveground biomass yield. They were identified in 
various LG depending on the population and were in agree-
ment with the moderate to high phenotypic and genetic cor-
relations between these traits. For one of their populations 
originating from a cross between an M. sinensis and an M. 
sacchariflorus cultivar, they identified QTL clusters in LG4 
and LG7: these LGs were common to the LGs in which we 
identified QTL clusters for the same type of traits related to 
plant height, plant circumference, and aboveground biomass 
yield. However, an investigation of the QTL cluster positions 
in their study would be based on the alignment with the M. 
sinensis reference genome in order to determine if the same 
genomic regions are involved.

Regarding biomass composition traits, we identified QTL 
clusters in LG4, LG5, LG13, LG15, and LG16, which were 
also in agreement with the significant moderate to high correla-
tions between these traits. The stability of the clusters is also 
notable, because two clusters were identified in 2017 and for 
age 2 in Orléans. This is made possible based on the staggered-
start design as well. They were located in LG15 and made up 
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of traits related to cellulose, hemicelluloses, lignin, and ADF 
contents. The co-localization of QTL related to ADF content 
with those related to cellulose and lignin content is not surpris-
ing, as ADF content represents the sum of cellulose and lignin 
contents [64]. Van der Weijde et al. [37] identified a major QTL 
cluster for traits related to conversion efficiency and composi-
tion traits: this cluster was located on chromosome 6 according 
to the Sorghum bicolor reference genome that was used in the 
construction of their two parental miscanthus genetic maps. In 
miscanthus, the corresponding chromosomes are chromosomes 
11 and 12, as the miscanthus genome has been shown to be the 
result of chromosomal duplication and fusion based on the sor-
ghum genome [33, 35, 42]. However, none of our QTL clusters 
is common with their QTL clusters, because we did not identify 
QTL clusters in LG11 and LG12.

Our study was conducted by considering biomass produc-
tion and composition traits together: this led to the identifi-
cation of a QTL cluster in LG15, which was made up of both 
biomass production and composition traits. The correspond-
ing traits were canopy height, NDF (%DM), and hemicel-
lulose content: the moderate and significant correlations of 
canopy height with these composition traits (respectively, 
0.44 and − 0.55) tend to validate the existence of this cluster. 
However, further analysis according to the genes underlying 
this cluster is necessary to confirm this assumption.

The QTL clusters identified for biomass production and 
composition traits could be explained by different genetic 
factors, such as the pleiotropic effects of the genes underly-
ing these QTL or linked genes. Sometimes, these clusters 
can originate from genomic regions with segregation distor-
tion, but this may not be possible in our study as we care-
fully filtered the distorted markers for the construction of 
our integrated genetic map. The staggered-start design led 
to the identification of QTL clusters located in LG4, LG5, 
LG7, LG13, LG15, LG16, and LG18 for a range of climatic 
conditions and ages that consider biomass production and 
composition traits together, for the first time in miscanthus.

Orthologous Cell Wall–Related Genes Previously Identified 
in Sorghum and Maize Enabled the Identification 
of Putative Cell Wall–Related Genes in M. sinensis

Some of the 62 M. sinensis genes that were identified in 
the QTL clusters based on the orthologous cell wall–related 
genes known in sorghum and maize belong to specific gene 
families. Twelve genes among the 62 genes belong to fami-
lies that were previously found to contain genes involved in 
the secondary cell-wall (SCW) biosynthesis of miscanthus 
[79, 80]. Hu et al. [79] carried out a transcriptome analysis of 
genes involved in secondary cell-wall biosynthesis in devel-
oping internodes of M. lutarioriparius: they highlighted 
different gene members in specific gene families. These 
families included genes encoding 4-coumarate-CoA ligase 

(4CL) and cinnamoyl-CoA reductase (CCR), both involved 
in the biosynthesis of several classes of phenylpropanoids, 
as well as laccase (LAC), involved in the polymerization of 
lignin [81]. They also identified the cellulose synthase–like 
(CSL) and glycosyltransferase (GT) gene families that are 
involved in the biosynthesis of cellulose and hemicellulose 
components in plants. Finally, three other gene families in 
common with Hu et al. [79] were identified: the fasciclin-
like arabinogalactan (FLA) gene family, for which genes are 
involved in cell wall modification and assembly; the NAC 
transcription factor (TFNAC) and WRKY transcription fac-
tor (TFWRKY) families that contain transcriptional factors 
for the regulation of secondary cell wall development. Based 
on genetic and transcriptional analyses in M. × giganteus, 
Zeng et al. [80] identified several genes that are common to 
the genes we highlighted: the 4CL and CCR families that 
were also reported by Hu et al. [79], as well as the shikimate 
hydroxycinnamoyl transferase (HCT) family.

Based on these different comparisons, we hypothesize 
that twelve M. sinensis genes out of the 62 genes previously 
identified are involved in secondary cell wall development. 
This hypothesis is supported by the fact that these genes were 
mainly located in the QTL clusters composed of M. sinensis 
biomass composition traits, especially for the clusters located 
in LG4, LG13, and LG15. Cluster 2 in LG4 and clusters 1 and 
3 in LG15 were particularly notable, as the R2 of the related 
QTL mainly ranged from 11.3 to 29.4% (Table 6).

Conclusion

In this study, an integrated genetic map of 2770 cM was 
constructed based on 2602 SNP markers distributed across 
19 LGs and was aligned with the released M. sinensis ref-
erence genome. This integrated genetic map, which was 
highly saturated, led to the identification of 260 and 283 
QTL related to biomass production and composition traits, 
respectively. The staggered-start design established in each 
of the two contrasting French locations led to the detection 
of QTL that were stable across different climatic condi-
tions and different ages. For both types of traits, a higher 
stability of the QTL was found when the climatic condi-
tions were considered together with the different ages, than 
when they were considered separately. These differences 
were highlighted based on the distinction of the plant age 
effect from climatic condition effect. For a given location, 
the most stable QTL identified across different climatic 
conditions and different ages would be interesting for mis-
canthus breeders, as they are stable regardless of the con-
dition assessed in our experiment. They are thus important 
resources to carry out future MAS programs. This would 
be true especially for the QTL which were found to be 
stable at age 3 and age 4, as they could be relevant for 
screening young plants without the need to wait for their 
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mature age. This would be more suited to biomass produc-
tion traits, as the biomass composition traits were found 
to be less stable across the conditions. However, no stable 
QTL were identified across locations: it highlights that the 
QTL detected in this study were specific to the conditions 
encountered in Estrées-Mons or in Orléans, and it shows 
the relevance of carrying out the study in two locations. 
They may be explained by the existence of QTL that cor-
respond to the genotype × age and genotype × climatic con-
dition interaction effects. These effects were specifically 
assessed in the two models carried out for the analysis of 
the staggered-start designs, but their corresponding map-
ping has not been carried out yet, and their future detection 
would be desirable.

Clusters of QTL were then identified for biomass pro-
duction and composition traits under different conditions: 
this means that linked genes or pleiotropic effects from 
the genes underlying these QTL would make it possible 
to jointly improve these different traits. Moreover, these 
QTL clusters contained 62 M. sinensis genes that were 
orthologous to cell wall–related genes in sorghum and 
maize. Twelve of these genes were identified as putatively 
involved in secondary cell wall biosynthesis. In summary, 
all these QTL clusters which correspond to different traits 
or stability types and their underlying candidate genes 
constitute targets of interest for miscanthus breeders, in 
order to evaluate and create new miscanthus cultivars that 
would be adapted to different environments, with a high 
biomass yield and a composition suited to bioenergy, bio-
materials or animal bedding.
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