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ABSTRACT 

Nowadays, online judges are very important to improve programming skills for education 

and technology companies. For this reason, there are many online judges that include 

large sets of programming challenges. This creates an information overload problem that 

affects students due to their lack of expertise in choosing the correct challenge to solve, 

resulting in frustration and a loss of interest in this topic. To solve this scenario, 

recommender systems appear, but programming judges have not delved much into it. 

Consequently, this research aims to evaluate the performance of six selected collaborative 

filtering techniques via a cloud-based software architecture. To validate our experiments 

we used real online programming judges like CodeChef and NinjaCoding using cloud 

based architecture with Amazon Web Services, evaluated through Friedman and 

Wilcoxon statistical tests. The results indicated that Singular Value Decomposition is the 

best model evaluated with RMSE metric and the fastest in execution time with big 

datasets. 

 

Keywords: programming online judges, recommender systems, collaborative filtering, 

machine learning, deep learning. 

 

RESUMO 

Hoje em dia, os juízes online são muito importantes para melhorar as habilidades de 

programação para empresas de educação e tecnologia. Por esse motivo, existem muitos 

juízes online que incluem grandes conjuntos de desafios de programação.   Isso cria um 

problema de sobrecarga de informações que afeta os alunos devido a` falta de experiência 

em escolher o desafio correto para resolver, resultando em frustração e perda de interesse 

por esse tópico.  Para resolver esse cenário, surgiram os sistemas de recomendação, mas 
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os juízes de programação não se aprofundaram muito nisso.   Consequentemente, esta 

pesquisa visa avaliar o desempenho de seis técnicas de filtragem colaborativa 

selecionadas por meio de uma arquitetura de software baseada em nuvem. Para validar 

nossos experimentos, usamos juízes de programação online reais como CodeChef e 

NinjaCoding usando arquitetura baseada em nuvem com Amazon Web Services, 

avaliados por meio de testes estatísticos de Friedman e Wilcoxon. Os resultados 

indicaram que a Singular Value Decomposition é o melhor modelo avaliado com a 

métrica RMSE e o mais rápido em tempo de execução com grandes conjuntos de dados. 

 

Palavras-chave: programando juízes on-line, recomendar sistemas, filtragem 

colaborativa, aprendizagem de máquina, aprendizagem profunda. 

 

 

1 INTRODUCTION 

Programming Online Judges (POJs) have great importance in the industry 

and academia. In the industry, it allows improved skills such as logical reasoning, 

data structure management, and the use of different algorithm paradigms for various 

real life problems. All these topics are an important part of interviews in Big Tech 

companies such as Amazon, Google, Meta, and others [McDowell, 2015]. In the 

education sector, it has been proven that the use of POJs in Computer Science 

courses considerably improve student performance because it allows students to 

practice programming and receive instant feedback on their solutions. This helps 

them to learn from their mistakes, identify their weaknesses, and improve their 

programming skills [Wu et al., 2016]. Also, POJs can be a motivating factor for 

students, as it allows them to compete with their peers and see their progress in 

real-time. Moreover, students can earn recognition and rewards for their 

achievements, which can boost their confidence and encourage them to learn more. 

Currently, there is a considerable number of POJs with a large number of 

challenges [Cruz et al., 2022, Rahman et al., 2022], which have little clarity about 

the difficulties (easy, medium, hard) and categories (math, graph, strings, etc) 

[Rahman et al., 2021]. Some examples of these problems can be seen in the POJ 

UVA which has more than 2 thousand challenges, and in the SPOJ judge which has 

more than 6 thousand programming problems [Fantozzi and Laura, 2020]. This 

overload of information generates frustration and abandonment in students if they 

do not have someone with experience to guide them [Pereira et al., 2021, Fantozzi 

and Laura, 2020, Yera and Martínez, 2017]. In POJs, the classical way to 

recommend the next challenge is by doing the most solved challenges [Pereira et 
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al., 2021], this approach lacks customization because it will suggest the same 

challenges to all users, regardless of the problems they have solved [Caro-Martinez 

and Jimenez-Diaz, 2017]. 

One of the most effective and common strategies for automatically 

recommending is by using collaborative filtering (CF) techniques [Aljunid and Dh, 

2020, Bobadilla et al., 2020]. These techniques are classified into memory-based 

CF and model-based CF. In memory-based approaches, recommendations are 

generated using the preferred information associated with users. On the other hand, 

model-based approaches focus on discovering intermediate knowledge, such as the 

rules of the association, patterns, and other ways of knowledge representation, to 

build a predictive model that is then used to generate final recommendations 

[Bhalse and Thakur, 2021, Kluver et al., 2018, Ortega et al., 2016]. 

A strong and scalable recommender system that is specifically designed for 

POJ has only seldom been the subject of investigations. When creating such 

systems, it is important to take into account the distinctive qualities of POJs, such 

as the enormous quantity of tasks, the variety of difficulty levels and categories, 

and the rise in online users. Although recommender systems have been thoroughly 

studied in many different fields, little has been done to apply these methods to the 

unique difficulties faced by POJs. It is necessary to take into account strategies that 

are appropriate for addressing the scope and complexity of these systems in order 

to construct an efficient recommender system for POJs. For these reasons, in this 

research we have three main objectives. The first objective is to propose a cloud 

architecture that enables us to couple a recommender system to programming 

judges using REST APIs. This allows us to take advantage of cloud computing 

resources and ensure scalability and availability of the system. The second is to 

identify machine and deep learning models that provide significantly better 

recommendations, which are validated through statistical tests such as the Friedman 

test and Post-hoc tests. Our third is to measure the time of execution of these 

models, which helps us evaluate their efficiency and select the most suitable model 

for large datasets and real time applications. By achieving these aims, we provide 

a comprehensive solution that can help improve the user experience on the 

Programming Online Judges platform. 
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This paper’s remaining sections are organized as follows: Section II 

describes the background, III the methodology, IV experimentation and results, and 

finally V conclusions and future works. 

 

2 BACKGROUND 

2.1 PROGRAMMING ONLINE JUDGES 

Programming Online Judges are web platforms that have a list of problems. These 

problems are solved by users sending their solutions (source code) developed in a 

programming language supported by the platform. The submitted source code is 

automatically evaluated and the verdict is given back to the user (Table 1). The POJs were 

mainly inspired by the most prestigious contest in the world, known as ACM-ICPC1, 

where different teams from around the world compete in person. This contest lasts 5 hours 

and the participants try to solve between 10 to 13 programming problems, the winners 

being the ones who solve the most in the shortest time.   POJs these days is a very effective 

tool for learning programming. Many of them have been established for the purpose of 

online learning and competitions [Intisar et al., 2019]. For example, globally, we have 

POJs like Peking University, Valladolid University, Timus, and Saratov State University 

[Yera and Martínez, 2017]. Furthermore, in Latin America there are the Caribbean Online 

Judge, Beecrowd, OmegaUp and finally in Peru NinjaCoding and Huahcoding are used 

in different universities and events [Julca-Mejia and Paucar-Curasma, 2023]. 

 

Table 1. POJ main sentences 

Verdict Abbreviation Description 

Accepted AC The solution is correct. 

Wrong Answer WA The solution is incorrect. 

Compiler Error CE The solution is not working. 

Time Limit Exceeded TLE 

Run Time Error RTE 

establish time. 

The solution fails in the execution. 

Source: Author’s research 

 

2.2 RECOMMENDER SYSTEMS 

Recommender systems (RS) provide a collection of recommended elements to 

alleviate the search process in an overloaded environment, trying to predict the most 

suitable products or services according to user preferences Aamir and Bhusry [2015], 

Jannach et al. [2010]. These can be classified into several categories: content-based 

                                                           
1 https://icpc.global/ 
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filtering (CBF) recommendation systems, collaborative filtering (CF) recommendation 

systems, and hybrid filtering (HF) recommendation systems Anwar et al. [2022] for 

which the collected data is analyzed. They learn using various machine learning methods 

and techniques such as clustering and categorization Aamir and Bhusry [2015]. 

 

2.3 COLLABORATIVE RECOMMENDER SYSTEMS IN POJ 

Recommender systems (RS) provide a collection of recommended elements to 

alleviate the search process in an overloaded environment. In the POJ scenario, the 

recommender systems that have been developed are based on content and user-item 

interactions. In this research we focus on this matrix of interactions where if a 

programming challenge has been solved or not, a rating is assigned and a history of each 

user and item is generated, allowing us to carry out a collaborative recommendation 

system. The most relevant investigations found in our review of the literature are: 

Caro-Martinez and Jimenez-Diaz [2017] implement a user-based approach by 

representing them in graphs, using different similarity functions, and eliminating all user 

submissions to a problem, except the one last resolved. The results indicate that the 

selection of the highest-performing similarity metric is crucial to achieving the best 

results and that user-based approaches perform better with unweighted metrics. 

Yera and Martínez [2017] use a collaborative filtering recommendation approach, 

which is composed of three main steps: 1) The construction of the extended matrix of 

user problems, 2) the preprocessing of the extended matrix of user problems for managing 

natural noise, and 3) the recommendation of the problems. Experimental results show that 

steps 1) and 2) guarantee the formation of a more accurate neighborhood positively 

impacting accuracy. For the evaluation of their proposal, they use a dataset from the POJ 

Caribbean Online Judge. For the authors to obtain the value K of neighbours, they tested 

different values of K where these results conclude that the precision stabilizes for K > 

130 and tends to increase when K increases in the range [90, 130]. 

Pereira et al. [2021] use a POJ called CodeBench from the Federal University of 

Amazonas in Brazil to measure the effort it took to solve a problem using the average 

number of attempts, the average number of code lines, average number of variables, 

algorithmic complexity, number of attempts and other indicators for each problem. Using 

cosine similarity as the distance metric, nearest neighbor analysis is used to calculate the 

degree of similarity between the recommended problem and the target problem. With the 

qualitative Kappa Cohen test, they obtained a result of 0.83, which is considered a good 
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result. Then, through the statistical test of Bonferroni’s correction, it is shown that the 

proposed model maximizes the positive emotional state while minimizing frustration. 

Lara-Cabrera et al. [2020] use a recursive approach to matrix factorization and 

deep learning. Its objective is to improve the quality of the recommendations made to the 

user using successive training with a recursive matrix factorization approach and deep 

learning. The evaluation of the model is carried out through the MAE and Precision 

metrics, giving better results than models such as the Probabilistic Matrix Factorization, 

Non-Negative Matrix Factorization and SVD++. The author concludes by commenting 

that his model breaks the trend of using deep learning with neural networks and applying 

it to matrix factorization. 

  

3 METHODOLOGY 

3.1 MATERIALS AND METHODS 

The datasets used in this research are CodeChef 2 and NinjaCoding [Julca-Mejia 

et al., 2018]. Codechef contains data between the years 2009 and 2016 with 565,027 user-

item interactions, of which there are 59,322 users and 541 unique problems, and 

Ninjacoding contains 1,145 user-item interactions. Tables 2 and 3 show some statistics 

of the mentioned datasets. 

 

Table 2. CodeChef Dataset 

 USER ID ITEM ID RATING 

count 565027.00 565027.00 565027.00 

mean 29865.53 75.89 1.26 

std 17404.61 101.95 0.44 

min 1.00 1.00 1.00 

25% 14665.00 6.00 1.00 

50% 30091.00 24.00 1.00 

75% 45119.00 109.00 2.00 

max 59322.00 541.00 2.00 

Source: Author’s research 

  

                                                           
2 https://www.codechef.com/ 
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Table 3. NinjaCoding Dataset 

 USER ID ITEM ID RATING 

count 1145.00 1145.00 1145.00 

mean 34.35 26.77 0.29 

std 20.61 14.60 0.45 

min 1.00 1.00 1.00 

25% 21.00 18.00 1.00 

50% 33.00 24.00 1.00 

75% 50.00 36.00 2.00 

max 79.00 70.00 2.00 

Source: Author’s research 

 

The methodology we used is CRISP-DM, which provides phases and establishes 

a set of tasks and activities for each phase for data science projects [Martínez-Plumed et 

al., 2019]. 

The experiments were initially carried out on the Google Colaboratory platform 

with Python 3 through Jupyter notebooks. Then the Colab notebook was transferred to a 

AWS SageMaker notebook to be able to make it available through Amazon AWS 

components, so that the architecture is robust and in a productive environment. 

 

3.2 RECOMMENDER SYSTEM 

We tested 6 models such as KNN based in Cosine, Pearson, Mean Squared 

Difference (MSD) 4 similarity functions and Probabilistic Matrix Factorization (SVD), 

Not Negative 

Matrix Factorization (NMF) and Deep Matrix Factorization (DeepMF) evaluated 

through the RMSE 1 metric. Equations 1, 2, 3, 4, 5 and 6 show the definitions. 

 

 

 

RMSE = √

1

|𝑅
^

|

∑ .

𝑟
^

𝑢𝑖∈𝑅
^

(𝑟𝑢𝑖 − 𝑟
^

𝑢𝑖)2.  
(1) 

Cosine (𝑢, 𝑣) =
∑ .𝑖∈𝐼𝑢𝑣

𝑟𝑢𝑖 ⋅ 𝑟𝑣𝑖

√∑ .𝑖∈𝐼𝑢𝑣
𝑟𝑢𝑖

2 ⋅ √∑ .𝑖∈𝐼𝑢𝑣
𝑟𝑣𝑖

2

 (2) 

Pearson (𝑢, 𝑣)

=
∑ .𝑖∈𝐼𝑢𝑣

(𝑟𝑢𝑖 − 𝜇𝑢) ⋅ (𝑟𝑣𝑖 − 𝜇𝑣)

√∑ .𝑖∈𝐼𝑢𝑣
(𝑟𝑢𝑖 − 𝜇𝑢)2 ⋅ √∑ .𝑖∈𝐼𝑢𝑣

(𝑟𝑣𝑖 − 𝜇𝑣)2

 

              (3) 
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Where: 

 

• u, v: users, i: item and r: rating 

 

                                                                                           (4) 

 

Where:  

 
• R: is the user-item interaction matrix 

• U: represents users in a transformed space based on their preferences.  

• Σ: represents the importance of latent features.  

• 𝑉𝑇: represents items in a transformed space based on their desirability. 

 

Where: 

 

• W: represents the user matrix 

• H: represents the item matrix. 

 

                                (6) 

 

Where: 

 

• 𝑊𝑢:  is the user embedding matrix.  

• Hi:  is the item embedding matrix.  

• 𝑏𝑖𝑎𝑠𝑢 , 𝑏𝑖𝑎𝑠𝑖: are user and item bias terms, respectively.  

• 𝑓: is an activation function, commonly used in deep learning models.  

• interaction_terms: represent additional layers or interactions introduced in the neural 

network. 

 

The mentioned models work with the history of user-item interactions. These 

interactions are represented by a matrix M (Equation 7), where each cell M [u, i] 

represents the evaluation result of the programming judge (AC, WA, TLE, CE, RTE). 

MSD (𝑢, 𝑣) =
1

|𝐼𝑢𝑣|
⋅ ∑ .

𝑖∈𝐼𝑢𝑣

(𝑟𝑢𝑖 − 𝑟𝑣𝑖)
2 

 

𝑅𝑁𝑀𝐹 ≈ 𝑊𝐻 

 

(5) 
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Inspired by [Toledo and Mota, 2014] we are modeled with the value 1 if the programming 

challenge was not solved or tried and 2 if the programming challenge was ever solved. 

 

𝑀[𝑢, 𝑖] =  {
2, 𝑖𝑓 𝑀[𝑢, 𝑖] = 𝐴𝐶

1, 𝑖𝑓 𝑀[𝑢, 𝑖] = 𝑊𝐴, 𝐶𝐸, 𝑇𝐿𝐸, 𝑅𝑇𝐸

 

 

(7) 

 

3.3 ARCHITECTURE 

Our proposed architecture was developed by applying the Architecture Centric 

Design Method (ACDM), because any change in requirements is mitigated with the early 

stage of rapid prototyping adoption. Therefore, it can be used to establish high fidelity 

estimates and track the progress of any project construction [Devadiga, 2017]. 

The POJ and the recommender system communicate through REST APIS, where 

the /interactions API provides the recommendation system with the list of verdicts in the 

POJ and the recommendations/ < idUser > API recommends the suggested items for the 

idUser to be with the active session. 

In this research, we have tested with the Amazon cloud provider, since it is 

important that it can be scaled horizontally and vertically, in addition to providing easily 

integrated components to carry out the recommendation system. This system is available 

through the Amazon SageMaker, Notebooks, S3, Lambda, Api Gateway and Single Sign 

One.   We use the Api Gateway to manage the recommendations/<idUser> API with the 

lambda, which allows us to expose the sagemaker model via the boto3 library and 

Sagemaker allows training and the deployment of models. The data are consumed from 

POJ through the python requests library and the test and training sets are saved in S3 files. 

Finally, Single Sign One allows multiple access for the researchers with a single account 

enabling them to develop and test the architecture using several AWS services. In Figure 

1 shows the architecture. 
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Figure 1. Architecture with AWS Amazon Components

 
Source: Author’s research 

 

4 EXPERIMENTATION AND RESULTS 

4.1 MODELS AND PARAMETERIZATION 

The models used in this research are those based on KNN and Matrix 

Factorization. With KNN we have Cosine, Pearson, and Mean Squared Difference (MSD) 

similarity and the models based on Matrix Factorization are Singular Value 

Decomposition (SVD), Non- Negative Matrix Factorization (NMF), and DeepMF that 

blends matrix factorization with deep learning. 

 

4.2 RESULTS AND DISCUSS 

The RMSE results obtained from different datasets for models Cosine, DeepMF, 

MSD, NMF, Pearson, and SVD have been presented in Table 8. The datasets used for 

evaluation  

 

Table 4. Cosine, Pearson and MSD models parameters 

Model Number of 

neighbors 

Minimum number 

of neighbors 

User based 

KNN models for Codechef 30 1 True  

KNN models for Codechef NinjaCoding 30 1 True  

Source: Author’s research 
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Table 5. SVD model parameters 

Model Number of factors Number of epochs Regularizer Learning rate 

SVD for Codechef 10 20 0.02 0.005 

SVD for NinjaCoding 20 50 0.1 0.02 

Source: Author’s research 

 

Table 6. NMF model parameters 

Model Number 

of factors 

Number of 

epochs 

Regularizer Learning 

rate users 

Learning rate 

items 

NMF for CodeChef 50 50 0.02 0.005 0.005 

NMF for NinjaCoding 15 20 0.1 0.02 0.001 

Source: Author’s research 

 

Table 7. DeepMF model parameters 

Model Latent 

dimensions 

Regularizer 

lambda 

Number of 

epochs 

Number of 

layers 

DeepMF for CodeChef 50 0.02 10 4 

DeepMF for NinjaCoding 15 0.1 10 4 

Source: Author’s research 

 

Include different samples of CodeChef and NinjaCoding. The results presented 

indicate that the DeepMF model improves its predictions as the amount of data increases. 

This suggests that DeepMF is a robust and reliable method for handling large datasets. 

Another pattern is that the Cosine, Pearson, and MSD models do not appear to differ from 

each other when dealing with small datasets. However, to validate if these differences are 

significant we need to validate through statistical tests. 

According to the Shapiro-Wilks test results in Table 9, the distribution of the Table 

8 data is not balanced. This is particularly evident in the values obtained for Cosine and 

DeepMF , which are 0.00053 and 0.00017, respectively, indicating that these two models 

have the most significantly non-normal distributions. In contrast, the Shapiro Wilks test 

statistic for NMF is 0.68700, suggesting that its distribution is the closest to normal. The 

values obtained for Pearson and SV D are also different, with 0.01150 and 0.43300, 

respectively. This indicates that the distribution of these methods is not balanced, and this 

is further supported by the visual evidence presented in Figure 2. It clearly shows that the 

data points deviate significantly from the straight line, indicating that the distribution of 

the data for these methods is also not normal. 

As the Shapiro-Wilks test demonstrated that the results were not balanced, we use 

a non-parametric test (Friedman test) to know if there are significant differences. The 

result of the Friedman test showed that the p-value was equal to 0.000000275, suggesting 

that there is extremely strong evidence against the null hypothesis. This indicates that at 

least one of the model pairs differs significantly from the rest. To identify the pairs 
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Table 8. RMSE results of each dataset and model 

Dataset Cosine Pearson MSD SVD NMF DeepMF 

CodeChef-30k 0.4261 0.4294 0.4413 0.4123 0.4603 0,4348 

CodeChef-20k 0.4242 0.4219 0.4329 0.4122 0.4588 0,4346 

CodeChef-15k 0.4184 0.4166 0.4249 0.409 0.453 0,4342 

CodeChef-10k 0.4222 0.4187 0.4278 0.4124 0.4591 0,4295 

CodeChef-5k 0.4165 0.4175 0.4175 0.4175 0.4478 0.4399 

CodeChef-4k 0.4173 0.4176 0.4191 0.4179 0.4389 0.4347 

CodeChef-3k 0.4095 0.4103 0.4117 0.4064 0.4275 0.4422 

CodeChef-2k 0.4063 0.4049 0.4067 0.4066 0.4138 0.4342 

CodeChef-1k 0.3938 0.3969 0.3969 0.3944 0.4064 0.4319 

CodeChef-500 0.4368 0.4368 0.4368 0.4342 0.4450 0.4368 

CodeChef-400 0.4240 0.4240 0.4240 0.4250 0.4271 0.4641 

CodeChef-300 0.4380 0.4380 0.4380 0.4353 0.4438 0.4349 

CodeChef-200 0.4312 0.4312 0.4312 0.4309 0.4392 0.4932 

CodeChef-100 0.4132 0.4132 0.4132 0.4166 0.4094 0.4917 

NinjaCoding 0.5083 0.4827 0.4996 0.4534 0.4892 0.4947 

Source: Author’s research 

 

Table 9. Shapiro-Wilks test of RMSE results 

Model p-value 

Cosine 0.00053 

DeepMF 0.00017 

MSD 0.00493 

NMF 0.68700 

Pearson 0.01150 

SVD 0.43300 

Source: Author’s research 

 

of models that differ significantly, a post-hoc Wilcoxon test with Bonferroni adjustment 

was executed and the results are presented in Table 10. These results show that pairs 

DeepMF-SVD, NMF-Pearson, and NMF-SVF are significantly different, in contrast to 

other pairs of models. 

When evaluating the efficiency of machine and deep learning models, it is 

important to consider not only their predictive accuracy but also their execution time. 

This becomes particularly relevant when dealing with large datasets or when quick 

responses are needed in real-time applications. For this reason, we ran 20 thousand 

interactions to measure the time of execution (presented in Figure 3). As the figure shows, 

the Matrix factorization models (SVD, NMF, DeepMF) were found to be faster than the 

K-Nearest Neighbors models (MSD, Cosine, Pearson). This difference in execution time 

can be attributed to the fact that NMF, DeepMF and SVD reduce the dimensionality of 

the data, making it easier and faster to find patterns and make predictions. In contrast, 

KNN relies on the original high-dimensional data, which can be slow to process. 
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Regarding the execution time of each model according to CPU and Memory, it 

does not differ much. Therefore, if we use large, xlarge or 2xlarge for any model, the 

time for each is almost the same. SageMaker instance types such as ml.t3.medium and 

 

Figure 2. Q-Q plot showing the normal distribution of RMSE results 

 
Source: Author’s research 

 

Table 10. Wilcoxon test with Bonferroni adjustment 

Models Comparison p-value p-value-adj significance 

Cosine - DeepMF 0.004 0.058 ns 

Cosine - MSD 0.059 0.888 ns 

Cosine - NMF 0.003 0.05 ns 

Cosine - Pearson 0.541 1 ns 

Cosine - SVD 0.088 1 ns 

DeepMF - MSD 0.012 0.18 ns 

DeepMF - NMF 0.639 1 ns 

DeepMF - Pearson 0.001 0.021 * 

DeepMF - SVD 0.000122 0.002 ** 

MSD - NMF 0.003 0.039 * 

MSD - Pearson 0.014 0.214 ns 

MSD - SVD 0.01 0.152 ns 

NMF - Pearson 0.000183 0.003 ** 

NMF - SVD 0.000305 0.005 ** 

Pearson - SVD 0.024 0.357 ns 

Source: Author’s research 

 

ml.t3.large do not support 10000 and 30000 interactions, due to their limited 

memory of 4GiB and 8GiB. Nevertheless, the 30000 interactions go well on all models 

with instances larger than ml.t3.xlarge, which have memory more than 16GiB. 
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Figure 3. Time execution in seconds for each model 

 
Source: Author’s research 

 

Finally, to validate the architecture of Figure 1, we call the recommendations API 

to confirm that it is recommending a list of items as visualized in Figure 4. 

 

Figure 4. API recommendations response 

 
Source: Author’s research 

 

5 CONCLUSIONS AND FUTURE WORKS 

This research offers an architecture powered by cloud computing that supports 

machine and deep learning models, to recommend programming problems to the judges 

online. As a result, we suggest a cloud-based architecture to choose the best recommended 

algorithm with large datasets or when quick responses are needed. In addition, we 

explored six collaborative filtering-based algorithms for recommender systems and after 

conducting statistical tests and evaluating the execution time of these models, we found 

that the SVD model was the best-performing one in terms of both statistical significance 

and experimental evaluation. One of the limitations we found in this work is related to 

the strategy applied by Toledo and Mota [2014], which limits us to use models based on 

the Cosine similarity function because divisions by zero are not possible. Thereby, we 
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use 1 instead of 0 and 2 for the other cases. Moreover, the user id class in the interaction 

matrix must be transformed to an integer type so that models based on non-negative 

matrix factorization can be used. Finally, our experimental evaluation shows that more 

data requires more CPU and Memory capacity, which can be easily scaled across different 

Amazon SageMaker instances so that machine and deep learning models can be executed. 

Our future work will be focused on using a content-based recommendation 

approach in another lambda, to process the data and choose the best algorithm. Also, 

another direction will be to explore more models and their combination and comparison 

with the approaches proposed in this work. 
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