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Abstract: Quantum thermal engines have received much attention in recent years due to their poten-
tial applications. For a candidate group, harmonically trapped gases under Bose–Einstein condensa-
tion (BEC), we see little investigation on the energy transference around that transition. Therefore, we
present an empirical study with rubidium-87 gas samples in a magnetic harmonic trap. We developed
an empirical equation of state model to t to our experimental dataset, expressing the pressure param-
eter in terms of temperature, and six technical coefcients, functions of the volume parameter and the
number of atoms. By using standard thermodynamic relations, we determine the system’s entropy,
shown to be constant at the BEC transition, as expected. Being isentropic makes the BEC transition an
energy source for non-mechanical work. Hence, we observed that the enthalpy at the BEC transition,
at xed values of the volume parameter, grows fairly linearly with the number of atoms. We tted a
linear function to that data, nding the specic enthalpy of the BEC transformation and the intrinsic
enthalpic loss for BEC. We deem this study to be a step closer to practical quantum-based engines.

Keywords: entropy; Bose–Einstein condensation; quantum gases; quantum thermal engines

1. Introduction

With the discussions in mainstream media and the nearing deployment of operational
quantum computers and other quantum-based technologies for actual applications, some
branches of contemporary research on quantum thermodynamics have been devoted to
achieving that goal, as classical thermodynamics was one of the major technoscientic
causes for the First Industrial Revolution. In particular, the development of the so-called
quantum thermal engines [1], which are machines running on thermal energy sources at a
microscopic scale, has been a topic of interest in recent years. When it comes to thermal
engines in classical thermodynamics, it is natural to think of devices using gases for
combustion or work generation. For the latter, ultracold, quantum-degenerated gases
seem promising candidates for building real quantum thermal engines. Indeed, Sur and
Ghosh [2] have recently pointed out the advantages of using Fermi and Bose gases in
quantum engines. Koch and co-workers [3] have actually implemented a thermal engine
operating at a quantum phase transition crossover, showing that a phase transition in
a bosonic–fermionic system is a viable energy source for work. In the particular case
of bosonic systems, Eglinton and co-workers [4] have indicated a performance boost
for a quantum engine running on a gas under Bose–Einstein condensation (BEC) under
certain congurations. In the current year, Amette Estrada and co-workers [5] analyzed
theoretically the role of interactions in the efciency of thermal engines running on a
harmonically conned gas under BEC, and Simmons and co-workers [6] have implemented
a BEC-boosted, working uid engine. However, after reviewing the recent literature, we
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believe that the eld of weakly interacting gases under BEC in a harmonic potential still
lacks an experimental investigation of the thermodynamic properties at the BEC transition,
which we hope to address in this paper.

In the last year [7], we demonstrated theoretically and experimentally that the ef-
ciency of Carnot cycles is always 1− Tcold/Thot before, across and after BEC. For that
end, we have used experimental data and the methodology rst described in the corre-
sponding author’s Master thesis [8], which relied on a formalism called the Global-Variable
Method [9–11], an approach parallel to Local Density Approximation [12] in describing the
thermodynamics of inhomogeneous quantum gases (remarkably, the harmonically trapped
ones). Now, using the same data and approach, we present here a strictly experimental in-
vestigation on the BEC transition as an energy source for non-mechanical work, a topic that
is seldom explored in the literature. Although more modern techniques are already avail-
able for producing gas samples under BEC at a constant density in box-like potentials [13],
making thermodynamic analysis much easier, the simplicity and reliability of over forty
years of expertise [14] on harmonically trapped ultracold gases and the existence of BEC
laboratories with in-operation harmonic traps justify using the Global-Variable Method, as
that mathematical formalism is already available.

The remainder of this paper is organized as follows: in Section 2, we review the Global-
Variable Method, which was used for determining the thermodynamic quantities in our
experiments; in Section 3, we describe briey our apparatus for producing gases under BEC
and the techniques used in our experiments. In Section 4, we present a full thermodynamic
description of harmonically trapped gas samples across BEC, showing that the entropy is
constant at the phase transition and investigating the energy available for non-mechanical
work at it; in Section 5, we map out the steps for designing a quantum thermal engine
running on a harmonically trapped gas based on Sections 3 and 4, and in Section 6, we
wrap up the results and their discussion in this paper.

2. Global-Variable Method

Differently from an ideal gas in a box-like potential, for which the conning volume
(V) in space is well dened, an ideal gas in a harmonic potential Uh(r) = (m/2)(ω2

xx2 +
ω2

yy2 + ω2
z z2) covers the whole space theoretically, which means that neither its volume

nor its pressure (which forms a conjugate pair with volume) are well dened. However, it
is still possible to nd thermodynamic quantities for that kind of system, being one of few
analytically solvable quantum many-body problems out there. By using the Bose–Einstein
statistics in which the limit of the energy-level spacing is much lower than the thermal
energy kT, with T being the temperature, the total number of atoms and the internal energy
of an ideal gas in a harmonic potential are described as

N(T, ω̄) =


kT
h̄ω̄

3
g3(eµ/(kT)) (1)

and E(T, ω̄) = 3kT

kT
h̄ω̄

3
g4(eµ/(kT)) (2)

respectively, in which ω̄ = (ωxωyωz)1/3, µ is the chemical potential and g() = ∑∞
i=1 

i/i

is the polylogarithm (usually called “Bose function” among physicists). By making µ = 0
in Equation (1), we nd the critical temperature at which an ideal gas suffers BEC:

Tc(N, ω̄) =
h̄ω
k


N

g3(1)

1/3
. (3)

As N and E are both extensive quantities, this means that some quantity on the right-
hand side of Equations (1) and (2) must also be extensive, and it is ω̄—which is logical, as
the squared frequencies of a harmonic potential are directly proportional to how conning
it is in each direction. On that account, let us dene the quantity
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V ≡ 1/ω̄3, (4)

and substitute it into Equation (3) to nd

Tc(N,V) = 1
[g3(1)]1/3

h̄
k


N
V

1/3
. (5)

As the critical temperature is a universal property, Equation (5) must hold in the thermo-
dynamic limit (N → ∞ and V → ∞, thus n = N/V = constant), which is equivalent to
weakening the harmonic potential into all directions, releasing atoms from their spatial
connement as their number grow. In that way, ω̄ → 0, which from Equation (4) makes
V → ∞ as N → ∞; hence, N/V = constant in the thermodynamic limit, with Equation (5)
holding true.

For its extensivity and analogy with volume, V dened in Equation (4) is called the
volume parameter. Indeed, Romero and Bagnato [9–11] demonstrated together that V forms
a conjugate pair with a quantity appropriately called pressure parameter, dened as

P =
2
3V



V(Uh)

n(r)Uh(r)d
3r, (6)

in which n is the spatially distributed atomic density of the gas trapped by the harmonic
potential Uh. That quantity is shown to be analogous to the hydrostatic pressure of a
thermalized uid at rest within a harmonic potential. Noteworthy, Equation (2) in terms of
the global conjugate variables of work is written as

E = 3PV , (7)

which is valid for both ideal and weakly interacting gases [15]. Hence, with the conjugate
variables of mechanical work, it is possible to give a full thermodynamic description of a
harmonically trapped gas. Our methods for implementing a harmonic trap for gas samples
and measuring their density proles is described in Section 3.

3. Thermodynamic Experiments

Our experimental setup for producing rubidium-87 (87Rb) gas samples under BEC
is the well-known double magneto-optical trap (MOT) system, whose construction and
operation are detailed in Chapter 4 of Ref. [8]. In summary, hot 87Rb gas is initially col-
lected at the rst MOT and transferred to the second MOT, in which the gas is cooled
to millikelvins. The laser eld is turned off once the second MOT is fully loaded, with
atoms becoming conned in a purely magnetic trap, whose eld is a “cigar-shaped” har-
monic potential (ωx ̸= ωy = ωz) with a non-zero minimum, ensuring the sample is in
a single hyperne state (always |F = 2,mF = 2⟩ in our case). From there, the sample is
subjected to submicrokelvin cooling by radiofrequency evaporation, nally reaching the
temperature–density conditions for BEC.

Once the gas sample is prepared in situ, at the bottom of the harmonic trap (whose
frequencies are xed, thus V from Equation (4) is constant) and at a steady, constant
temperature state, its density is so high that it must be released from its connement to
freely expand adiabatically and isothermally before being imaged, a process known as the
time-of-ight technique (TOF), which destroys the sample. The cross-section imaging of the
gas sample allows us to determine its total number of atoms (N), in situ temperature (T) and
expanded density prole nTOF. To recover the in situ density prole (n) from nTOF, we use
the procedures of Castin–Dum regression [16] for the Bose-condensed fraction of atoms and
You–Holland regression [17] for the non-Bose-condensed (thermal) fraction of atoms. With
V and n, we determine the pressure parameter (P) using Equation (6). Therefore, we
have the four required quantities (N, T, V and P) to describe the thermodynamics of the
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system, as we discuss in Section 4. We recapitulate the topic of designing thermodynamic
experiments in Section 5.

4. Findings

We have gathered a signicantly large dataset of thermodynamic data, with twenty
different values of N (ranging from 3.0× 105 to 5.5× 105 atoms), nineteen different values
of V (ranging from 5.7× 10−9 s3 to 9.7× 10−9 s3), in the temperature range from 0.7Tc to
1.3Tc. By xing N and V , the usual behavior of P versus T is seen in Figure 1, which is the
so-called the system’s equation of state.

Figure 1. An example of the pressure parameter behavior as a function of temperature across the BEC
transition for V = 7.8× 10−9 s3 and N = 4.4× 105 atoms. The system smoothly transits from a linear
behavior (the well-known Gay–Lussac’s law for classical gases) to a strongly nonlinear behavior
(already indicated by Equation (2)) as temperature decreases. The blue, red and green lines represent
the components of our empirical model for the equation of state, seen in Equation (8).

From the overall behavior seen in Figure 1, we designed an empirical expression for the
equation of state, as stated in Equation (8). For temperatures above the critical temperature
(classical regime), any ideal gas is known to follow Gay–Lussac’s law, whose linear behavior
is also seen in Figure 1. Therefore, we used a generalized linear function (with the linear
coefcient a4 and the slope a3) to t to the data in the classical regime. For temperatures
below the critical temperature (quantum regime), a harmonically conned ideal gas has an
internal energy described by Equation (2). From Equation (7), we generalized the power-of-
4 function to include a linear coefcient (a2), an additional exponent (a1) to temperature,
and a different factor (a0) multiplying temperature, tting it to our data in the quantum
regime. As the measurements of the pressure parameter change smoothly between the
quantum and classical regimes, the tting parameter we call threshold temperature (Tth) is
dened at the point PT<Tc = PT>Tc . A brief description of those terms is listed below. For
a deeper inspection of their physical meanings and values, refer to Chapter 6 in Ref. [8].

• a0 shows very little dependency on N and V , becoming constant in the ideal case;
• a1 is always negative, showing how the system deviates from the ideal T4 behavior;
• a2 is the zero-point pressure parameter of the system;
• a3 is equivalent to the linear terms in Gay–Lussac’s law and the van der Waals equation;
• a4 is related in meaning to the interaction term a in the van der Waals equation;
• Tth is at the intersecting point between the tting functions; its value is not constrained

by the actual value of the critical temperature of a system.
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P(T,V ,N) =


a0(V ,N)T4+a1(V ,N) + a2(V ,N), T < Tth(V ,N); Tth ≲ Tc.
a3(V ,N)T + a4(V ,N), T > Tth(V ,N).

(8)

From Equations (7) and (8), we have a complete mapping of the thermodynam-
ics of a gas in a harmonic potential across the BEC transition. We demonstrate this by
plotting P × V diagrams in Section 4.1 and T× S diagrams in Section 4.2. The latter will be
particularly important in our analysis on the system’s enthalpy in Section 4.3.

4.1. P × V Diagrams and the BEC Transition

To illustrate the BEC transition in a clear manner, we plotted four P × V diagrams
at a constant N in Figure 2. The black curve represents how the BEC transition behaves
as V varies from one experiment set to another. Above the black curves, the gas samples
are purely thermal or classical, well described by the Maxwellian distribution of energy
states. Below the black curves, the gas samples have suffered BEC, with a fraction of the
atoms populating the ground state of the harmonic trap, whereas the rest, called thermal
atoms, are still described by the Maxwellian distribution.

(a) P × V diagram for N = 3.0× 105 atoms (b) P × V diagram for N = 3.8× 105 atoms

(c) P × V diagram for N = 4.7× 105 atoms (d) P × V diagram for N = 5.5× 105 atoms

Figure 2. Selected pressure parameter (P ) versus volume parameter (V ) diagrams. Data points below
black curve represent gas samples under BEC, whereas data points above black curve represent
purely classical gas samples.

As a reminder of Section 3, the measurements have been carried out by xing the
volume parameter of the harmonic trap (i.e., characterizing its frequencies) and collecting
data for various temperatures and numbers of atoms. In our experimental setup, we did
not have the exibility of reliably changing the volume parameter of the harmonic trap
without destroying the gas sample in that process. Although challenging, that procedure is
indeed possible, as we will discuss later on in Section 5. The fact of the volume parameter
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being always constant in our measurements (i.e., no mechanical work is allowed in the
system) inuences our course of action in Sections 4.2 and 4.3.

4.2. T × S Diagrams and the BEC Transition

By recalling Equation (7), we can use the relation E = TS− PV for xed values of
N to nd the actual entropy of the system. From Equation (8), we obtain

S(T,V ,N) =


4V [a0(V ,N)T3+a1(V ,N) + a2(V ,N)/T], T < Tth(V ,N).
4V [a3(V ,N) + a4(V ,N)/T], T > Tth(V ,N).

(9)

whose plottings are shown in Figure 3 for four values of N. Notice that the points do
not have error bars in the temperature axis, since T is an independent variable in both
Equations (8) and (9), only used to generate the values and deviations for those equations
of state. In the entropy axis, the magnitude of the error bars is signicantly larger than
that in Figure 2 due to error propagation in the operation S = 4PV/T, especially at the
BEC transition (black curve), as the critical temperature Tc and the model’s threshold
temperature Tth are both measured quantities, each having an associated error. For that
reason, predictions with Equation (9) for T > Tc are not shown in Figure 3, as they fall
within the error bars at the transition.

(a) T × S diagram for N = 3.0× 105 atoms (b) T × S diagram for N = 3.8× 105 atoms

(c) T × S diagram for N = 4.7× 105 atoms (d) T × S diagram for N = 5.5× 105 atoms

Figure 3. Selected temperature (T) versus entropy (S) diagrams. We show only the results for
T < Tc, as the predictions with Equation (9) for T > Tc fall within the uncertainty around the BEC
transition. The horizontal spread ofthe data points is due to the varying values of V . Notice that
the value of S at the BEC transition is constant for varying V , T and N, hence being an isentropic
transformation.

The black curves indicating the BEC transition in Figure 3 are distinctive for having a
constant entropy within the experimental error across the transition, in agreement with the
fact that BEC is not associated with any latent heat [18]. Since each individual gas sample
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in our experiments has been probed at constant values of V , which prohibits mechanical
work, we see that the BEC transition as a thermodynamic transformation could have been
used as a source for non-mechanical work, as discussed in Section 4.3.

To support the results in Figure 3, let us recall that the BEC transition is an isentropic
process (S = constant) for an ideal gas (which was our basis for designing the empirical
equation of state in Equation (8) after all); from the internal energy in Equations (2) and (7),
we nd at the BEC transition (µ = 0) that

P =
(kT)4

h̄3
g4(1). (10)

Now, the non-Bose-condensed (thermal) atomic fraction of an ideal, harmonically trapped
gas is well known to be NT = N(T/Tc)3 for T < Tc, which may be written in the form
T = Tc(NT/N)1/3. By raising that expression to the fourth power and substituting that
and Equation (1) into Equation (10), we obtain

P = h̄
g4(1)

[g3(1)]4/3


NT

V

4/3
=⇒ P

 V
NT

4/3
= constant. (11)

At the BEC transition (T = Tc), NT ∼= N, which is constant; hence, Equation (11) becomes

PV3/4 = constant at T = Tc(V). (12)

Let us calculate the heat in a thermodynamic transformation from (P1,V1) to (P2,V2)
over the level curve in Equation (12), which represents the BEC transition. From Equation (7)
and P = const · V−4/3, we have by the rst law of thermodynamics that

Q = ∆U +W = ∆U +

(P2,V2)

(P1,V1)

PdV

= (3P2V2 − 3P1V1) +

(P2,V2)

(P1,V1)


const
V4/3


dV

= 3 · const


V2

V4/3
2

− V1

V4/3
1


− 3 · const · 1

V1/3


V2

V=V1

Q = 0.

(13)

In conclusion, the BEC transition as a thermodynamic process is adiabatic. When that
process is performed in a reversible way, its entropy is also constant, which has already
been shown by our experimental data in Figure 3.

4.3. TcSc × N Diagram: Energy for Non-Mechanical Work

By grouping our experimental data at their constant values of V , as they have been
originally measured, we can determine the amount of energy available for non-mechanical
work at the BEC transition as the system’s enthalpy, dened as H = E+ PV , which from
E = TS− PV yields Hc = TcSc at the transition. The data points of Hc versus N at selected
values of V are seen in Figure 4. For the operation of a generalized thermal engine, the
product TcSc is more useful a quantity than the energy for mechanical work PV , which is
“locked up” from use as the system’s volume parameter is held constant.

Although the curves in Figure 4 are not exactly straight lines, due to the nonlinear
dependency of Tc with V (already seen in Equations (3) and (5) for the ideal gas), it is
visually clear that they can be approximated to a linear function, allowing us to gain insight
into their behavior. Therefore, let us write a tting line in the form

Hc = ηN − H0
c , (14)
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in which we call η the specic enthalpy of transformation for BEC, and H0
c the intrinsic

enthalpic loss. The former represents the energy per atom for cooling or heating the gas
across the BEC transition at constant V , i. e., without mechanical work. The latter is the
amount of energy necessarily lost in adding zero to N atoms during the phase transition. We
have tted Equation (14) to all constant V curves (including those not shown in Figure 4),
and the behavior of η and H0

c as functions of V is presented Figure 5.

Figure 4. Constant volume parameter (V ) curves of enthalpy at the BEC transition (Hc = TcSc) versus
the number of atoms (N). Since the BEC transition is isentropic, the enthalpy there represents the
useful energy that can be drawn from it for conducted non-mechanical work. To gain insight into the
behavior of those curves, each group of constant V data points has been tted by Equation (14).

(a) Specic Enthalpy of BEC Transformation (b) Intrinsic Enthalpic Loss for BEC

Figure 5. Results of tting Equation (14) to data in Figure 4. Both terms are enthalpic costs required
from large group of atoms to collectively undergo BEC, also giving us insight into typical energy
values for non-mechanically moving atom from classical regime to quantum regime.

There is a clear tendency in both the specic enthalpy of transformation (Figure 5a)
and the intrinsic enthalpic loss under BEC (Figure 5b) to decrease as the system’s vol-
ume parameter increases, as the critical temperature decreases in that manner, as seen in
Equations (3) and (5), all the while the entropy remains constant for all those values (see
again Figure 3). By drawing an analogy with chemistry, Equation (14) can be seen as the
variation in enthalpy when going from zero to N atoms, collectively reaching temperature–
density conditions for BEC, whereas η is the enthalpic cost of moving one atom to that
phase transition. At xed values of V , the BEC transition is then a source of non-mechanical
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work, which could be used for moving atoms from high-energy states (classical, thermal
gas) to the ground state (gas under BEC).

5. Performing Thermodynamic Cycles on Quantum Gases

As we discussed in Sections 3 and 4, experiments in our setup have been conducted at
constant values of V , given the limitation in safely transferring a sample from one value of
V to another. However, as we have an empirical model in Equation (8) that allows us to
give a full thermodynamic description of harmonically trapped, weakly interacting gases,
we now desire to broaden this discussion by looking at varying V , a feasible feature in other
experimental apparatuses around the world. In that scenario, it is possible to speculate
about the potential implementation of thermodynamic transformations and cycles in gas
samples under BEC, which consequently leads to ideas of quantum thermal engines. We
list below the possible thermodynamic transformation under the Global-Variable Method
for harmonically trapped gas samples. For this analysis, we consider that the number of
atoms N is held constant in all of the listed processes.

• Parametric–isochoric processes: They follow the usual procedures mentioned in
Section 3, with frequencies of the trapping potential measured and xed. In those cases,
all of the technical coefcients in Equation (8) are constant, and thus, P = P(T). By
mapping the currents on the coils that create the magnetic elds of the harmonic
potential, it is possible to vary the volume parameter between each experimental
sequence to produce a harmonically trapped gas sample.

• Isothermal processes: The steady-state temperature of the gas sample in the harmonic
trap is determined by its prior exposition to radiofrequency evaporation, which is a
highly controllable and reproducible technique. Therefore, by mapping the exposure
time and the strength of the radiofrequency signal, it is possible to obtain a gas sample
at the same temperature with different volume parameters. In that case, Equation (8)
becomes P = P(V). Varying V is viable by mapping the currents of the magnetic
trap’s coils, as described in the previous item, or more easily by using optical dipole
traps [19].

• Parametric–isobaric processes: From the equation of state in Equation (8), one can
determine the temperature values necessary to obtain the same pressure parameter
value at different volume parameters, with a combination of temperature and volume
parameters from the two previously described processes. In those cases, the technical
coefcients in Equation (8) are varying together with the temperature, but in such a
way that P(T,V) = constant during the transformation.

• Adiabatic processes: By combining the rst two processes described above, one can
use Equation (9) to nd a set of temperature and volume parameter (and consequently
pressure parameter) values that yield S(T,V) = constant throughout the transforma-
tion. A natural choice in those cases is the BEC transition, which has been shown to be
an isentropic process in Figure 3 whose critical temperature range can be estimated
with the ideal gas Tc in Equation (5), adding the correction terms of the Hartree–Fock
approximation [20] for a more precise estimation.

To ensure that the transformations mentioned previously are indeed reversible, one
could use a second gas sample of a different atomic species as a thermal reservoir. This
allows one to willingly add or remove heat from the rst gas sample while keeping its
N constant. In that way, the thermal reservoir can be introduced or eliminated from the
system without affecting the reversibility of any transformations on the working uid.

We remark that any thermodynamic process or cycle can be theoretically designed
by exploiting Equations (8) and (9), and experimentally implemented by following the
procedures listed above. One can determine the work performed during a cycle or process
by calculating the area (for a cycle) or the path integral (for a process) it describes in a P ×V
diagram, such as those seen in Figure 2. The heat input and output of a cycle are found by
calculating the path integrals of each process forming that cycle in a T× S diagram, such as
those in Figure 3; the sum of positive results yields the heat input, and the sum of negative
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results yields the heat output. With those procedures, one can determine the efciency of
any cycle by dividing its total work by its heat input. In this manner, we have a complete
roadmap for implementing a thermal engine with a quantum gas.

6. Conclusions

We have presented here a full thermodynamic description of harmonically trapped
gas samples with the Global-Variable Method in Sections 4.1 and 4.2, which allowed us to
nd all thermodynamic potentials of such a system, in contrast with the standard Local
Density Approximation method. By designing an empirical expression for the equation of
state in Equation (8) and tting it to a signicantly large dataset of measurements, we have
been able to obtain the system’s entropy directly and nd that its value is constant at the
BEC transition, conrming the known inexistence of latent heat for BEC.

Acknowledging that the volume parameter was always constant in our measurements
and in some experiments with harmonic traps, thus prohibiting mechanical work, we
determined the total energy available for non-mechanical work at the BEC transition by
obtaining the system’s enthalpy as a function of the number of atoms for constant values
of the volume parameter, as shown in Figure 4. Each constant-volume-parameter curve
has been approximated by the linear function in Equation (14), allowing us the achieve the
specic enthalpy of transformation across the BEC transition, and the inherent enthalpic
cost that is required of the system when temperature–density conditions for BEC are
matched. To our knowledge, this is rst time such information is presented and discussed
in the literature, showcasing the relevance of enthalpy for BEC.

We expanded our considerations by presenting in Section 5 how the already estab-
lished techniques for producing and imaging ultracold gas samples in harmonic traps
can be used to perform thermodynamic cycles in harmonic trap experiments across the
globe. From our perspective, we are closer to systematically building thermal engines with
quantum gases.
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