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Abstract: In this article, we introduce a new continuous distribution based on the unit interval. This
distribution is generated from a transformation of a random variable with half-normal distribution.
We study its basic properties, percentiles, moments and order statistics. Maximum likelihood
estimation is applied, and we present a simulation study to observe the behavior of the maximum
likelihood estimators. We examine two applications to real proportions datasets, where the new
distribution is shown to provide a better fit than other distributions defined in the unit interval.
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1. Introduction

In real life, it is quite common to find continuous data sets in the interval (0, 1). These
data are the product of measurements that interpret different indices and rates. An example
is insurance data, where a probability distribution can be used as a distortion function
to define a premium principle (see Denuit et al. [1]). There are many studies involving
measurements between (0, 1), see for example Cook et al. [2] and Gupta and Nadarajah [3],
etc. Continuous distributions with support in (0, 1) are fundamental for modeling these
data; for example, the two-parameter Beta is the model most frequently used to model data
of this kind due to its great flexibility (see Johnson et al. [4]). A random variable (r.v.) X is
called a Beta distribution with parameters α and β if its probability density function (pdf)
is given by

fZ(z; α, β) =
1

B(α, β)
zα−1(1 − z)β−1, 0 < z < 1,

where α > 0, β > 0 and B(·, ·) is the Beta function. Another distribution with support
in (0, 1) is the Kumaraswamy distribution (see Kumaraswamy [5]). A r.v. Z has a Ku-
maraswamy (KM) distribution with parameters α and β if its pdf is given by

fZ(z; α, β) = α β zα−1(1 − zα)β−1, 0 < z < 1,

where α > 0 and β > 0.
In recent years, several distributions with positive support have been transformed into

distributions with unit support, for example Grassia [6], based on the Gamma distribution;
Jones [7], based on the Kumaraswamy distribution; Mazucheli et al. [8], based on the
Birnbaum-Saunders distribution; Ghitany et al. [9], based on the inverse Gaussian distri-
bution; Modi et al. [10], based on the Burr III distribution; Korkmaz and Chesneau [11],
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based on the Burr XII distribution; Haq et al. [12], based on the modified Burr-III distri-
bution; Gómez-Déniz et al. [13], Mazucheli et al. [14], Mazucheli et al. [15], based on the
Lindley distribution, and more recently Bakouch et al. [16] based on the half-normal (HN)
distribution. For example a distribution with support in (0, 1) and only one parameter is
the unit-Lindley distribution (see Mazucheli et al. [14]). A r.v. Z is called a unit-Lindley
(UL) distribution with parameter σ if its pdf is given by

fZ(z; σ) =
σ2(1 − z)−3

1 + σ
exp

(
− σz

1 − z

)
, 0 < z < 1,

where σ > 0.
In this article, we introduce a new probability distribution with a restricted domain.

Its distribution is derived by modifying the representation of the unit-half-normal (UHN)
distribution introduced by Bakouch et al. [16]. One of the motivations of distribution theory
is to provide new alternatives to known distributions in order to improve the statistical
modeling of certain datasets. Our work is based on the HN distribution. Thus, we say that
an r.v. X is called an HN distribution with scale parameter σ if its pdf is given by

fX(x; σ) =
2
σ

ϕ
( x

σ

)
, x > 0,

with σ > 0, and ϕ(·) is the expression of the standard normal distribution. We denote this
by X ∼ HN(σ) and some of its properties are:

1. The cumulative distribution function (cdf) of X is FX(x; σ) = 2Φ
( x

σ

)
− 1.

2. The r−th moments are expressed by E(Xr) =
2r/2Γ( r+1

2 )σr
√

π
, r = 1, 2, . . .

where Φ(·) is the cdf of the standard normal distribution, and Γ(x) =
∫ ∞

0 tx−1e−tdt is the
gamma function. Hogg and Tanis [17] discuss some properties of the HN distribution.

Bakouch et al. [16] introduce the UHN distribution, which is the product of a transfor-
mation of the random variables X ∼ HN(σ). Using the following transformation Y = X

1+X
they obtain the UHN distribution, the pdf of which is given by

fY(y; σ) =
2

σ(1 − y)2 ϕ

(
y

σ(1 − y)

)
, 0 < y < 1, (1)

where σ > 0 and we denote it by Y ∼ UHN(σ).
In Figure 1, we show the pdf of the UHN distribution for several values of σ. In

Figure 2, we show a histogram of a proportions dataset. The shape that can be adopted by
the UHN distribution close to zero does not represent this dataset; we therefore sought a
different transformation with this characteristic. The main object of the present article is
to study a new distribution that is a modification of the UHN distribution and offers an
alternative to the UHN distribution for modeling proportion data with positive asymmetry,
as shown by the data in Figure 2.

The rest of the paper is organized as follows. In Section 2, we give the representation of
this distribution and generate the new density, its properties, moments and order statistics.
In Section 3, we derive an inference by maximum likelihood (ML) and carry out a simulation
study. Section 4 shows two applications to real datasets. In Section 5 we provide some
final conclusions.
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Figure 1. Densities UHN (0.5) (black), UHN (0.9) (red), UHN (1.5) (blue) and UHN (2) (green).
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Figure 2. Histogram of a data set of proportions.

2. Density Function and Properties

In this section, we introduce the representation, density and properties of the new
distribution.

2.1. Stochastic Representation

The representation of this new distribution is

Z =
1

1 + X
, (2)
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where X ∼ HN(σ), σ > 0, and we call the distribution of Z the modified unit-half-
normal (MUHN). This is denoted by Z ∼ MUHN(σ). Mazucheli et al. [15] use this
representation in the Lindley distribution, obtaining a distribution called New Unit-Lindley
(NUL). Applications of the NUL distribution are given in Ferreira and Mazucheli [18] and
Alrumayh et al. [19], among others.

2.2. Density Function

The following result shows the pdf of the MUHN distribution, which is generated
using the representation given in (2).

Proposition 1. Let Z ∼ MUHN(σ). Then, the pdf of Z is given by

fZ(z; σ) =
2

σz2 ϕ

(
1 − z

σz

)
, 0 < z < 1, (3)

where σ > 0.

Proof. Let X ∼ HN(σ), using the representation given in (2), and the random variables
transformation method the result is obtained.

Proposition 2. Let Z ∼ MUHN(σ). Then, the MUHN distribution has unimodality at
z0 =

√
1+8σ2−1

4σ2 .

Proof. Differentiating the density given in (3) with respect to z set equal to zero gives
the result.

In Figure 3, we show the pdf of the MUHN distribution for several values of σ.
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Figure 3. Densities MUHN (0.5) (black), MUHN (0.9) (red), MUHN (1.5) (blue) and MUHN (2) (green).

2.3. Cumulative Distribution Function

The following proposition shows the cdf of the MUHN distribution.
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Proposition 3. Let Z ∼ MUHN(σ). Then, the cdf of Z is given by

FZ(z; σ) = 2Φ
(

z − 1
σz

)
, (4)

where σ > 0.

Proof. Calculating the cdf of Z directly, we have

FZ(z; σ) =
∫ z

0

2
σt2 ϕ

(
1 − t

σt

)
dt.

Making the following change of the variable u = 1−t
σt , the result is obtained.

2.4. Reliability Analysis

The reliability function r(t) and the hazard function h(t) of the MUHN distribution
are given in the following corollary.

Corollary 1. Let T ∼ MUHN(σ). Then, the reliability and hazard of T is given by

r(t) = 1 − 2Φ
(

t − 1
σt

)
, and h(t) =

2ϕ
(

1−t
σt

)
σt2

(
1 − 2Φ

(
t−1
σt

)) ,

where σ > 0 is shape parameter.

In Figure 4, we show the Hazard function of MUHN distribution for several values
of σ.
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Figure 4. Hazard function of MUHN distribution for selected values of σ: σ = 0.4 (black), σ = 2 (red)
and σ = 4 (blue).

Proposition 4. Let Z ∼ MUHN(σ). Then, the quantile function (Q) of the MUHN distribution
is given by

Q(p) =
{

1 − σΦ−1
( p

2

)}−1
, 0 < p < 1, (5)

where Φ−1(·) is the inverse cdf of a standard normal distribution.

Proof. Using the cdf given in (4), we have

p = FZ(z; σ) = 2Φ
(

z − 1
σz

)
.
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Applying the inverse function of the cdf of a standard normal distribution and clearing for
z, the result is obtained.

2.5. Order Statistics

Let Z1, ..., Zn be a random sample of the r.v. Z ∼ MUHN(σ). We denote by Z(j) the
jth−order statistics, j ∈ {1, . . . , n}.

Proposition 5. The pdf of Z(j) is

fZ(j)
(z; σ) =

2jn!
σ(j − 1)!(n − j)!z2 ϕ

(
1 − z

σz

)
Φj−1

(
z − 1

σz

)[
1 − 2Φ

(
z − 1

σz

)]n−j
, 0 < z < 1.

In particular, the pdf of the minimum, Z(1), is

fZ(1)
(z; σ) =

2n
σz2 ϕ

(
1 − z

σz

)[
1 − 2Φ

(
z − 1

σz

)]n−1
, 0 < z < 1 (6)

and the pdf of the maximum, Z(n), is

fZ(n)
(z; σ) =

n2n

σz2 ϕ

(
1 − z

σz

)
Φn−1

(
z − 1

σz

)
, 0 < z < 1

Proof. Since the model is absolutely continuous, the pdf of the jth−order statistics is
obtained by applying

fZ(j)
(z; σ) =

n!
(j − 1)!(n − j)!

fZ(z; σ) [FZ(z; σ)]j−1 [1 − FZ(z; σ)]n−j, j ∈ {1, . . . , n}

where F and f denote the cdf and pdf of the parent distribution, Z ∼ MUHN(σ) in
this case.

2.6. Moments

An important numerical function for calculating the r-th moments of the random
variable Z ∼ MUHN(σ) is defined as

ar(σ) =
∫ ∞

0

exp(−u2/2)
(1 + σu)r du, r = 1, 2, 3, ... (7)

More details of this function can be found in Appendix A.

Proposition 6. Let Z ∼ MUHN(σ). Then, for r = 1, 2, 3, . . . , the r-th moment of Z is given by

E(Zr) =
2√
2π

ar(σ). (8)

Proof. Using the representation given in (2) and calculating the r-th moments directly,
we have

E(Zr) = E
(

1
(1 + X)r

)
=

∫ ∞

0

2
σ(1 + x)r ϕ

( x
σ

)
dx.

Making the following change in the variable u = x
σ , the result is obtained.

Corollary 2. Let Z ∼ MUHN(σ). Then, the mean and variance of the r.v. Z are given respec-
tively by

E(Z) = 2a1(σ) and Var(Z) = 2
(

a2(σ)− 2a2
1(σ)

)
,
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and the asymmetry and kurtosis coefficients are given respectively by

√
β1 =

a3(σ)− 6a1(σ)a2(σ) + 8a3
1(σ)√

2
[
a2(σ)− 2a2

1(σ)
]3/2 ,

β2 =
a4(σ)− 8a1(σ)a3(σ) + 24a2

1(σ)a2(σ)− 24a4
1(σ)

2
[
a2(σ)− 2a2

1(σ)
]2 .

Figure 5 depicts plots for the asymmetry and kurtosis coefficients in the MUHN
distribution.
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Figure 5. Plots of the asymmetry and kurtosis coefficients for the MUHN model.

Proposition 7. Let Z ∼ MUHN(σ). Then, the moment-generating function (MZ) of the r.v. Z
is given by

MZ(t) = 2
∞

∑
j=0

tj

j!
aj(σ), (9)

where aj are given in (7).

Proof. Using the representation given in (2), we have

MZ(t) = E(exp(tZ)) = E
(

exp
(

t
1 + X

))
=

∫ ∞

0
exp

(
t

1 + x

)
2
σ

ϕ
( x

σ

)
dx,

making the change of the variable u = x
σ , expanding the exp(·) function in series and using

(7) the result is obtained.

The following proposition shows a closed expression for negative moments.

Proposition 8. Let Z ∼ MUHN(σ). Then, for r = 1, 2, 3, . . . , the negative r-th moment of Z is
given by

E(Z−r) =
σk
√

π

r

∑
k=0

(
r
k

)
2

k
2 Γ

(
k + 1

2

)
. (10)

Proof. Calculating the negative moments directly using binomial theorem, the result
is obtained.

From this we have that: E(Z−1) = 1 + σ
√

2
π .
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3. Inference

In this section, we estimate the parameter σ of the MUHN model using a modified
moments (MM) method and the ML method, we present a simulation study, and we discuss
the asymptotic estimation of the ML estimator.

3.1. Mm Estimation

For a random sample z1, . . . , zn derived from the MUHN(σ) distribution, Z−1 =
1
n ∑n

i=1
1
zi

, then MM estimator of σ is:

σ̂MM =

√
π

2

(
Z−1 − 1

)
. (11)

3.2. Ml Estimation

For a random sample z1, . . . , zn derived from the MUHN(σ) distribution, the log-
likelihood function can be written as

ℓ(σ) = n log(2)− n log(
√

2π)− n log(σ)−
n

∑
i=1

log(z2
i )−

1
2σ2

n

∑
i=1

(
1 − zi

zi

)2
. (12)

The score equation is given by

dℓ(σ)
dσ

= −n
σ
+

1
σ3

n

∑
i=1

(
1 − zi

zi

)2
= 0, (13)

the ML estimator for σ (σ̂) is obtained by resolving the following Equation (13) and its

σ̂ =

{
1
n

n

∑
i=1

(
1 − zi

zi

)2
}1/2

, (14)

Hence, for large samples, the ML estimator, σ̂, is asymptotically normal, that is,

√
n(σ̂ − σ)

L−→ N(0, I−1
F (σ)).

It results from this that the asymptotic variance of the ML estimator σ̂ is the inverse of
Fisher’s information IF(σ) =

2
σ2 , i.e., Var(σ̂) ≈ σ2

2n .

Proposition 9. For a random sample z1, . . . , zn derived from the MUHN(σ) distribution, we
have that √

n
σ

σ̂ ∼ χ(n) (15)

where χ(n) denotes the chi-distribution with n degrees of freedom.

Proof. As Z ∼ MUHN(σ), then 1
σ2

(
1−Z

Z

)2
∼ χ2

(1), where χ2
(1) chi-squared distribution

with 1 degree of freedom. From the properties of the chi-squared distribution we have

1
σ2 ∑n

i=1

(
1−zi

zi

)2
∼ χ2

(n), luego
√

n
σ

{
1
n ∑n

i=1

(
1−zi

zi

)2
}1/2

∼ χ(n).

Corollary 3. Some direct consequences of the result given in (15) are

1. E(σ̂) = σ
√

2Γ( n+1
2 )√

nΓ( n
2 )

2. Var(σ̂) = σ2
(

1 − 2Γ2( n+1
2 )

nΓ2( n
2 )

)
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The σ̂ estimator is asymptotically unbiased for σ. With these results the bias and the
mean squared error can be calculated.

3.3. Simulation Study

To examine the behavior of the ML estimation approach, we carried out a simulation
study to assess the performance of the estimation, using the parameter σ of the MUHN
distribution. Two algorithms, Algorithms 1 and 2, are proposed to generate random num-
bers from the MUHN distribution. The simulation analysis was carried out by generating
1000 samples of size n = 30, 38, 40, 50, 80 and 100 from the MUHN distribution. The ob-
jective of this simulation is to study the behavior of the ML of the parameter σ of the
MUHN model.

Algorithm 1 to simulate values from the Z ∼ MUHN(σ) distribution.

1: Generate Y ∼ Uni f orm(0, 1).

2: Compute Z =
{

1 − σΦ−1
(

Y
2

)}−1
.

Algorithm 2 to simulate values from the Z ∼ MUHN(σ) distribution.

1: Generate Y ∼ N(0, 1).
2: Compute X = σ | Y |.
3: Compute Z = 1

1+X .

The code for both algorithms can be found in the following repository https://github.
com/isaaccortes1989/MUHN-Codes (accessed on 2 November 2023). Since the results of
the two algorithms are similar, we only present those of Algorithm 1. Table 1 displays the
empirical bias (B), standard deviation (SD), mean of the standard errors (SEs), root of the
empirical mean squared error (RMSE), and the coverage probability (CP). The CP terms
converge reasonably to the nominal value used for their construction (95%), suggesting
that the normality is reasonable for the asymptotic distribution of the ML estimators in
the MUHN model. As shown in Table 1, the performance of the estimations improves as
n increases.

Table 1. ML estimates, B, SD, SE, RMSE, and CP for the MUHN model with sample size 30, 38, 40, 50,
80 and 100, respectively.

σ n σ̂ B SD SE RMSE CP

0.5 30 0.496 −0.008 0.065 0.064 0.065 0.936
38 0.498 −0.003 0.058 0.057 0.058 0.941
40 0.499 −0.003 0.056 0.056 0.056 0.954
50 0.499 −0.002 0.050 0.050 0.050 0.937
80 0.500 0.000 0.038 0.040 0.038 0.959

100 0.501 0.001 0.035 0.035 0.035 0.949

1 30 0.987 −0.013 0.127 0.127 0.128 0.926
38 0.989 −0.011 0.111 0.113 0.112 0.934
40 0.991 −0.009 0.108 0.111 0.108 0.944
50 0.995 −0.005 0.097 0.099 0.097 0.937
80 0.996 −0.004 0.079 0.079 0.079 0.938

100 0.997 −0.003 0.068 0.070 0.068 0.950

1.5 30 1.487 −0.009 0.189 0.192 0.190 0.932
38 1.489 −0.007 0.169 0.171 0.169 0.943
40 1.489 −0.007 0.167 0.166 0.168 0.936
50 1.492 −0.005 0.149 0.149 0.149 0.943
80 1.495 −0.004 0.114 0.118 0.114 0.950

100 1.496 −0.003 0.104 0.106 0.104 0.949

https://github.com/isaaccortes1989/MUHN-Codes
https://github.com/isaaccortes1989/MUHN-Codes
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Table 1. Cont.

σ n σ̂ B SD SE RMSE CP

2 30 1.967 −0.016 0.250 0.254 0.252 0.927
38 1.974 −0.013 0.224 0.226 0.225 0.938
40 1.973 −0.014 0.221 0.221 0.222 0.928
50 1.981 −0.010 0.195 0.198 0.196 0.928
80 1.990 −0.005 0.158 0.157 0.158 0.944

100 1.991 −0.005 0.138 0.141 0.138 0.950

2.5 30 2.495 −0.002 0.327 0.322 0.327 0.934
38 2.489 −0.004 0.292 0.286 0.292 0.933
40 2.489 −0.004 0.283 0.278 0.283 0.941
50 2.494 −0.002 0.253 0.249 0.253 0.937
80 2.498 −0.001 0.191 0.197 0.191 0.949

100 2.498 −0.001 0.171 0.177 0.171 0.951

3 30 2.972 −0.009 0.376 0.384 0.377 0.943
38 2.975 −0.008 0.338 0.341 0.339 0.934
40 2.977 −0.008 0.330 0.333 0.331 0.943
50 2.988 −0.004 0.300 0.299 0.300 0.940
80 2.988 −0.004 0.231 0.236 0.231 0.944

100 2.990 −0.003 0.213 0.211 0.213 0.946

4 30 3.960 −0.010 0.529 0.511 0.530 0.918
38 3.963 −0.009 0.459 0.455 0.460 0.933
40 3.969 −0.008 0.448 0.444 0.449 0.936
50 3.980 −0.005 0.403 0.398 0.403 0.937
80 3.989 −0.003 0.320 0.315 0.320 0.940

100 3.993 −0.002 0.282 0.282 0.282 0.947

5 30 4.949 −0.010 0.647 0.639 0.648 0.927
38 4.958 −0.008 0.580 0.569 0.581 0.929
40 4.968 −0.006 0.560 0.555 0.560 0.926
50 4.973 −0.005 0.509 0.497 0.510 0.938
80 4.987 −0.003 0.398 0.394 0.398 0.938

100 4.988 −0.002 0.348 0.353 0.348 0.951

7.2 30 7.149 −0.007 0.930 0.923 0.931 0.939
38 7.164 −0.005 0.836 0.822 0.836 0.939
40 7.166 −0.005 0.813 0.801 0.813 0.939
50 7.171 −0.004 0.743 0.717 0.743 0.922
80 7.175 −0.003 0.584 0.567 0.585 0.94

100 7.173 −0.004 0.526 0.507 0.526 0.936

4. Applications

This section shows two applications of the MUHN model, highlighting its superior
performance compared to other models known in the statistical literature.

4.1. Application 1

In this first application, we fit the MUHN distribution and compare it with the uni-
parametric UL and UHN distributions and the two-parameter Beta and KM distributions
defined in the Introduction. The dataset consists of 48 samples of rocks from an oil reservoir,
as reported by Cordeiro and Brito [20]. We conducted an analysis of the shape perimeter
using a squared variable (area). The data are in Table 2:
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Table 2. The data of 48 samples of rocks from an oil reservoir.

0.0903296 0.2036540 0.2043140 0.2808870 0.1976530 0.3286410
0.1486220 0.1623940 0.2627270 0.1794550 0.3266350 0.2300810
0.1833120 0.1509440 0.2000710 0.1918020 0.1541920 0.4641250
0.1170630 0.1481410 0.1448100 0.1330830 0.2760160 0.4204770
0.1224170 0.2285950 0.1138520 0.2252140 0.1769690 0.2007440
0.1670450 0.2316230 0.2910290 0.3412730 0.4387120 0.2626510
0.1896510 0.1725670 0.2400770 0.3116460 0.1635860 0.1824530
0.1641270 0.1534810 0.1618650 0.2760160 0.2538320 0.2004470

Table 3 displays basic descriptive statistics for the dataset. We employ the notation√
b1 and b2 to denote sample asymmetry and kurtosis coefficients, respectively.

Table 3. Descriptive statistics for the first dataset.

Data Set n Z S
√

b1 b2

Rock samples from a petroleum reservoir 48 0.218 0.083 1.169 4.110

Using Section 3.1, the MM estimator of σ is σ̂MM = 5.258.
Table 4 shows the parameters estimated by ML for the UL, UHN, MUHN, Beta and

KM models. Standard errors of the ML estimates are calculated using Fisher’s information
corresponding to each model. For each model, we report the values of the Akaike infor-
mation criterion (AIC), introduced by Akaike [21], and the Bayesian information criterion
(BIC), proposed by Schwarz [22]. It is observed that both AIC and BIC criteria indicate a
better fit for the Beta model.

Table 4. Parameter estimates with SEs (in parentheses), AIC and BIC values for UL, UHN, MUHN,
Beta and KM models.

Parameter
Estimates UL UHN MUHN Beta KM

α - - - 5.942 (1.181) 2.719 (0.294)
β - - - 21.206 (4.347) 44.661 (17.576)
σ 4.049 (0.502) 0.337 (0.035) 4.565 (0.466) - -

AIC −68.700 −81.053 −87.316 −107.200 −100.983
BIC −66.829 −79.182 −85.445 −103.458 −97.241

Figure 6 illustrates the ML fit of the five models with the probability histogram.
Additionally, we calculate the quantile residuals (QRs). If the model is suitable for the data,
the QRs should be a sample from the standard normal model (see Dunn and Smyth [23]).
This assumption can be validated using traditional normality tests, such as the Anderson–
Darling (AD), Cramér-von Mises (CVM) and Shapiro–Wilkes (SW) tests.

In Figure 7, the QRs for the fitted models and the p-values for the AD, CVM and
SW normality tests are provided to assess whether the QRs follow the standard normal
distribution. It is observed that the QRs follow the standard normal distribution only for
the MUHN model; in other word, all three test show that the data did not come from the
UL, UHN, Beta and KM distributions. Figure 7 suggest that the MUHN model gives a
better fit for this dataset.

The codes for this application are available on the following website: https://github.
com/isaaccortes1989/MUHN-Codes/tree/main/First%20Application (accessed on 2
November 2023).

https://github.com/isaaccortes1989/MUHN-Codes/tree/main/First%20Application
https://github.com/isaaccortes1989/MUHN-Codes/tree/main/First%20Application
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Figure 6. Histogram for rock samples from a petroleum reservoir; lines represent distributions
fitted using ML estimates: UL(σ̂) (red), UHN(σ̂) (blue) MUHN(σ̂) (green), Beta(α̂, β̂) (black) and
KM(α̂, β̂) (brown).
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Figure 7. QQ-plots of the QRs: UL distribution (a); UHN distribution (b); MUHN distribution (c);
Beta distribution (d) and KM distribution (e).
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4.2. Application 2

In this second application, we fit the MUHN distribution and compare it with the
two-parameter Beta and KM distributions that are defined in the Introduction. The data
set consists of a sample of 38 proportions formed by COVID information taken from the
Chilean database, from 4 March to 10 April 2020. These data were formed using new cases
(NC), daily accumulated cases (AC) and daily cumulative deaths (CD). We analyze the
proportion of daily NC to the accumulated number of survivors with the equation:

zi =
NCi

ACi − CDi−1
.

The data are in Table 5.

Table 5. The data of a sample of 38 proportions formed by COVID information.

0.666666667 0.25 0.2 0.285714286 0.3
0.333333333 0.117647059 0.260869565 0.303030303 0.23255814
0.295081967 0.186666667 0.519230769 0.223880597 0.155462185
0.304093567 0.211981567 0.191806331 0.150316456 0.152815013
0.190889371 0.192644483 0.125574273 0.188819876 0.156626506
0.107526882 0.126582278 0.105551497 0.096667766 0.109576968
0.089108911 0.101898582 0.069335719 0.071443406 0.058835027
0.077533357 0.071332887 0.081372097

Table 6 shows the descriptive summary of the data, highlighting their positive asym-
metry. Using Section 3.1, the MM estimator of σ is σ̂MM = 7.656.

Table 6. Descriptive statistics for the second dataset.

Data Set n Z S
√

b1 b2

COVID 38 0.194 0.125 1.863 7.347

The estimates, SE, AIC, and BIC values for the UL, UHN, KM, Beta and MUHN
models are displayed in Table 7. From the table, it is evident that the MUHN model
demonstrates a better fit, as it exhibits the smallest criteria values with only one parameter.
Furthermore, the fit of the five models with the histogram of the data can be observed in
Figure 8, confirming the better fit of the MUHN model. Finally, as shown in Figure 9, all
QRs indicate that a standard normal distribution is followed only for the MUHN model.

Table 7. Parameter estimates with their respective SE (in parentheses), AIC and BIC values for the
indicated model.

Parameter
Estimates UL UHN KM Beta MUHN

α - - 1.610 (0.211) 2.325 (0.501) -
β - - 10.512 (3.368) 9.438 (2.205) -
σ 4.141 (0.578) 0.443 (0.051) - - 7.231 (0.829)

AIC −51.442 −39.916 −58.371 −61.191 −67.334
BIC −49.805 −38.278 −55.096 −57.916 −65.696

The codes for this application are available on the following website: https://github.
com/isaaccortes1989/MUHN-Codes/tree/main/Second%20Application (accessed on 2
November 2023).

https://github.com/isaaccortes1989/MUHN-Codes/tree/main/Second%20Application
https://github.com/isaaccortes1989/MUHN-Codes/tree/main/Second%20Application
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Figure 8. Histogram for COVID dataset; lines represent distributions fitted using ML estimates.
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Figure 9. QQ-plots of the QRs: KM distribution (a); Beta distribution (b); MUHN distribution (c);
UL distribution (d) and UHN distribution (e).

5. Discussion

This paper presents a study of the MUHN distribution. We show some properties and
compare them with the UHN distribution in a fit using ML estimation. The MUHN distri-
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bution appears to be a viable alternative for fitting data between zero and one, and with
positive asymmetry. Some other characteristics of the MUHN distribution are:

• The representation of the MUHN distribution is simple.
• The MUHN distribution has an explicit mode.
• The cdf, hazard function and quantile function are explicit and represented by

known functions.
• The ML estimator shows very good behavior with small samples.
• The applications show that the MUHN distribution is a very good alternative when

the data present positive asymmetry; this was confirmed by both the AIC and BIC
model selection criteria and by the Anderson–Darling, Cramér-von Mises and Shapiro–
Wilkes statistical tests.
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Appendix A

The function ar(σ) defined in (7) when r = 2, 3, . . . is given by:

1
σ
√

2π

[
1

2
r+1

2 σr

(
σΓ(

1 − r
2

) · 1F1(
r
2

,
1
2

;− 1
2σ2 ) +

√
2Γ(1 − r

2
) · 1F1(

r + 1
2

,
3
2

;− 1
2σ2 )

)
+

1
r − 1

· p Fq(
1
2

, 1; 1 − r
2

,
3 − r

2
;− 1

2σ2 )

]
and when r = 1 is given by

1
σ
√

2π
exp(− 1

2σ2 )

(
πErfi(

1√
2σ

)− ExpIntegralEi(
1

2σ2 )

)
,

where pFq() is the generalized hypergeometric function (for more details see Abramowitz
and Stegun [24]), and for a definition and properties of the integral functions Erfi(·) and
ExpIntegralEi(·) we refer the reader to Weisstein [25,26].
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