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ABSTRACT The security issues that arise in public cloud environments raise several concerns about privacy-
preserving. Conventional security practices successfully protect stored and transmitted data by encryption,
but not during data processing where the data value extraction requires decryption. It creates critical exposure
points for sensitive sectors like healthcare, pharmaceutical, genomics, government, and financial, among
many others that cause hesitation to use these third-party services and prevent widespread practical adoption
of cloud solutions. Homomorphic Encryption (HE) emerges as a mechanism for expanding the scope of
public cloud services for sensitive data processing. However, high-demand solutions such as artificial intel-
ligence and machine learning require efficient operations beyond HE additions and multiplications. In this
paper, we analyze the current homomorphic comparison methods across their strengths and weaknesses
and present theoretical concepts, state-of-the-art techniques, challenges, opportunities, and open problems.
We theoretically prove the limits of the representability of sign and comparison functions in polynomial
forms for HE schemes. We show that both functions can be represented as polynomials over the Galois
field and cannot be represented over a residue ring with zero divisors. We compare the efficiency, accuracy,
and computational complexity of different homomorphic comparison approaches. The experimental results
demonstrate that Newton-Raphson is the fastest method for generating polynomial approximations and
evaluating comparisons, and the Fourier method is the most accurate considering the L1, L2, L∞ norms
and R2 measure. The bi-objective analysis presents the performance compromise between complexity and
accuracy.

INDEX TERMS Cloud security, encrypted number comparison, homomorphic encryption, polynomial
approximation, privacy-preserving.

I. INTRODUCTION
Legal and ethical requirements may prevent the adoption
of cloud-based solutions in highly confidential information
domains, e.g., healthcare, genomics, smart government, and
financial, among many others. Insufficient protection of data
and the vulnerabilities of cloud environments are the main
constraints, despite the substantial cost-savings, flexibility,
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scalability, and ubiquitous resources of the outsourced ser-
vices that potentially sacrifice privacy.

Homomorphic Encryption (HE) schemes are solutions
to address privacy problems by providing encrypted data
computations to the client. In this case, users can develop
applications involving confidential information and exe-
cute them on untrusted shared infrastructures, like cloud
environments. However, the inefficiency of performing var-
ious operations in HE schemes limits their applicability
in real-world problems. The state-of-the-art solutions focus

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102189

https://orcid.org/0000-0002-7384-7670
https://orcid.org/0000-0001-5029-5212
https://orcid.org/0000-0001-8808-2730
https://orcid.org/0000-0001-9338-2834
https://orcid.org/0000-0001-5746-4154
https://orcid.org/0000-0001-8768-9709


B. Pulido-Gaytan et al.: Toward Understanding Efficient Privacy-Preserving Homomorphic Comparison

on the efficiency of operations other than addition and
multiplication.

The comparison of numbers and sign detection are fun-
damental operations in many domains, including matrix
algebra, Neural Networks (NNs), cluster analysis, gradi-
ent boosting, decision trees, support vector machines, and
many others. For example, standard NNs activation func-
tions use both operations. Therefore, the development of
privacy-preserving NNs requires an efficient and secure
homomorphic implementation of these operations. Their effi-
cient development can extend privacy-preserving Machine
Learning (ML) models and, hence, an extensive spectrum of
solutions over encrypted data. The approaches for encrypted
number comparison depend on the HE schemes [1].

Twomain groups of HE schemes are integer-based, such as
Brakerski-Gentry-Vaikuntanathan (BGV) [2], Brakerski/Fan-
Vercauteren (BFV) [3], [4], and fixed-precision number-
based like Cheon-Kim-Kim-Song (CKKS) [5].

The main techniques for the integer-based group are the
Lagrange interpolation of a two-variable function [6] and
the positional characteristics of a number [7]. However, the
applicability of both approaches is limited to fields of small
characteristics, making them impractical for domains with
real numbers, like ML models.

The main techniques for the fixed-precision group are
the iterative approach based on calculating the comparison
function for two numbers with a given precision [1], i.e.,
comp(a, b) = ak/(ak + bk ), and the polynomial approxima-
tion of the sign (x) function [8], i.e., comp(a, b) = (sign(a−
b)+ 1)/2.

Many variants have been proposed to improve performance
and applicability. However, the current solutions are still inef-
ficient in practice, and better comparison approaches remain
open.

The selection of a comparison technique for encrypted
numbers is challenging due to the variety of HE schemes,
approaches, characteristics of the problems, performance,
accuracy, complexity, and many other aspects.

In this work, we outline the last advances in the field to
guide the most adequate approaches for specific domains.

The main contributions of this paper include the following:
• Comprehensive review of the state-of-the-art homo-
morphic comparison methods for the development
of practical privacy-preserving systems in cloud
computing;

• Review of the theoretical fundamentals, characteristics,
challenges, and opportunities in the field of encrypted
number comparison;

• Proof of the theoretical representability limits of the
sign and comparison functions in polynomial forms for
HE schemes. We proved that the sign and comparison
functions can be represented as polynomials over the
Galois field and cannot be represented over a residue
ring with zero divisors;

• Discussion of technical aspects of implementing
encrypted comparison;

• Bi-objective analysis of computational complexity and
accuracy of homomorphic comparison approaches;

The content of the paper is structured as follows. Section II
briefly introduces homomorphic encryption and the prim-
itives of BFV and CKKS schemes. Section III describes
the current research problems and demonstrates the repre-
sentability of the sign and comparison functions in poly-
nomial forms. Section IV and Section V review encrypted
number comparison methods operating with integers and
fixed-precision numbers, respectively. Section VI presents
the configuration and performance evaluation of common
homomorphic comparison approaches. Finally, we highlight
the most relevant findings in Section VII.

II. HOMOMORPHIC ENCRYPTION
The analysis, classification, search, indexing, and other oper-
ations over ciphertexts imply a decryption process for data
extraction. It potentially sacrifices information privacy in a
third-party infrastructure.

Several privacy-preserving methods are emerging to guar-
antee the protection of information. They are special tools
for processing encrypted data without revealing the original
content [9].
Secure Multi-Party Computation (MPC) [10], [11], [12],

Differential Privacy (DP) [13], Functional Encryption
(FE) [14] and HE are representative approaches.

Unlike conventional MPC and DP cryptosystems, HE sys-
tems protect the entire data lifecycle (transmission, stor-
age, and processing) without the need for trusted data
managers [15].
In cryptography, the term HE describes a special form of

encryption with the capability of performing certain oper-
ations over ciphertexts without using the secret key. The
information can be public without representing a risk of a
data breach. The output of the calculated functions remains
encrypted and maintains the input format. Its correctness
relies on the homomorphism concept, where two groups in
different spaces can be mapped. In this case, a homomorphic
function applied to ciphertexts provides the same result (after
decryption) as applying the function to the original unen-
crypted data.

Let ma be the message a in plaintext, sk a secret key for
decryption, and pk a public key for encryption. The corre-
sponding ciphertext ca of ma is generated by the encryption
operation ca = Encrypt (pk,ma) [16].

Recovering the information in an additively HE from a
ciphertext c+ is performed by the decryption operation and
the secret key as m+ = Decrypt (sk, c+), where c+ =
Add (ca, cb) contains the result of the homomorphic addi-
tion between ca and cb. Similarly, for multiplication c× =
Mult (ca, cb) in a multiplicative HE. c+ and c× cannot be
computed with conventional encryption without the decryp-
tion of ca and cb.

Each HE scheme defines basic operations to generate
secret and public keys, encrypt and decrypt ciphertexts, and
perform homomorphic additions and multiplications.

102190 VOLUME 11, 2023



B. Pulido-Gaytan et al.: Toward Understanding Efficient Privacy-Preserving Homomorphic Comparison

In the following sections, we describe the primitives of
Brakerski/Fan-Vercauteren (BFV) [3], [4], and Cheon-Kim-
Kim-Song (CKKS) [5] schemes used in the performance
evaluation section.

A. BFV SCHEME
BFV is a lattice-based HE scheme whose security is based
on the hardness of the Ring Learning with Errors (RLWE)
problem. It is a leveled Fully HE (FHE) scheme that evaluates
homomorphic additions and multiplications up to a prede-
fined depth.

For positive integers q ≫ t , let 1 = ⌊q/t⌋ and denote
Zq, Zt as the sets of integers in the intervals (−q/2, q/2]
and (−t/2, t/2], respectively. Let polynomial rings Rq =
Zq [X ] /(XN + 1) and Rt = Zt [X ] /(XN + 1) for a power-
of-two N , i.e., the sets of polynomials of degree at most
XN +1 with coefficients in Zq and Zt . For z ∈ Z , [z]q denotes
the unique integer in Zq with [z]q ≡ z (mod q). Lastly, let χ

be a discrete Gaussian error distribution over Rq.
BFV defines the plaintext space over Rt and ciphertext

space over Rq × Rq, where t and q are so-called the plain-
text and ciphertext coefficients, respectively. Specifically,
q determines the bound on the plaintext growth. Messages
are polynomials of degree at most XN + 1 with integer
coefficients in (−t/2, t/2] and integer modulo 1 < t < q.
The size of (N , q) determines the scheme performance, and
q/t bounds the inherent error in ciphertexts.
BFV includes the following primitives:

• KeyGen(N , q, t) → sk, pk. Sets secret key as sk = s,
where s← χ . Sets public key as pk = (ba) ∈ R2q, where
b = −as+ e (mod q), a← U (Rq), and e← χ .

• Encrypt(m, pk) → c. For a plaintext m ∈ Rt and
pk = (ba) ∈ R2q, generates the ciphertext c =
(c0, c1) =

(
[1 · m+ a · u+ e1]q , [b · u+ e2]q

)
∈ R2q,

where u, e1, e2← χ .
• Decrypt(c, sk) → m. For a ciphertext c =

(c0, c1) ∈ R2q and sk it decodes the plaintext as m =[⌊
t
q · [c0 + c1 · sk]q

⌉]
t
. The ciphertext [c0 + c1 · sk]q

can be interpreted as a polynomial evaluated in sk , that
is, [c (sk)]q = [a ·u+ e1+1 ·m+b ·u · sk+ e2 · sk]q =
[1 · m+ e · u+ e1 + e2 · sk]q . Since 1 · m + e · u +
e1 + e2 · sk ∈ Rq for small enough error terms, then
[c0 + c1 · sk]q = 1 ·m+v, where v = e ·u+e1+e2 · sk
denotes the noise contained in c.

• Add(c1, c2)→c+. Add two ciphertexts c1, c2 ∈ R2q
with [c1 (sk)]q = 1·m1 + v1 and [c2 (sk)]q =
1·m2 + v2. It returns ciphertext c+ = c1 ⊕ c2 =
[c1 (sk)+ c2 (sk)]q = 1· [m1 + m2]t + v1 + v2.

• Mult(c1, c2)→c×. For two ciphertexts c1, c2 ∈ R2q with
[ci (sk)]q = 1·mi + vi, performs c′× = c1 ⊗ c2 =
[c1 · c2 (sk)]q = 12

·m1 ·m2+1 · (m1 · v2 + m2 · v1)+
v1v2, and then scales c′× by t/q. The resulting quadratic
polynomial c′× is transformed into a decryptable cipher-
text c× using a re-linearization process for reducing

by one the ciphertext degree. It returns ciphertext c×
encoding [m1 · m2]t .

The described primitives represent a reduced number
of operations for a basic understanding of the scheme;
see [3], [4] for more detailed information.

B. CKKS SCHEME
The lattice-based CKKS scheme performs approximate arith-
metic over encrypted real (complex) numbers. Given mes-
sages m1 and m2, it allows to securely compute encryptions
of approximate values of m1 +m2 and m1m2 with a prefixed
precision. The main characteristic of CKKS is that it treats
the inserted noise of the RLWE problem as part of an error
occurring during approximate computation.
Let L be a level parameter, and qℓ = 2ℓ for 1 ≤ ℓ ≤ L.

Let the polynomial ring R = Z [X ] /(XN +1) for a power-of-
two N and Rq = R/qR be a modulo-q quotient ring of R, i.e.,
the polynomial coefficients of Rq are bounded by q and the
degree of polynomials by XN + 1. q defines the ciphertext
modulo as a product of small co-prime moduli qi where
qi ≡ 1 (mod 2N ).
The distribution χkey = HW(h) outputs a polynomial from

Rq of {±1}-coefficient having h non-zero coefficients, where
HW(h) denotes the set of signed binary vectors in {±1}N

whose Hamming weight is h ∈ Z+.
χenc and χerr denote discrete Gaussian distributions

with some predefined standard deviation. Moreover, for
a =

∑N−1
i=0 aiX i ∈ R [X ] /(XN + 1), then ⌊a⌉ =∑N−1

i=0 ⌊ai ⌉X
i
∈ R, where ⌊·⌉ returns the nearest integer of

a real-number input.
CKKS encrypts real values using a called canonical

embedding τ : R [X ] /(XN + 1)→ CN/2, where a plaintext
vector −→m =

(
m0, . . . ,mN/2

)
is transformed into τ−1(−→m ) ∈

R [X ] /(XN+1) and then rounded off to an integer-coefficient
polynomial using a scaling factor 1, i.e.,

⌊
1 · τ−1(−→m )

⌉
.

Such a parameter 1 affects the accuracy of the computation
in CKKS.
The main primitives in the CKKS scheme are:

• KeyGen(N , q,L)→ sk, pk, ek. Sets secret key as sk =
(1,s), where s ← χkey. Sets public key as pk = (ba) ∈
R2qL , where b = −as + e(mod qL), a ← U (RqL ) and
e ← χerr. Sets evaluation key as ek = (b′, a′) ∈ R2

q2L
,

where b′ = −a′s + e′ + qLs2(mod q2L), a
′
← U (Rq2L )

and e′← χerr.
• Encrypt(m⃗, 1, pk) → c. For a plaintext vector of real
(complex) numbers m⃗, encodes m =

⌊
1 · τ−1(m⃗)

⌉
∈

R, and outputs the ciphertext c = v · pk +
(m+ e0, e1) (mod qL), where v ← χenc and e0,
e1← χerr.

• Decrypt(c1sk) → m⃗ : For a ciphertext c = (c0, c1) ∈
R2qℓ

, decodes the message as m = c0 + c1 · s(mod qℓ),
and outputs a plaintext vector m⃗ = 1−1 · τ (m).

• Add(c1, c2) → c+ : Add two ciphertexts c1, c2 ∈ R2qℓ
.

It returns ciphertext c+ = c1 ⊕ c2 = c1 + c2(mod qℓ).
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• Mult (c1, c2, ek ) → c× : For two ciphertexts c1 =(
c1,0, c1,1

)
, c2 =

(
c2,0, c2,1

)
∈ R2qℓ

, let (d0, d1, d2) =(
c1,0c2,0, c1,0c2,1 + c1,1c2,0, c1,1c2,1

)
. It returns cipher-

text c× = c1⊗c2 = (d0, d1)+
⌊
q−1L · d2 · ek

⌉
(mod qℓ).

• Rot(c, r) → c′ : Given an encryption c of m⃗ =(
m0, . . . ,mN/2

)
, outputs c′ that encrypts the left-rotated

vector m⃗ =
(
mr , . . . ,mN/2,m0, . . . ,mr−1

)
by

r positions.
Due each m⃗ is scaled, the plaintext of c← Mult(c1, c2) is

1·m1m2, which results in the exponential growth of plain-
texts. To deal with such a problem, CKKS introduces the
so-called rescaling procedure:
• Resc(c) → c′: For a ciphertext c ∈ R2qℓ

, outputs c′ =
⌊ql′/qℓ ⌉ · c (mod ql′).

For more detailed information and additional considera-
tions on the CKKS scheme, including the correctness and
security analysis, refer to [5].
In the last years, several HE schemes besides BFV and

CKKS have been proposed. They include BGV [2], Gentry-
Sahai-Waters (GSW) [17], YASHE [18], Hoffstein-Pipher-
Silverman (HPS) [19], and López-Tromer-Vaikuntanathan
(LTV) [20] schemes. All of them pursue the implementation
of more efficient HE schemes.

III. HOMOMORPHIC COMPARISON POLYNOMIAL
REPRESENTABILITY
The comparison process describes whether a number is
greater than, smaller than, or equal to another number.
Equation (1) defines the comparison of two values a and b.

comp (a, b) =


1 if a > b,
1
2

if a = b,

0 if a < b.

(1)

In HE, non-polynomial functions are processed using their
polynomial approximations [21], [22]. Since the comparison
operation is a non-polynomial function, then its efficiency
depends on the polynomial approximation.

Multiple approaches for polynomial approximation are
known from approximation theory, e.g., Taylor series, least
squares, Newton-Raphson, Chebyshev series, etc.

The main goal is to find cryptographically compatible
polynomials with a minimal degree on a target function
for a given certain error bound [23], [24], [25], [26], [27],
[28], [29], [30], [31].

The degree of the approximate polynomial is directly
related to the desired error bound in a given interval. As the
degree grows, the lower approximation error is guaranteed
and, thus, better precision. However, a higher computational
cost is required [32], [33].

Using any approximation technique, a polynomial approx-
imation of a function within a relative error 2−α should have
a degree of at least 2 (2α) and require at least exponential
computational complexity 2(2α/2).

The high computational complexity of these polynomials
makes it inefficient to obtain highly accurate results in a
reasonable amount of time.

Standard polynomial approximation methods may not be
the best solution for HE applications because they mainly
consider polynomial optimality rather than computational
complexity. Therefore, the approximation should provide
parity between precision and complexity.

Recently, several encrypted number comparison approaches
have emerged to address this limitation. They use
well-structured polynomial approximation, interpolations,
and positional characteristics. These methods provide a sub-
stantial advantage in computational complexity concerning
standard techniques.

Before describing the homomorphic comparison tech-
niques, let us theoretically prove the representability of the
sign function and comparison function in polynomial forms.
Theorem 1 and Theorem 2 show that both functions can be
represented as polynomials over the Galois field and cannot
be represented over a residue ring with zero divisors.
Theorem 1: If m is a composite number, then in the ring

Zm[x] there is no polynomial f (x) ∈ Zm[x] such that ∀x ∈
Zm : signm (x) = f (x), where

signm (x) =

 1 if 1 ≤ x < m/2,
0 if x = 0,
−1 if m/2 ≤ x < m.

Proof: If a polynomial ∀x ∈ Zm : signm (x) = f (x)
exists, then its degree is greater than or equal to one, since
signm (0) = 0 ̸= signm (1) = 1, that is, f (x) ̸= const
Let us suppose the contrary, there exists a polynomial f (x)

of degree d ≥ 1, such that ∀x ∈ Zm : signm (x) = f (x). Then
the polynomial f (x) can be represented in the following form:

f (x) =
d∑
i=0

ai · x i

where ai ∈ Zm
Since signm (0) = 0, then f (0) = a0 = signm (0) = 0,

therefore, f (x) can be represented in the form:

f (x) =
d∑
i=1

ai · x i

Considering that by the hypothesis of the theorem, m is a
composite number, therefore, there exists a number η satisfy-
ing the condition 2 ≤ η ≤

√
m, such that m ≡ 0 (mod η)

By calculating the value of the function f (x) at the point
x = η, we get:

f (η) =

d∑
i=1

ai · ηi = η ·

d∑
i=1

ai · ηi−1

= η ·

d−1∑
i=0

ai+1 · ηi

therefore, f (η) ≡ 0 (mod η)
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FIGURE 1. Integer-based homomorphic comparison timeline.

Since m is a composite number, then m ≥ 4. We consider
two cases:

Case 1 If m = 4, then η = 2 and signm (η) = signm (2) =
−1. It means signm (η) ≡ f (η) ≡ −1 ≡ 1 (mod η)

Case 2 If m ≥ 6, then 2 ≤ η ≤
√
m < m

2 , therefore
signm (η) = 1. It means signm (η) ≡ f (η) ≡ 1 (mod η)

From Cases 1 and 2, it follows that if m is a composite
number, then f (η) ≡ 1 (mod η). Thus, if there exists a
polynomial f (x) ∈ Zm[x], then f (η) ≡ 1 (mod η) and
f (η) ≡ 0 (mod η) simultaneously, which cannot be. Thus,
we came to a contradiction. The theorem is proved.
Theorem 2: If m is a composite number, then there is no

polynomial f (x, y) ∈ Zm[xy] in the ring Zm[xy], such that
∀xy ∈ Zm : compm (x, y) = f (xy), where:

compm (x, y) =


1 if x > y,
0 if x = y,
−1 if x < y.

Proof: Let’s suppose the opposite, that ∀xy ∈ Zm :
comp (x, y) = f (xy), then it can be represented as:

f (x, y) = a0 +
nx∑
i=1

axi · x
i
+

ny∑
i=1

ayi · y
i
+

nxyx∑
i=1

nxyy∑
j=1

axyi,j · x
i
· yj

where a0axi , a
y
i , a

xy
i,j ∈ Zm

The value of the function compm (x, y) at the point (0, 0)
is compm (0, 0) = 0, then f (0, 0) = a0 = 0
Considering that, by the hypothesis of the theorem m is a

composite number, therefore, there is a number 2 ≤ η ≤
√
m, such that m ≡ 0 (mod η). We calculate the value

of the function compm (x, y) at the point (η, 0), and we get
compm (η, 0) = 1, i.e., compm (η, 0) ≡ 1 (mod η). On the
other hand, we calculate the value of the function f (x, y) at
the point (η, 0), we get:

f (η, 0) =
nx∑
i=1

axi · η
i

Therefore, f (η, 0) ≡ 0 (mod η) Since f (η, 0) =

compm (η, 0)≡ 1 (mod η) and f (η, 0) ≡ 0(mod η), we have
come to a contradiction, if m is a composite number, then
there is no polynomial f (x, y) ∈ Zm[xy] such that ∀xy ∈ Zm :
compm (x, y) = f (x, y). The theorem is proved

From Theorem 1 and Theorem 2, it follows that over a
residue ring Zm with zero divisors, there is no algebraic

polynomial that would allow expressing the sign function and
comparison function in the form of a polynomial.

If Zm is a field, then for the sign and comparison
functions, polynomials can be constructed using Lagrange
interpolation. [34].
The next sections describe detailed information about cur-

rent comparison techniques for several HE schemes. First,
we present integer-based homomorphic comparison, and
later, the fixed-precision numbers homomorphic comparison.

IV. INTEGER-BASED HOMOMORPHIC COMPARISON
In the last years, innovations in HE led to the development
of efficient and accurate algorithms for Integer-Based Num-
ber Comparison (IBC_HE) for HE schemes such as BGV
and BFV.

They are based on the Lagrange interpolation of a two
variables function [6] and the positional characteristics of a
number [7]. However, these approaches have some applica-
bility limitations when the field characteristic is big enough.
Therefore, they are impractical to deal with real numbers,
making them unfeasible for ML algorithms.

Fig. 1 presents the timeline for IBC_HE designs. The
following sections outline the nature of these approaches.

A. LAGRANGE INTERPOLATION
The Lagrange interpolating polynomial defines the unique
polynomial of the lowest degree that interpolates a set of data.
A two-variable function Lagrange interpolation allows effi-
ciently calculating comp(a, b) only when the homomorphic
cipher is constructed over a field with small characteris-
tics [35], i.e., over a discrete finite set. The larger the
characteristics of the field, the greater the computational
complexity, both elements are directly related.

This technique provides two possible comparison oper-
ations: equality and order comparisons [6]. However, the
equality or inequality of the numbers is not enough; we
require to compute equation (1).
Let an extension degree d , a prime number p, and a

finite extension field Fpd of characteristics. A polynomial
f ∈Fpd [x1, . . . ,xn] is a polynomial expression of a function
ϕ:

(
Fpd

)n
→ Fpd if only if f (a1, . . . ,an) = ϕ (a1, . . . ,an)

for all (a1, . . . ,an) ∈
(
Fpd

)n Hence, a unique polynomial
expression minϕ∈Fpd [x1, . . . ,xn] exists for any function ϕ,
whose degree is at most pd−1 for each variable. The proofs
are omitted due to space constraints; readers can refer to [34].
The multiplicative depth required for evaluating a polyno-

mial depends on its total degree. The minϕ has the minimum
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total degree among all polynomial expressions of ϕ. Lagrange
interpolation allows efficiently finding minϕ .
The Lagrange interpolation of a two-variable function on

P × P ⊆
(
Fpd

)2 with P ⊆Fpd , establishes that considering
the outputs of a function ϕ on all points (x, y), a polynomial
expression f (x, y) of ϕ can be determined as

f (x, y) =
∑

(xi,yj)∈P×P
ϕ

(
xi, yj

)  ∏
xα ̸=xi
xα∈P

x − xα
xi − xα



×

 ∏
yβ ̸=yj
yβ∈P

y− yβ
yj − yβ

 , (2)

where f (x, y) is the minϕ of ϕ(xy) for P =Fpd ; the degrees
of x and y in f are at most |P| − 1 each, and thus, the total
degree of f is at most 2 |P| − 2.
An important property to reduce the field characteristics

size is a linear map on
(
Fp

)d which enables casting the
problem from a large field Fpd to base field Fp.
Let T be a Fp-linear map on Fpd and τ (x) the Frobenius

map on Fpd , which sends x to xp; there is a set of constants
ρi∈Fpd for i ∈ {0, . . . , d−1} such that

T (µ) = ζT (µ) =

d−1∑
i=0

ρiτ
i(µ) (3)

The multiplicative group of Fpd is characterized by Fer-
mat’s Little theorem, which establishes that

αp
d
−1
= 1, (4)

for any α ∈ Fpd \{0}.
The described properties of Lagrange interpolation allow

us to use this approach to compute any function ϕ with
minϕ efficiently. The evaluation of minϕ has a minimum
multiplicative depth on HE schemes over a field with small
characteristics (e.g., integer-based homomorphic schemes),
and it includes two-variable sign and comparison func-
tions [36], [37].
In other words, an efficient evaluation of minϕ in a HE

cryptosystem is possible; their additions and multiplications
must be replaced with the corresponding homomorphic ver-
sions to process the ciphertext inputs.

Unfortunately, the Lagrange interpolation-based approach
is inapplicable for fixed-precision numbers used in cognitive
ML models due to its high computational complexity. In this
case, the size of the polynomial is exponential in degree. For
instance, the degree of a polynomial approximation with two
variables and the accuracy of 10−2 is equal to 4·102.

B. POSITIONAL CHARACTERISTICS APPROACH
In a Positional Number System (PNS), a number com-
parison is reduced to a simple bit-wise comparison, i.e.,
a Boolean function can perform the comparison of two

elements. Nonetheless, this operation is complicated over
non-PNS such as the Residue Number System (RNS). Com-
paring homomorphically in RNS is solved by converting the
numbers from RNS to PNS and then comparing them.

The RNS representation is considered a coding and Secret
Sharing Scheme (SSS), which can provide secure data pro-
cessing and storage [38]. Moreover, RNS is an extended tool
to accelerate the performance of arithmetic operations over
ciphertexts of HE schemes. This section briefly describes
standard approaches for such a task.

RNS is a widely known variation of finite ring iso-
morphism considered as a homomorphic cipher, where
residues for moduli set MS = {p1, p2, . . . ,pn} represent
PNS numbers.

Three advantages of RNS are that operations do not gener-
ate carries between digits, the encoded numbers are smaller
than the original ones, and the independent arithmetic units
have non-positional nature. Formally, a tuple (x1, x2, ...,xn)
denotes an integer number X ∈ [0,P− 1) where each xi =
|X |pi represents the remainder of the division of X by pi ∈
MS, and P =

∏n
1 pi defines the dynamic range according to

the set of pairwise co-prime numbersMS.
A homomorphic comparison in RNS consists of two steps:

first, the Positional Characteristic (PC) computation of the
number in residue form, i.e., the conversion from RNS to
a PNS. And subsequently, the comparison of PCs of num-
bers in the PNS. Several methods are used in the first step:
Chinese Remainder Theorem (CRT), Mixed-Radix Conver-
sion (MRC) [39], and recursive number pairing algorithm
(nCRT) [40], among others.
For instance, the CRT converts between RNS and PNS as:

X =

∣∣∣∣∣
n∑
i=1

Pi·xi ·
∣∣∣P−1i ∣∣∣

pi

∣∣∣∣∣
P

(5)

where Pi = P/pi, and
∣∣∣P−1i ∣∣∣

pi
is the multiplicative inverse of

|Pi|pi which satisfy
∣∣∣P−1i ∣∣∣

pi
∗ |Pi|pi = 1 mod pi.

The following example illustrates this conversion and the
homomorphic comparison.

Let MS = {3, 5, 7} and two numbers X = (2, 2, 3) and
Y = (1, 3, 4) with their corresponding RNS representation.
The range P = 3 · 5 · 7 = 105 with P1 = 105/3 = 35,
P2 = 105/5 = 21, and P3 = 105/7 = 15 according
to Pi = P/pi. The multiplicative inverses are

∣∣∣P−11

∣∣∣
3
=

2,
∣∣∣P−12

∣∣∣
5
= 1, and

∣∣∣P−13

∣∣∣
7
= 1, where the expression∣∣∣P−11

∣∣∣
3
· P1 = 2 · 35 ≡ 1 mod 3 verifies that

∣∣∣P−11

∣∣∣
3
= 2.

The conversion of X and Y to a PNS according to (5) is

X = |35 · 2 · 2+ 21 · 2 · 1+ 15 · 3 · 1|105 = |227|105 = 17,

Y = |35 · 1 · 2+ 21 · 3 · 1+ 15 · 4 · 1|105 = |193|105 = 88,

Thus, X < Y because 17 < 88.
The division over high values of P is a disadvantage of this

method because it increases the computational complexity
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of the algorithm. Several methods have been proposed to
reduce this limitation; the most efficient approach is based
on the Approximate Method (AM) [40]. It replaces the
resource-consuming non-modular operations (e.g., division
with remainder) with fast bit right shift operations and takes
the least significant bits. Besides, AM decreases the overhead
concerning MRC and nCRT.

Binary adders and a lookup table of small address space
can effectively substitute the adders of modulo large and
arbitrary integers P [41]. The method maps [0,P) into [0, 2)
using a non-negative integer rx called the rank of x and
equation (5) by

X =
n∑
i=1

Pi·xi ·
∣∣∣P−1i ∣∣∣

pi
− P · rx (6)

The division by P/2 of both sides of the equation (6)
generates a more manageable expression:

Xs =
(
2
P

)
· X =

n∑
i=1

2
pi
·xi ·

∣∣∣P−1i ∣∣∣
pi
− 2 · rx (7)

Xs does not contain additions modulo P so its processing is
an ordinary sum of fractional numbers minus a power of 2.
This can be trivially accomplished since computations are
done in a binary number system, i.e., in a PNS.

The following example illustrates AM behavior. Let
MS = {3, 5, 7} and a number X = (2, 2, 3), according to
equation (7)

Xs =

∣∣∣∣23 · 2 · 2+ 2
5
· 2 · 1+

2
7
· 3 · 1

∣∣∣∣
2
=

∣∣∣∣2 · 34105

∣∣∣∣
2
=

34
105

Each element of the summation (summand) in (7) needs to
be rounded because the fractional summands cannot be repre-
sented exactly in a finite number of bits. For each summand,
N + 1 bits are allocated, and the rest of them are truncated,
where the integer part takes 1 bit, and the fractional occupies
N bits. The truncated i − st error satisfies the inequality
0 ≤ ei ≤ 2−N . Then, e = n2−N defines an upper bounded
error concerning n summands.
Due to Xs values are uniformly located in the interval

[0, 2), the distance between two neighbor numbers is 2/P.
Moreover, the gap between the largest positive number and
1 is 2/P forP even and 1/PwithP odd. Accordingly, the error
for a rounded Xs must satisfy n · 2−N < 2/P for P even, and
n · 2−N < 1/P for P odd, with respect to the corresponding
true value of Xs. Equivalently,N ≥

⌈
log2 (n · P)

⌉
−1 for even

P, and N ≥
⌈
log2 (n · P)

⌉
with odd P.

The simplicity and speed of the method are compensated
by the fractional representation redundancy that requires
roughly

⌈
log2 n

⌉
extra bits. The use of lookup tables can

simplify its implemented in hardware, with the residue |X |pi
as input and the rounded value as output; rounded values
are summed modulo 2. The following numerical example
illustrates its behavior.

Consider MS = {3, 5, 7} and the numbers X = 1 =
(1, 1, 1) and Y = 104 = (2, 4, 6). For this RNS,

N ≥
⌈
log2 (3 · 105)

⌉
= 9. Hence,

Xs =

∣∣∣∣23 · 1 · 2+ 2
5
· 1 · 1+

2
7
· 1 · 1

∣∣∣∣
2
=

4
3
+

2
5
+

2
7

≈ 1.010101011+ 0.011001101+ 0.010010010.

Subsequently, the summands are added modulo 2 and
obtain Xs = 0.000001010. Analogously for Y ,

Ys =

∣∣∣∣23 · 2 · 2+ 2
5
· 4 · 1+

2
7
· 6 · 1

∣∣∣∣
2
=

2
3
+

8
5
+

12
7

≈ 0.101010101+ 1.100110011+ 1.101101110.

The summands are added modulo 2 and obtain Ys =
1.111110110. Then, Y > X because 1.111110110 >

0.000001010.
A more efficient algorithm to compute the PCs can reduce

the number of divisions and improves the accuracy of AM [7].
The authors proved the reduction of operand size with respect
to the length of the modulo when P is an odd number, and
moduli P power of two.

Several proposals improve the computational complexity
and applicability of these analytic techniques [40], [41],
[42], [43], [44]. However, they are applicable only under a
field of small characteristics, as mentioned above. All of them
are impractical for many real-world applications, such asML.

V. FIXED-PRECISION NUMBERS HOMOMORPHIC
COMPARISON
Several methods are designed to support secure comparison
over fixed-precision numbers. However, state-of-the-art solu-
tions are still inefficient in practice [45].

The two main classes of Fixed-Precision Numbers Homo-
morphic Comparison (FPC_HE) are:

1) Representing the fixed-precision numbers as integers
by a special-purpose encoding [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55].

2) Encrypting fixed-precision numbers directly by a
homomorphic scheme [5].

The implementation of the first class of solutions uses
the IBC_HE techniques described in the previous section.
This section focuses on the second class, i.e., enabling
homomorphic comparison over fixed-precision schemes such
as CKKS.

An important limitation of the widely adopted CKKS
scheme is the errors introduced by the scheme that cannot
be removed in the decryption process. These errors have
high repercussions on the HE domain because they can lead
to a significant distortion of the results for error-sensitive
algorithms. For example, in computing a third-order matrix
determinant, an error of 0.01 in one of its values can provoke
that a result does not provide any information about the true
value [56].
In general, twomain approximation approaches are used to

compare fixed-precision numbers: iterative and sign-function
approximation. The iterative approach calculates the compar-
ison function of two numbers a and b with k iterations to
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FIGURE 2. Fixed-precision numbers homomorphic comparison timeline.

provide a given precision [1], e.g.,

comp (a, b) =
ak

ak + bk

The second approach is based on using the sign(x) function
and its polynomial approximation to compute the compari-
son [8], [57], i.e.,

comp (a, b) =
sign (a− b)+ 1

2

Multiple variants have emerged to improve their perfor-
mance and applicability, but the search for an efficient HE
algorithm for comparison with fixed-precision numbers con-
tinues. Fig. 2 shows a timeline for FPC_HE algorithms.
We describe the state-of-the-art methods in this section.

A. EARLY FPC_HE APPROACHES
An early approach uses a Boolean function to perform the
homomorphic comparison [58]. The bit-wise encrypted num-
ber encodes a value c =

∑l−1
i=0 ci2

i separately, each of
l-bits is encrypted as c0, c1, . . . , cl−1. The Boolean function
compares two l-bit numbers by evaluating2(l) homomorphic
multiplications with depth 2(log l).
A generalization of the bit-by-bit comparison method was

recently proposed to encrypt elements such as a =
∑
aipi for

small primes p [6]. However, the computation of each carry
bit in the homomorphic addition and multiplication makes it
inefficient since both operations require a sequential transfer
from lower-bit operations.

The Newton method is another alternative to reduce
the computational complexity of homomorphic compari-
son. The iterative process to approximate the roots of a
function [59], [60], [61] can be applied to improve the conver-
gence to sign function, which is equivalent to the comparison
function, see Section V-C.
Newton’s root-finding algorithm approximates the roots of

a given function r(x) by iterative computing xn+1 = xn−
r(xn)
r ′(xn)

for an initial point x0, i.e., iterative computation of f (x) = x−
r(x)
r ′(x) gives an approximation to one of the roots of r The main
challenge toward approximating the sign function consists
of defining f to improve the convergence, i.e., identifying a
function with ±1 as roots such that iteratively applying the
method converges to sign(x) [59], [60], [61].

The naive method is to define r (x) = 1 − x2 which
derives f (x) = 1

2 ·

(
x + 1

2

)
. However, it requires the inverse

operation and its polynomial approximation to be applied in
HE, significantly reducing the accuracy and increasing the
complexity due to several expensive inverse operations.

The Newton-Schulz approach [62], [63] is the prevalent
method that makes f multiplicative-rich, i.e., the inverse
computation is not needed. The method removes the inverse
by approximating it with Newton’s algorithm. It uses the
function r (x) = 1 − 1/x2 where f is expressed as f (x) =
x
2 ·

(
3− x2

)
. Several state-of-the-art approaches are based on

Newton-Schulz.

B. ITERATIVE FPC_HE APPROACHES
The iterative method approximately computes the homo-
morphic comparison of encrypted word-wise numbers [1].
An advantage of this method over previous polynomial
approximations is its quasi-optimality (logarithmic) compu-
tational complexity. The idea of this technique exploits:

comp(a, b) = lim
k→∞

ak

ak + bk
=


1 if a > b,
1
2

if a = b

0 if a < b

(8)

for a, b ∈ [1/2, 3/2].
An iterative calculation of a←a2/(a2 + b2) and

b←b2/(a2 + b2) with k = 2d provides a comparison
result within a small error. The result after d iterations is
a2

d
/
(
a2

d
+ b2

d
)
∼= comp (a, b).

The iterative method is quite slow in practice. It requires
more than 20 minutes to compute a single homomorphic
comparison of 16-bit elements. A higher multiplicative depth
is needed, and thus, extensive CKKS parameters or boot-
strapping technique implementation. Both yield performance
degradation.

The computational inefficiency comes frommodular inver-
sion operations like the root-finding algorithm. 1/(a2 + b2)
is executed at least d times using the Goldschmidt division
algorithm [64].
Likewise, the accuracy of the method depends on the num-

ber of iterations, the input values, and the distance between
them. Close numbers have lower comparison accuracy than
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others obtained with the same number of iterations. The
following example illustrates this situation.

Let us compare two pairs of numbers a1 = 1 with b1 = 2,
and a2 = 1 with b2 = 1.001, both with d = 16. The
value of the iterative algorithm Eq. (8) is comp (a1, b1) =
4.99·10−19729 then a1 < b1 and comp (a2, b2) = 1.4·103

then a2 > b2.

C. SIGN FUNCTION APPROXIMATIONS
The second main approach uses the equivalence of comp(ab)
and sign(ab) functions,

sign (a, b) = 2 · comp (a, b) (9)

The homomorphic comparison can be determined by the
sign of a ciphertext, mitigating the iterative algorithm draw-
back, i.e., without using the modular inversion operation.

The comparison of two numbers with sign function
follows:

comp (a, b) =
sign (a− b)+ 1

2
=


1 if a > b,
1
2

if a = b,

0 if a < b,
(10)

with

sign (x) =


1 if x > 0,
0 if x = 0,
−1 if x < 0.

(11)

An accurate polynomial approximation of sign (x) is
enough to perform the homomorphic comparison operation.
An exact approximation near x = 0 is not possible due to
its discontinuity, this situation forces the approximation to
consider two symmetric intervals [−1,−ϵ] ∪ [ϵ, 1].

A numerically stable method uses the Fourier series to
approximate sign (x) [65]. The three advantages of this ana-
lytic method compared to the classical polynomial approxi-
mation are:

1) The function has better numerical stability; it does not
diverge∞ outside of the interval.

2) The small Fourier coefficients allow defining a square-
integrable function.

3) The series converges uniformly to the function on any
interval that does not contain any discontinuity in the
derivative.

The presence of a discontinuity in sign(x) implies that the
Fourier series converges poorly around x = 0. The proposed
Fourier sequence is denoted as follows

sign (x) =
4
π

∞∑
k=0

sin (2k + 1)πx
2k + 1

. (12)

The trigonometric approximation based on the Fourier
sequence allows the construction of NNmodels with HE. The
results demonstrate that homomorphic models can absorb
relative errors of at least ten percent without impact on global

accuracy. This approach increases the approximation error
slightly and reduces the computational complexity without
sacrificing model accuracy.

Also, a sequence of locally integrable hyperbolic tangent
functions can approximate the sign function [66], where
tanh (kx) = ekx−e−kx

ekx+e−kx
∼= sign(x) for k> 0 sufficiently large.

tanh (kx) is efficiently computed by repeatedly applying
the double-angle formula tanh (2x) = 2 tanh (x)

1+tanh2 (x)
≈

2x
1+x2

and
a low-degree minimax approximation of the inverse opera-
tion. This approach is similar to a polynomial composition
with a polynomial approximation of 2x

1+x2
. However, the

error between the approximation f (d) and sign (x) cannot
be reduced below a certain limit due to the method’s core
properties, even if d tends to∞.
A novel comparison method uses a composite polyno-

mial approximation [57]. The composition of polynomials
f ◦ . . . ◦ f ◦ g ◦ . . . ◦ g approximates sign (x), where f
and g are designed to provide acceptable accuracy with
a small number of compositions. Structure approximate
polynomials as compositions of some constant-degree poly-
nomials allow a substantial computational complexity advan-
tage. For example, a linear complexity 2(α) is achieved
to compute a polynomial f of degree 2(2α) when it is
expressed as f0 ◦ f0 ◦ . . . ◦ f0 for some constant-degree
polynomial f0.
Let f (x) = x2/(x2 + (1− x)2), each of the d iterations in

the iterative approach can be interpreted as an evaluation of
f (a) and f (b) = 1−f (a)with 0 ≤ ab ≤ 1, respectively. The
iterations correspond to the d-time composition of f in f (d).
Like the iterative approach, the algorithm of composite poly-
nomials repeatedly computes f as

f (d)n + 1
2
≈
sign (a− b)+ 1

2
(13)

The authors present the compositions of two families of
polynomials f and g to construct a polynomial approximation
of the one variable sign (x) function, instead of the compari-
son function with two variables.

The first family of polynomials fn (x) fulfills three main
properties: fn (x) is an odd function because sign (x) is also
an odd function, fn (x) guarantees the convergence to ±1 by
f (1) = 1 and f (−1) = −1, and fn (x) satisfies f ′ (x) =
c (1− x)n (1+ x)n for some constant c> 0. Strictly speaking,
a polynomial of degree 2n+ 1, for n ≥ 1, that satisfies these
three properties is uniquely determined by fn.

Equation (14) defines the family of polynomials fn, and
Fig. 3 shows four of its members with n = 1, 2, 3, 4 by

fn (x) =
n∑
i=0

1
4i
·

(
2i
i

)
· x

(
1− x2

)i
f1 (x) = −

1
2
x3 +

3
2
x

f2 (x) =
3
8
x5 −

10
8
x3 +

15
8
x
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FIGURE 3. Polynomial approximations of sign function with fn(x) and
n = 1, 2, 3, 4.

f3 (x) = −
5
16
x7 +

21
16
x5 −

35
16
x3 +

35
16
x

f4 (x) =
35
128

x9 −
180
128

x7 +
378
128

x5 −
420
128

x3 +
315
128

x (14)

The second family gn (x) should satisfy some properties
to accelerate computations: gn (x) has to be an odd function
because sign (x) and fn (x) are odd functions, and for gn (x),
∃0 < δ< 1 s. t. x < g (x) ≤ 1, for all x ∈ (0,δ], and
g ([δ, 1]) ⊆ [1− τ , 1].

FIGURE 4. Polynomial approximations of sign function with gn (x) and
n = 1, 2, 3, 4.

Fig. 4 shows polynomials gn(x) generated for n =

1, 2, 3, 4, where τ denotes the approximation error. It is
defined by

g1 (x) = −
1359
210

x3+
2126
210

x

g2 (x) =
3796
210

x5 −
6108
210

x3 +
3334
210

x

g3 (x) = −
12860
210

x7 +
25614
210

x5 −
16577
210

x3 +
4589
210

x

g4 (x) =
46623
210

x9 −
113492
210

x7 +
97015
210

x5

−
34974
210

x3 +
5850
210

x

This approach has multiple advantages over using indepen-
dent polynomials: the error in the zero neighborhood is close
to unity; by composite polynomials, the error near x = 0 and
τ are considerably reduced, see Fig. 4.

The composite polynomial approximation with α> 0 and
0 ≤ ϵ ≤ 1 generates polynomials f (x),which are (α, ϵ)-close
to sign(x) over [−1, 1], i.e.

∥f (x)− sign (x)∥∞,[−1,−ϵ]∪[ϵ,1] ≤ 2−α (15)

where ∥·∥∞,D denotes the infinity norm over the domainD =
[−1,−ϵ] ∪ [ϵ, 1].
Thus, 1

2 (sign (a− b)+ 1) is an approximate value of
comp(a, b) within 2−α error for a, b ∈ [0, 1] satisfying
|a− b| ≥ ϵ.

Furthermore, the interval [−ϵ, ϵ] is shorter under the
composite polynomial approximation. The polynomial g
decreases this interval for a composition of two identical
polynomials f although the computation speed remains the
same [67].
However, the error on the interval [−1,−ϵ] ∪ [ϵ, 1]

increases in the latter case. For instance, a composite poly-
nomial f

df
1 ◦ g

dg
1 provides a better approximation than a

polynomial f (
df+dg)

1 .
Lastly, the composition of two polynomials of degree n

requires less execution time than the computation of a poly-
nomial of degree n · n.

Fig. 5 shows the composite polynomials fn (gn(x)) gener-
ated for n = 1, 2, 3, 4.

FIGURE 5. Composite polynomial approximations of sign function with
fn

(
gn (x)

)
and n= 1, 2, 3, 4.

Several methods use composite polynomial approxima-
tions to compare encrypted numbers. However, the homomor-
phic comparison is still computationally inefficient despite
the improvements in the last five years, its practical use
requires more advances to increase its performance.

Composite polynomials of the minimax approximate poly-
nomials use a modified Remez algorithm [68] to perform the
homomorphic comparison operation [8], [69]. The approach
computes the composite polynomials depending on the input
parameters. It minimizes the non-scalar multiplications and
depth consumption among all of the composite polynomi-
als of component minimax approximate polynomials. The
dynamic programming algorithms of the approach use poly-
nomial time instead of a brute-force search that would imply
exponential time.

Another approach is to use the subtraction of numbers
and the composition of two families of polynomials to
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TABLE 1. Main characteristics of HE number comparison methods.

approximate the sign function [57], [67]. The accuracy of the
approach is 1.98 times better for approximating the sign func-
tion to the theoretical estimations for polynomials fn(x). Also,
the authors demonstrated a theoretical result of applicability
for gn(x) only when n> 4. They suggest using fn (fn)when the
application needs to consider the sign of the approximation
deviation compared with the true value. Otherwise, composi-
tion fn (gn) is good enough.

A recent approach to improve the FPC_HE proposes a
method based on theNewton-Raphson root-finding algorithm
on function r (x) = 1− 1/x2 [70], i.e., the polynomial f1
of [57]. The authors highlighted the homomorphic evaluation
of the sign function as the main bottleneck in constructing
privacy-preserving support vector machine models, similar to
NN models.

The proposed function f (x) = x
2 ·

(
3− x2

)
allows obtain-

ing a sign approximation by its iterative computing. f will
be close to ±1 depending on the sign of x. The randomized
iterations of the algorithm can increase the security and con-
vergence rate, reducing computational complexity.

Table 1 presents the main characteristics of the state-of-
the-art FPC_HE schemes, and Fig. 6 illustrates the theoretical
complexity of those methods.

As shown in Fig. 6, the approximation error ϵ is decreased
with increasing the α value, where α impacts the complexity
of the methods.

FIGURE 6. Theoretical complexity of encrypted number comparison
methods with HE where ϵ = 2−α denotes the approximation error for a
given α.

Early FPC_HEmethods represent the worst alternative due
to their complexity 2

(√
α · 2α/2

)
. In contrast, the composite

polynomials approach has the lowest theoretical complexity
2 (log (1/ϵ)) + 2(log α). The ratio between the best and

worst solution is about 47.25 for an α = 12. Other methods
increase the complexity from 2.76 to 13.64 times concerning
composite polynomials.

In practice, these FPC_HE methods considerably differ in
both accuracy and computational time. The following section
illustrates this discrepancy between theoretical and experi-
mental estimates.

VI. PERFORMANCE EVALUATION
In this section, we compare the performance of the state-of-
the-art FPC_HE approaches. Specifically, the computational
complexity and approximation accuracy of each technique
are evaluated with the main idea of finding an appropriate
trade-off between both criteria.

The HE schemes and homomorphic operations were
implemented using the open-source Simple Encrypted Arith-
metic Library (SEAL) v3.5.6 [71]. The experimental evalua-
tion is performed on a computer with 64-bits Windows 10,
Intel(R) Core (TM) i7-8565U CPU at 1.8 GHz, 16 GB of
memory, and 256 GB SSD.

The ciphertext size, scheme performance, multiplicative
depth, and security level directly depend on the security
parameter settings. We adopt two security settings specified
in the HE standard [72], which will refer as S1 and S2. Table 2
and Table 3 show such security settings for BFV and CKKS
schemes.

TABLE 2. Security settings for BFV scheme.

A security level of λ = 128 bits for both configurations
guarantees that an adversary needs to perform 2128 elemen-
tary operations to break the scheme with a probability one.
The polynomial modulo degree N allows them to support
polynomials of degree at most 212 − 1 and 213 − 1, respec-
tively. A larger N allows for a larger ciphertext coefficient q
to be used without decreasing λ, but makes ciphertext sizes
bigger and homomorphic operations slower.
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TABLE 3. Security settings for CKKS scheme.

The t parameter determines the plaintext size and the noise
budget consumption in multiplications for the BFV scheme.
The noise ceiling in a freshly encrypted ciphertext is calcu-
lated as log2 (q/t) with q ≫ t . It is essential to keep t as
small as possible for the best performance. Therefore, the size
of (Nq) determines the scheme performance, and q/t bounds
the inherent error in ciphertexts.

In SEAL, the ciphertext coefficient q, also known as
ciphertext modulo, is defined as the product of multiple small
co-primes qi for i∈ {1, . . . ,L}, where qi≡ 1(mod 2N ). That is,
the number of primes indicates the level of the scheme. Given
a list of lengths of at most 60 bits, also known as a moduli
chain, the set of primes qi of those lengths is generated. The
value log q, determined by N [72], denotes the upper bound
for the total bit-length of the prime factors for achieving the
desired λ = 128.

The source code used in this study has been made openly
available to the scientific community as a public repository.1

A. COMPLEXITY
To illustrate the computational complexity of homomorphic
operations, Table 4 shows the timing in milliseconds (ms)
for HE processes KeyGen, Encrypt , Decrypt , Add , and Mult
(see Section II) in the BFV and CKKS schemes, two most
representative homomorphic cryptosystems in the literature.

TABLE 4. Processing timings of the operations for an HE scheme with
conventional Public-Key (ms).

BFV with S1 is the fastest configuration for KeyGen,
Encrypt , and Add .Meanwhile, CKKS with S1 for Decrypt
and Mult . S2 increases the time of all operations from
1.48 to 7.36 times for the BFV scheme and within 2.62 and
15.01 times for the CKKS scheme.

Homomorphic operations Add and Mult introduce a high
overhead. For example, non-homomorphic addition and mul-
tiplication take around 0.087 and 0.099 ms, respectively. Add

1www.github.com/bernardopulido/HE-Comparison

with a small BFV as S1 takes 15 times more than a non-
homomorphic addition, and 40 times more with a large-BFV
like S2.
Table 5 shows the performance of the state-of-the-art

FPC_HE methods. The generation time refers to the com-
putational time required for the nine-degree polynomial
generation, where each technique directly depends on the
FPC_HE approaches.

TABLE 5. Performance of homomorphic comparison with α = 9.

The Newton-Raphson approach has the best performance
in generating polynomials and comparing encrypted fixed-
precision numbers. Other approaches increase the generation
time between 10.52% and 231.57%, and their comparison
time is incremented from 0.11% to 1589.56%.

Fig. 7 presents the nine-degree polynomial approxima-
tions generated and evaluated for the FPC_HE approaches.
The iterative approach does not generate a polynomial; it
approximates the sign(x) function by iteratively computing
the identity defined in equation (8).

FIGURE 7. Polynomial approximation of the sign function generated by
fixed-precision homomorphic comparison approaches.

The ratio between the best and the worst homomorphic
comparison approach could be considered negligible, see
Table 5. However, modern NN models contain hundreds of
millions of neurons, where each neuron computes a com-
parison operation in an activation function. Therefore, the
homomorphic comparison needs to be optimized. Otherwise,
it is inapplicable due to the massive number of operations.

For instance, a non-homomorphic comparison takes
only 0.0464 ms, while the Newton-Raphson method takes
around 98.91 ms. Hence, slight improvements in encrypted
number comparison bring us closer to the implementation of

102200 VOLUME 11, 2023



B. Pulido-Gaytan et al.: Toward Understanding Efficient Privacy-Preserving Homomorphic Comparison

TABLE 6. Accuracy of homomorphic comparison approaches.

privacy-preserving NN models. Complexity is not the only
limitation in the adoption of these systems, the accuracy is
another important issue in the field.

B. ACCURACY
In this section, we evaluate the accuracy of the nine-degree
polynomial approximations p(x) generated by the FPC_HE.
Namely, we calculate their approximation error concerning
sign(x), which denotes the distance between sign(x) and the
approximated function.

The approximation error of p(x) with respect to sign(x)
is given by the norm ∥·∥ of the error vector, i.e.,
∥sign (x)− p(x)∥. Measuring the norm is a fundamental
problem in linear algebra and approximation theory, where
there is no universal way to associate size with a numeric
vector. The difference between techniques that quantify the
error in one way, or another is considerable.

The one-norm (L1-norm) denotes the sum of the absolute
values of the components by

∥sign (x)− p(x)∥1 =
n∑
1

|sign (xi)− p(xi)| (16)

The two-norm (L2-norm), also known as least-squares
norm, computes the square root of the sum of the squares of
the absolute values of the components,

∥sign (x)− p(x)∥2 =

√√√√ n∑
1

|sign (xi)− p(xi)|2 (17)

The infinity-norm (L∞-norm), also known as minimax
norm, calculates the maximum of the absolute values of
the components. L∞ takes the supremum among individual
distances as the approximation error.

∥sign (x)− p (x)∥∞
= max {|sign (xi)− p(xi)| : i = 1, . . . , n} (18)

The type of component makes a qualitative difference
between L1 and L2. Small components contribute more to
L1 while large components do it to L2. Under that premise,
L1 performs better if a few large errors are required rather
than an accumulation of small errors. Hence, if most entries
in the error vector will be zero, and some can be relatively
large, then it minimizes the error in L1. In contrast with L2,

where many small errors but few large ones will minimize L1.
Therefore, if it is required to avoid outliers in the presence of
small non-zero errors, L2 performs better.

Another alternative to evaluate the goodness of the fit is
the R-squared (R2) metric, it measures the proportion of the
dependent variable’s variance explained by the independent
variables. R2 denotes the variance of the predicted values
divided by the variance of the data. R2 lies between zero and
one values, with zero indicating a null explanatory power and
one meaning a perfect fit.

We extend the approximation norms to get the relative
error of ∥sign(x)∥ by L1,2,∞ = ∥sign (x)− p(x)∥1,2,∞ /

∥sign (x)∥1,2,∞.
Table 6 presents the L1, L2, L∞, and R2 norms of the

FPC_HE approaches concerning the sign(x) function.
The Fourier approach provides the best values for all the

norms. The difference in performance with other approaches
is between 3.82% and 12.18% for R2, from 1.15% and 1.6%
concerning L∞, from 7.96% to 19.43% considering L1, and
within 9.61% and 25.22% for L2. The Newton-Raphson
approach is the worst for all metrics.

C. ERROR ANALYSIS
To analyze the approximation error behavior of p(x) on
[-1,1], we generate an evenly spaced sequence integrated
by the components xi = −1+ i

100 , where i = ¯0, 200, and
calculate the 1i = |sign (xi)− p(xi)| value for each element.

Fig. 8 shows 1i depending on the polynomial approxima-
tion generated for the FPC_HE approaches. We see that the
approximation error reaches its maximum value in the zero
neighborhood.

ϵ is an important parameter because the current prac-
tice considers the approximation problem on two intervals
[−1,−ϵ] ∪ [ϵ, 1]. By increasing ϵ, the approximate inter-
val decreases, and thus, the method accuracy improves. So,
identifying the best ϵ is a relevant task. We measure the
accuracy of the homomorphic comparison approaches with
ϵ ∈ {0, 0.01, . . . , 0.50}.
Fig. 9 shows the accuracy evolution of the nine-degree

polynomial approximations as the approximate interval
[−1,−ϵ] ∪ [ϵ, 1] decreases.

Large values of ϵ provide better approximations but imply
a restrictive approximate interval. For example, an approx-
imation of ϵ = 0.5 gives an accuracy 59.73% better than
an approximation with ϵ of 0.01 on average. Also, ϵ =
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FIGURE 8. The error of the polynomial approximations generated for
fixed-precision homomorphic comparison approaches.

FIGURE 9. Accuracy of comparison approaches with a nine-degree
polynomial approximation in the interval [−1,−ϵ] ∪ [ϵ, 1].

0.2 improves the accuracy by 17.78% on average. Funda-
mentally, the worst approximation is near the neighborhood
of zero due to the large discrepancy in the [−ϵ, 0] ∪ [0,ϵ]
intervals.

Nonetheless, the input values must not exceed this shrunk
range. Otherwise, the absolute value of the output diverges
to a large number. In a cognitive NN model, this situation
implies a complete classification failure.

Furthermore, Fig. 9 shows that for methods such as com-
position and Newton-Raphson approaches, the accuracy is
improving monotonically with ϵ increasing, or moving away
from the uncertainty zone [−ϵ, 0] ∪ [0,ϵ].
On the other hand, for approaches such as Fourier, Cheby-

shev, and Least-squares, the knee of the curve provides an
acceptable trade-off point for the ϵ value, i.e., for ϵ ≥ 0.12,
the increasing accuracy improvements are no longer worth
the interval implications. For instance, the accuracy improves
by 7.75% when increasing ϵ from 0.01 to 0.02, and 2.71%
from an ϵ of 0.07 to 0.08. On the other hand, the improvement
when increasing ϵ from 0.14 to 0.15 is 0.41%, while from
0.46 to 0.47, it is 0.09%.

D. BI-OBJECTIVE ANALYSIS
From the decision-makers’ point of view, visualizing the
big picture of the homomorphic comparison methods is
important due to the conflicting objectives of accuracy and
computational complexity. The bi-objective approach is not

FIGURE 10. Bi-objective analysis of the homomorphic comparison
approaches.

restricted to finding a unique solution, but a set of solutions
known as a Pareto optimal set or Pareto Front (PF). In this
case, we attempt to find an appropriate trade-off between two
conflicting objectives when they are minimized.

Fig. 10 presents a bi-objective analysis of the FPC_HE
approaches; all points belong to the PF .
According to Fig. 10a, the Fourier sequence is the most

efficient method concerning accuracy but the worst for com-
putational time. On the opposite side, Newton-Raphson is the
fastest but with the minimum accuracy of all methods. Least-
squares and Chebyshev methods provide the best balance
between both objectives. Composition focuses on time with
a dependency to decrease the accuracy.

Fig. 10b shows that the Fourier sequence, Composition,
and Newton-Raphson integrate the PF . The distribution of
the solution space is like the description in the generation
time. The Least-squares method is dominated by the Fourier
sequence and provides worse values on both objectives.

VII. DISCUSSION AND CONCLUSION
Many companies in the medical, biological, pharmaceutical,
banking, etc. sectors are seeking to raise awareness of data
security risks and privacy preservation. Modern encryption
algorithms can successfully protect stored and transmitted
data, but not data processing.

Homomorphic Encryption is a mechanism for process-
ing highly confidential data. It can compute, analyze, and
search over encrypted data with high-security levels. How-
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TABLE 7. Main terminology.

ever, HE performs efficiently only addition andmultiplication
operations on ciphertexts.

Data comparison is a crucial step in many algorithms,
including machine learning models. While HE computation
has become a fast-developing and systematic research spot,
research in the comparison operation area remains scattered.

In this paper, we focus on privacy-preserving comparison
and sign operations by conducting an in-depth review of the
latest advances in research and development, their function-
ality, security level, efficiency, accuracy, and computational
complexity.

We theoretically prove the limits of the representability of
the sign and comparison functions in polynomial forms and
show that both functions can be represented by polynomials
over the Galois field and cannot be represented over a residue
ring with zero divisors.

We review the most common comparison algorithms from
a timeline perspective revealing challenges, opportunities,
and open problems, and provide systematic references for the
improvement of the existing homomorphic data comparison
algorithms.

TABLE 8. Acronyms.

We consider integer-based and fixed-precision number-
based HE schemes. We provide their theoretical funda-
mentals, highlighting essential issues in the generation and
implementation of ciphertext comparison methods.

We compare the latest efficient and accurate integer-based
algorithms for BGV and BFV HE schemes: two-variable
function Lagrange interpolation and positional characteristics
approach.

We analyze the main approaches to compare fixed-
precision numbers: an iterative approach based on calculating
the comparison function for two numbers with a given preci-
sion and the polynomial approximation of the sign function.

We provide an experimental analysis of the state-of-the-
art approaches to homomorphic comparison focusing on two
important criteria: computational complexity and approx-
imation accuracy. Each technique is evaluated to find an
appropriate trade-off between both criteria using the open-
source SEAL.

To understand the computational complexity in more
detail, we analyze the execution time of key-generation,
encrypt, decrypt, addition, and multiplication homomor-
phic operations in the BFV and CKKS schemes, the two
most representative homomorphic cryptosystems in the lit-
erature. Results indicate that a Fourier sequence provides
the best values for different norms for accuracy, while the
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Newton-Raphson approach is the best regarding compu-
tational times. Chebyshev and Composition strategies in
the two-dimensional space are located between Fourier and
Newton-Raphson.

The interval-based error analysis shows that the errors of
all approaches reach the maximum value near the zero neigh-
borhood. We identify an adequate neighborhood for a best ϵ

value to reduce the uncertainty zone close to the zero-point
for homomorphic comparison methods.

It is important in future work to systematically review the
state-of-the-art practical methods of the hardware accelera-
tion of considered operations: highly parallel CPU, graphic
processing unit (GPU), field programmable gate array
(FPGA), application-specific integrated circuit (ASIC), etc.

APPENDIX
See Tables 7 and 8.
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