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a b s t r a c t 

We present a numerical investigation of the three-dimensional coarsening dynamics of a nematic liq- 

uid crystal-isotropic fluid mixture using a conserved phase field model. The model is a coupled system 

for a generalized Cahn–Hilliard equation for the order parameter φ, related to the volume fraction of 

the nematic component, and a simplified de Gennes–Prost evolution equation for the director field n , 

which describes the mean orientation of the rigid rod-like, liquid crystal molecules. We find that, as in 

the two-dimensional system, the orientational distortion induced by interfacial anchoring has profound 

effects both on the morphology and the coarsening rate. However, we identify significant differences in 

the three-dimensional and two-dimensional coarsening processes. In particular, we find a remarkable, 

new 3-stage late coarsening process with markedly different coarsening rates in the three-dimensional 

bicontinuous phase separation with homeotropic anchoring, unseen in the two-dimensional system. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Phase separation of binary mixtures is a fundamental process in

materials processing. The important phenomenon is characterized

by a fast transition into an ordered phase consisting of domains

rich in either component and followed by a very slow coarsening

process until a steady state is reached [6,7] . 

Mixtures in which one of the components is a liquid crystal or

a liquid crystalline polymer offer a significant potential for appli-

cations and have received increased attention [8,9,21,27–29,36] . 

We focus here on the three-dimensional phase separation

and coarsening dynamics of a binary mixture of a nematic

liquid crystal and an isotropic fluid, like a polymer. We use

a conserved phase field model (Model B in the nomenclature

of Hohenberg and Halperin [19] ) which couples a generalized

Cahn–Hilliard equation for the order parameter φ, related to the
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olume fraction of the species, with a simplified de Gennes–

rost evolution equation [17] for the director field n , which

escribes the mean orientation of the rigid rod-like, liquid crystal

olecules. The same model, which stems from that considered

n [37] , has been used in the two-dimensional study of Mata

t al. [27] and the current work is a follow-up report on our

ndings for the corresponding three-dimensional system. Similar

hase field models have been used extensively in phase separation

1–5,12–14,18,20,22,23,26,31,35,37–41] . A more general model of de

ennes type, using a tensor order parameter, is described in [33] . 

We find that the global distortion of the orientational field in

he nematic-rich phase, induced by strong interfacial anchoring,

as a profound effect on the morphology and coarsening rate,

ust as it happens in 2D. Specifically, the steady-state morphology

f the system can be largely controlled by the type of interfacial

nchoring and the coarsening rate is significantly affected by

nchoring-induced long-range orientational distortion. However,

e observe substantial differences between the three-dimensional

nd two-dimensional coarsening dynamics. In particular, we

dentify a remarkable, new 3-stage late coarsening process with

arkedly different coarsening rates in the three-dimensional

icontinuous phase separation with homeotropic anchoring ( n

erpendicular to the surface), unseen in the two-dimensional

ystem. We also obtain a notable minimal surface (a Schwarz
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 Surface) for one instance of 3D phase separation with planar

nchoring conditions. 

The rest of the paper is organized as follows. In Section 2 we

rovide a description of the phase field model and the numerical

ethodology employed is described in Section 3 . A summary of

ur numerical results is given in Section 4 and some concluding

emarks are given in Section 5 . Finally, data of an accuracy and

onvergence test of the numerical method are provided in the

ppendix. 

. Mathematical model 

We focus on a system consisting of a conserved mixture of

 nematic liquid crystal and an isotropic fluid, which under-

oes phase separation in three dimensional space. The model is

he same as that used in [27] except that here our domain is

hree-dimensional. The system can be described with an order

arameter φ related to the species concentration ( (1 + φ) /2 rep-

esents the nematic liquid crystal concentration and (1 − φ) / 2 the

sotropic fluid concentration) and with the director field n , which

s a measure of the mean molecular orientation in the nematic

iquid crystal phase. The pure, bulk phases are identified with

= 1 and φ = −1 for the nematic liquid crystal and the isotropic

uid, respectively. A narrow neighborhood of the level set φ = 0

rovides a diffuse interface between the two species. 

The free energy density of the system has three parts: a mixing

nergy f mix , a bulk, orientational distortion energy of the nematic,

 bulk , and the anchoring energy related to the preferential orienta-

ion of the liquid crystal molecules at interfaces, f anch [37] : 

f (φ, n , ∇φ, ∇n ) = f mix + 

1 + φ

2 

f bulk + f anch , (1) 

here 

f mix = 

λ

2 

[
|∇φ| 2 + 

(φ2 − 1) 2 

2 ε 2 

]
, (2) 

f bulk = 

K 

2 

[
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

]
, (3) 

f anch = 

⎧ ⎨ 

⎩ 

A 

2 

(n · ∇φ) 2 (planar anchoring) , 

A 

2 

[| n | 2 |∇φ| 2 − (n · ∇φ) 2 
]

(homeotropic anchoring). 

(4)

he parameter λ in (2) is the strength of the mixing energy

ensity and ε is the capillary width. Eq. (3) is the regularized

rank energy in which the elastic constants for splay, twist, and

end are all equal to K and (| n | − 1) 2 / (2 δ2 ) is a penalty term to

pproximately enforce the constraint | n | = 1 . Finally, in (4) , A is

he volumetric anchoring strength, which is related to the surface

nchoring strength W by εW = (2 
√ 

2 / 3) A [37] . Some bounds on

he parameter A are necessary for thermodynamic stability [16] .

he specific choice of f anch for planar (homeotropic) anchoring in

4) favors alignment of the director field n tangential (normal) to

ematic-isotropic fluid interfaces. 

We consider a domain � = [0 , L ] × [0 , L ] × [0 , L ] . The total free

nergy is 

 = 

∫ 
�

f ( φ, n , ∇φ, ∇n ) dx. (5) 

he evolution of the order parameter is governed by the Cahn–

illiard equation [10,11] 

∂φ

∂t 
= ∇ · [ γ∇μ] , (6) 

here γ is the mobility, which in this work is taken to be

onstant, and 

= 

δF 

δφ
. (7) 
sing (2) –(4) we obtain 

= λ

[
−∇ 

2 φ + 

φ(φ2 − 1) 

ε 2 

]

+ 

K 

4 

[
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

]
+ μanch , (8) 

here 

anch 

 

{
−A ∇ · [ (n · ∇φ) n ] (planar anchoring) , 

−A ∇ ·
[| n | 2 ∇φ − (n · ∇φ) n 

]
(homeotropic anchoring) . 

(9) 

We evolve the director field using the simplified Leslie-Ericksen

heory of de Gennes and Prost [17] , first used by Yue et al. [37] ,

nd in the two-dimensional work of Mata et al. [27] , 

∂n 

∂t 
= −τ

δF 

δn 

, 

here τ is Leslie twist viscosity, which can be physically mea-

ured [17] . Then the coupled system of equations governing the

hase separation of the mixture is 

1 

γ

∂φ

∂t 
= ∇ 

2 

[
λ

(
−∇ 

2 φ + 

φ3 − φ

ε 2 

)

+ 

K 

4 

(
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

)
+ μanch 

]
, (10) 

1 

τ

∂n 

∂t 
= K 

[
∇ ·

(
1 + φ

2 

∇n 

)
− 1 + φ

2 

(| n | 2 − 1) n 

δ2 

]
− g anch , (11) 

here μanch is given by (9) and 

 anch 

 

{
A (n · ∇ φ) ∇ φ (planar anchoring) , 

A 

[ |∇φ| 2 n − (n · ∇φ) ∇φ
]

(homeotropic anchoring) . 
(12) 

e non-dimensionalize the system (9) –(12) by selecting charac-

eristic time, length, and energy scales t c , L c , and E c , respectively.

hen, the free energy parameters K, A , and λ are made dimen-

ionless with E c / L c , γ with L 5 c / (E c t c ) , and τ with L 3 c / (E c t c ) . We

hoose the characteristic length scale L c = L/ 2 , i.e. one half the

omain size. Denoting by K c and τ c characteristic values of the

rank elastic constant and the Leslie twist viscosity, respectively,

e define characteristic energy and time scales by E c = aK c L c ,

 c = bL 3 c / (E c τc ) , respectively, where a and b are dimensionless con-

tants. Following [27,37] , we take a = 1 / (6 . 708 × 10 −3 ) and b = 1 .

e use the same letters to denote the dimensionless variables and

arameters, so (9) –(12) can be considered to be in dimensionless

orm. We consider here only periodic boundary conditions . 

. Numerical methodology 

We employ the same discretization as in [27] , except that here

e write the Cahn–Hilliard equation as a second order system to

void a direct discretization of the fourth order, biharmonic opera-

or and to use an efficient linear multigrid method [12,13] . The spa-

ial discretization is second order with standard finite differences

nd periodic boundary conditions. The time integration is a lin-

arly implicit scheme, as the one considered in [1,12] , in which the

mplicit part is discretized using a second-order backward differ-

nce formula (BDF) and the explicit part corresponds to a second

rder Adams-Bashforth method. The scheme can be written as 

3 
2 
φn +1 

1 
− 2 φn 

1 + 

1 
2 
φn −1 

1 


t 
= γ λ∇ 

2 φn +1 
2 + 2 F 

n − F 

n −1 , (13) 

n +1 
2 = 

α

ε 2 
φn +1 

1 − ∇ 

2 φn +1 
1 , (14) 
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Fig. 1. Bicontinuous coarsening with planar anchoring: phase field flooded contour plot (left) and isosurfaces φ = 0 with a sampling of the director field (right). (a)–(b) 

t = 600 , (c)–(d) t = 9300 , and (e)–(f) t = 24 , 0 0 0 (near steady state). Nematic phase in red (light) and isotropic fluid phase in blue (dark). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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e k 
3 
2 

n 

n +1 − 2 n 

n + 

1 
2 

n 

n −1 


t 
= τKβ∇ 

2 n 

n +1 + 2 G n − G n −1 , (15)

where α and β are numerical parameters to improve numerical

stability (in this work we take α = 2 and β = 1 ), and F 

k and G k ,
for k = n − 1 , n, are defined by the functions 

F = γ∇ 

2 

[
λ

ε 2 

(
φ3 

1 − φ1 

)
+ 

K 

4 

(
∇n : (∇n ) T + 

(| n | 2 − 1) 2 

2 δ2 

)
+ μanch 

]

−γ λ
α

ε 2 

(
α

ε 2 
φ1 − φ2 

)
, (16)

 = τK 

[
∇ ·

(
1 + φ1 

2 

∇n 

)
− 1 + φ1 

2 

(| n | 2 − 1) n 

δ2 

]

− τKβ∇ 

2 n − τg anch , (17)

valuated at t for k = n − 1 , n . 
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Fig. 2. Schwarz P Surface. Rotated isosurface φ = 0 , (a) and (b), for bicontinuous 

coarsening with planar anchoring at t = 24 , 0 0 0 (near steady state). 
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.1. Accuracy and convergence test 

We performed an accuracy and convergence test of our numer-

cal approach by using the techniques of manufactured solutions.

hat is, starting with smooth periodic functions, φe and n e (with

 n e | = 1 ), we added a forcing term to Eqs. (10) and (11) so that ( φe ,

 e ) becomes an exact solution of the modified system. Using this

xact solution, the error of the numerical approximation and the

onvergence rate was evaluated. The test confirmed convergence

t a second order rate for both the phase field and the director.

he details are provided in the Appendix. 

. Numerical results 

We consider two cases of spinodal decomposition, one giving

ise to bicontinuous structures and one in which the isotropic

uid component is nucleated in a nematic continuous phase. 
.1. Parameters 

The dimensionless model parameters are chosen follow-

ng [27,37] . Specifically, we take λ = 1 . 342 × 10 −2 , γ = 4 × 10 −5 ,

= 6 . 25 × 10 −2 , τ = 1 , K = A = 6 . 708 × 10 −3 , and ε = 4 / 256 .

sing that characteristic values of the elastic constant are

 (10 −11 ) N [17] and that surface anchoring strength is in the

ange 10 −3 –10 −6 J/m 

2 we obtain a characteristic length in the

ange of 10 −5 –10 −8 m and the ratio of elastic to surface anchoring

alls within bounds of known nematics, as discussed in [27] . The

orresponding mesh size of (2/256) L c falls in the range 1–100 nm. 

The system of Eqs. (9) –(12) is solved on the cube [0, 2] × [0,

] × [0, 2], with periodic boundary conditions, and using a uni-

orm grid of mesh size h = 2 / 256 . The time step is 
t = 0 . 1 and

emains constant throughout all the simulations. To limit the

erms (1 + φ) / 2 from exceeding 1 due to numerical overshoot, we

pproximate this term by (1 + sφ) / 2 , where s = 0 . 90 . 

The free energy decreased monotonically per time step and

he mean of φ was preserved accurately (with less than a 0.038

ariation, at the end of 2.4 × 10 5 time steps) for all the simulations

eported here. 

.2. Bicontinuous coarsening 

We consider an initial state defined by a small perturbation of

he uniform, symmetric mixture 

0 (x i , y j , z k ) = 0 + ξi jk , (18) 

here ξ ijk is a uniformly distributed random number in (−ε , ε )
or each grid index ( i, j, k ). The parameter ε is the same as that in

he mixing energy (2) , i.e., the dimensionless capillary length. The

nitial director field is given by 

 0 (x i , y j , z k ) = 

(1 , 1 , ω i jk ) √ 

2 + ω 

2 
i jk 

, (19) 

here ω ijk is a uniformly distributed random number in

(−0 . 05 , 0 . 05) for each grid index ( i, j, k ). We computed the

olution up to t = 24 , 0 0 0 , when it is approaching steady state. For

uch a long time computation this required taking an enormous

umber of time steps equal to 2.4 × 10 5 . 

We consider first planar anchoring conditions. After a fast,

 = O (ε) , transient domains rich in each of the mixture com-

onents begin to form and coarsen. This coarsening process is

llustrated in Fig. 1 , which shows snapshots of the phase field and

he corresponding interfacial surface ( φ = 0 ) between nematic and

sotropic fluid domains, at three well-separated times. Also shown

n Fig. 1 (right) is a subsample of the director field. When the

omain size is much larger than K / W ≈ ε, there is strong anchoring

nd the director field becomes tangential to the interfacial surface.

his strong anchoring induces a long range orientational distortion

n the director field and creates a marked anisotropy in the system.

his has a profound effect in the domain morphology selection, as

ointed out by Mata et al. [27] for the two-dimensional system. In

D, the mixture undergoes a more spectacular phase separation,

s Fig. 1 shows; instead of the evolution toward lamellae observed

n 2D [27] for either type of anchoring, the three-dimensional

ystem passes from domains with a gyroid-like surface [(c),(d)] to

 structure whose isosurface has one pair of holes along each axis

(e)(f)]. At steady state, t ≈ 24, 0 0 0, this domain interface seems to

orrespond to a notable minimal surface, the Schwarz P Surface,

s Fig. 2 confirms. 

We now look at the case of homeotropic anchoring , that is,

hen the favored orientation of the director field at a nematic-

sotropic fluid interface (for domains much larger that K / W ) is

ormal to that surface. The initial conditions are the same as
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Fig. 3. Bicontinuous coarsening with homeotropic anchoring: phase field flooded contour plot (left) and φ = 0 isosurfaces with a sampling of the director field (right). (a)–(b) 

t = 600 , (c)–(d) t = 9300 , and (e)–(f) t = 24 , 0 0 0 . Nematic phase in red (light) and isotropic fluid phase in blue (dark). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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before. Fig. 3 depicts the coarsening dynamics in the presence

of homeotropic anchoring. The plots correspond to the same

snapshots ( t = 60 0, 930 0, 24,0 0 0) as those of the planar anchoring

case ( Fig. 1 ). There is a striking difference in the morphology of

the coarsening domains for the two types of anchoring. The pref-

erential normal orientation of the director field at the coarsening

domain interfaces gives rise to the selection of vertical lamellae,

just as in the two-dimensional case [27] . 
The marked differences in morphology selection of the coars-

ning dynamics is highlighted in Fig. 4 , which shows a comparison

he phase separation for the two cases of anchoring with a spin-

dal decomposition of an isotropic mixture (modeled with the

tandard Cahn–Hilliard equation, i.e. K = A = 0 ) at a late stage

f the coarsening. The same initial conditions were used for the

hree cases. The emergence of vertical lamellae is evident in the

sotropic, plain Cahn–Hilliard case but the orientation of the φ = 0



R.L. Nós et al. / Journal of Non-Newtonian Fluid Mechanics 248 (2017) 62–73 67 

Fig. 4. Comparison at t = 15 , 0 0 0 of the phase field (left) and the φ = 0 isosurface (right). (a) and (b) isotropic fluid mixture (Cahn–Hilliard), (c) and (d) nematic-isotropic 

fluid mixture with planar anchoring, and (e) and (f) nematic-isotropic fluid mixture homeotropic anchoring. Same initial condition for all cases. Nematic phase in red (light) 

and isotropic fluid phase in blue (dark). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

i  
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4

p
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p
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d  
sosurfaces is quite different from the case with homeotropic

nchoring. 

.3. Nucleation of an isotropic fluid in a liquid crystal continuous 

hase 

We now consider the case of asymmetric phase separation

here the dominant component is the nematic liquid crystal
hase. The initial condition for the phase field is 

0 (x i , y j , z k ) = 0 . 5 + ξi jk , (20) 

here ξ ijk is a uniformly distributed random number in (−ε , ε )
or each grid index ( i, j, k ). We take the initial director field as in

19) . For this type of spinodal decomposition, small droplets of the

sotropic fluid phase will nucleate in a liquid crystalline continuous

hase and an (inverted nematic) emulsion will form [30] . Colloidal

ispersions and emulsions of this type have attracted considerable
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Fig. 5. Nucleation coarsening with homeotropic anchoring: phase field flooded contour plot (left) and φ = 0 isosurfaces with a sampling of the director field (right). (a)–(b) 

t = 900 , (c)–(d) t = 7100 , and (e)–(f) t = 18,000. Nematic phase in red (light) and isotropic phase in blue (dark). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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attention because the orientational elasticity of the host fluid and

the potential formation of topological defects can enable a fine de-

gree of control of colloidal ordering and its stability [25,30,32,34] .

Here, we consider only homeotropic anchoring , as this is the

prevalent, preferential orientation of the director field at the

experimentally observed surfaces of the nucleated droplets [25] . 

We present three phase field snapshots, the corresponding iso-

surfaces, and a sampling of the director field in Fig. 5 . Once the nu-

cleated droplets achieve a diameter significantly larger than the ex-
rapolation length K / W , which for our choice of parameters is ap-

roximately equal to the capillary length ε, the director field pre-

erves a normal orientation at the surface of the droplets. It should

e noted that this simple, phenomenological model do not support

he ( ± 1/2) topological defects that are believed to significantly

imit coalescence and yield stable configurations of linear (chain)

roplet aggregates [25] . Instead, the nucleated droplets eventually

erge to form a single drop at steady state, as Fig. 5 (e), (f) shows.
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Fig. 6. Logarithm of the mixing energy E mix versus log ( t ) for bicontinuous coarsening (a) planar anchoring and (b) homeotropic anchoring. The constant α is the growth rate 

obtained by linear fitting of (log ( t ), log ( E mix )) in the regions marked with a straight line segment. 
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Fig. 7. Isosurfaces and a sample of the director field for bicontinuous coarsening with homeotropic anchoring at the three identified coarsening regimes (a) t = 600 ( α = 

0 . 3204 stage), (b) t = 4700 ( α = 0 . 1886 stage), and (c) t = 13 , 800 ( α = 0 . 6007 stage). 

Fig. 8. Logarithm of the mixing energy E mix versus log ( t ) for nucleation coarsening with homeotropic anchoring. The constant α is the growth rate obtained by linear fitting 

of (log ( t ), log ( E mix )). 
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4.4. Coarsening rate 

The coarsening rate of phase domains in spinodal decompo-

sition is usually estimated by looking at the time growth of the

first moment of the structure function. This statistical approach

requires many realizations of each type of spinodal decomposition

to get accurate estimates of a characteristic length scale L ( t ) of the

phase domains. Unfortunately, this is computationally prohibitive

for our current three dimensional system. We opt here to estimate

the asymptotic coarsening rate by using the rate of decay of the

mixing energy [15,24] . The argument is that, in the zero capillary

length limit ε → 0, 

E mix = 

1 

V 

∫ 
�

λ

2 

[
|∇φ| 2 + 

(φ2 − 1) 2 

2 ε 2 

]
dx, (21)

where V is the volume of �, scales like 1/ L ( t ) [24] . 

The assumption is that L ( t ) grows like t α , and we write L ( t ) ∼ t α .

Scaling arguments show that α = 1 / 3 for the constant diffusion

Cahn–Hilliard equation with a Ginzburg-Landau free energy [6] .

The two-dimensional study of Mata et al. [27] indicates that the
rowth rate α is affected by the anchoring conditions at the do-

ain boundaries of a nematic liquid crystal-isotropic fluid mixture.

Fig. 6 shows the striking effect of anchoring in the decay

ate of the log ( E mix ), and consequently on the coarsening rate

, for bicontinuous (symmetric) phase separation. With planar

nchoring, there is a good single fit for a coarsening rate α
hich is clearly smaller than that of an isotropic binary mixture

phase separation governed by the Cahn–Hilliard equation). The

rientational distortion in the nematic-rich phase, induced by the

lanar anchoring, slows down the coarsening of the separating

ixture. This is consistent with what has been reported in the

wo-dimensional case [27] . However, the estimated exponent rate

ith planar anchoring in 3D ( α = 0 . 2839 ) is appreciably larger

han the corresponding in 2D ( α = 0 . 2317 ). But the more dramatic

ffects of the orientational distortion in the nematic phase on

he coarsening dynamics occur with homeotropic anchoring, as

ig. 6 (b) indicates. There are three late coarsening stages with

arkedly different rates. In the first one, the domain coarsen at a

ate ( α = 0 . 3204 ) commensurate with that of an isotropic, binary

ixture. Then, after larger domains with highly curved boundaries
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Fig. 9. Isosurfaces ( φ = 0 ) and composite grid (a) planar anchoring at t = 4500 , (b) homeotropic anchoring at t = 5500 , and (c) nucleation with homeotropic anchoring at 

t = 3500 . 
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ave formed, there is a pronounced slow down in the coarsening

 α = 0 . 1886 ), which persists for a significant t span, approximately

rom t = 2980 to t = 8100 . This is then followed by an astonishing

cceleration of the coarsening dynamics ( α = 0 . 6007 ) toward

 steady state. While in 2D a larger than 1/3 coarsening rate

 α = 0 . 4006 ) was also estimated for homeotropic anchoring in a

ymmetric mixture [27] , the coarsening dynamics of the three-

imensional system is clearly different from its 2D counterpart. 

To learn more about the three distinctive coarsening stages pro-

uced with homeotropic anchoring we present in Fig. 7 isosurface

lots and a sample of the director field for representative times in

ach of the three stages. The coarsening regime with α = 0 . 3204 ,

ig. 7 (a), corresponds to the early stages of domain formation. The

omain size has not reached the critical (extrapolation) length

o fix the anchoring. As a result, the orientational field is largely

sotropic and hence the coarsening rate is close to that of a binary

ixture of isotropic fluids. Once the nematic-rich domains reach a

ritical size, there is strong anchoring which produces long range

istortions of the orientational field, as Fig. 7 (b) illustrates. The

arge elastic energy associated with these distortions leads to a

ignificant slow-down of the domain coarsening. As the isosurfaces

traighten up, Fig. 7 (c), and the orientational field becomes largely

niform, a fast dynamics takes places leading to a lamellar steady

tate [ Fig. 3 (e)–(f)]. 

h  

o  
Finally, Fig. 8 shows the log ( E mix ) for nucleation coarsening

f an isotropic fluid in a nematic liquid crystal continuous phase,

ith homeotropic anchoring. The initial conditions and param-

ters are as described in Section 4.3 . In contrast with the late

oarsening behavior of bicontinuous phase separation with the

ame anchoring [ Fig. 6 (b)], the log ( E mix ) is well approximated by a

inear fit, despite the presence of two small amplitude bumps near

nd. The corresponding coarsening rate ( α = 0 . 3423 ) is higher

ut very close to the isotropic (Cahn–Hilliard) coarsening rate.

his contrasting coarsening behavior underlines the relevance of

nchoring and free surface geometry. 

.5. Computational cost 

Wall anchoring could have profound effects on the phase

eparation but was not considered here in order to focus the

omputational resources on free-surface anchoring; the computa-

ional cost to solve for steady or quasi-steady state is enormous.

ach case took several months of CPU time of a state-of-the-art

omputer. We investigated the use of adaptive mesh refinements

AMR) [12,13] as a means to reduce the overall computational

ost per simulation. Unfortunately, the interfaces of the nematic

iquid crystal and isotropic fluid domains occupy great part of

he interior of the computational domain during most of the

uge simulation time span, as Fig. 9 shows. This produces a high

verhead due to large number of interpolations needed for the
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Table 1 

Numerical error and convergence ratio at t = 10 for resolution 
t = h = 1 /n . 

n Variable Error Ratio 

32 φ ‖ φ − φe ‖ 2 = 2 . 269320 0 08828050 × 10 −2 

n x ‖ n x − n x e ‖ 2 = 1 . 64 9338034 918546 × 10 −3 

n y ‖ n y − n y e ‖ 2 = 1 . 038634062541942 × 10 −2 

n z ‖ n z − n z e ‖ 2 = 1 . 078656325408673 × 10 −2 

64 φ ‖ φ − φe ‖ 2 = 6 . 059074243078967 × 10 −3 3.75 

n x ‖ n x − n x e ‖ 2 = 5 . 154721285378072 × 10 −4 3.20 

n y ‖ n y − n y e ‖ 2 = 2 . 784391310165071 × 10 −3 3.73 

n z ‖ n z − n z e ‖ 2 = 2 . 659065270324107 × 10 −3 4.06 

128 φ ‖ φ − φe ‖ 2 = 1 . 545196350195382 × 10 −3 3.92 

n x ‖ n x − n x e ‖ 2 = 1 . 400611891955155 × 10 −4 3.68 

n y ‖ n y − n y e ‖ 2 = 7 . 133143091353612 × 10 −4 3.90 

n z ‖ n z − n z e ‖ 2 = 6 . 613351900551691 × 10 −4 4.02 

256 φ ‖ φ − φe ‖ 2 = 3 . 885536109260787 × 10 −4 3.98 

n x ‖ n x − n x e ‖ 2 = 3 . 607710884265911 × 10 −5 3.88 

n y ‖ n y − n y e ‖ 2 = 1 . 802250166619108 × 10 −4 3.96 

n z ‖ n z − n z e ‖ 2 = 1 . 652681029440823 × 10 −4 4.00 
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multi-level multi-grid linear solver and yields the AMR approach

ineffective for this particular setting. 

5. Concluding remarks 

We considered a conserved phase field model to investigate

numerically the three-dimensional coarsening dynamics of a ne-

matic liquid crystal-isotropic fluid mixture. The model is a coupled

system for a generalized Cahn–Hilliard equation for the phase

order parameter φ, related to the volume fraction of the nematic

component, and a simplified de Gennes–Prost evolution equation

for the director field n , which describes the mean orientation of

the rigid rod-like, liquid crystal molecules. Despite the evident

limitations of this model (it is phenomenological, it describes the

mean molecular orientation in terms of a vector field rather than

using a second order, orientational tensor, the condition ‖ n ‖ = 1

is modified, it does not capture disclinations, etc.), our study high-

lights the strong effects that anchoring of the nematic component

on free surfaces can have on the coarsening rate and the steady-

state morphology of phase separating mixture. It also shows that

there are significant differences between the three-dimensional

and two-dimensional coarsening processes. In particular, the study

identifies a remarkable, new 3-stage coarsening process with

markedly different coarsening rates in the three-dimensional bi-

continuous phase separation with homeotropic anchoring, unseen

in the two-dimensional system. 
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Appendix A. Accuracy and convergence test 

For this test we let 

φe ( t, x ) = sin 

3 
( 2 π( x + y + z + t ) ) , (22)

n x e ( t, x ) = 0 , (23)

n y e ( t, x ) = cos ( 2 π( x + y + z + t ) ) , (24)

n z ( t, x ) = sin ( 2 π( x + y + z + t ) ) , (25)
e 
nd the domain � be the unit cube. We modify (10) and (11) so

hat (22) –(25) becomes an exact solution in � with periodic

oundary conditions. We solve the modified system for 0 < t ≤ 10,

aking α = 2 , β = 1 , ε = 0 . 125 , γ = 0 . 0 0 0 01 , τ = 0 . 5 , λ = 0 . 1 ,

= 0 . 5 , and K = A = 0 . 006708 . 

The numerical error (in the Euclidean norm) and the conver-

ence ratio are presented in Table 1 for resolutions 
t = h = 1 /n,

ith n = 32 , 64, 128, and 256. The observed convergence ratios

onfirm the expected second order accuracy (for smooth solutions)

f the method for both the phase field φ and the director n . 
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