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INTERACTION BETWEEN CROWDING AND GROWTH IN

TUMOURS WITH STEM CELLS: CONCEPTUAL MATHEMATICAL

MODELLING

Luca Meacci1,* and Mario Primicerio2

Abstract. This research paper proposes and discusses a conceptual modelling of both growth of
tumours in presence of immortal multipotent cancer stem cells (CSCs) and of several lineages of dif-
ferentiated tumour cells (CCs). The replication of CSCs is assumed symmetric or asymmetric with a
prescribed mean ratio and mitosis and apoptosis are taken into account for the CCs aging. Replication
can be hindered by the local crowding of the cells in the vicinity of the mother cell. The model is imple-
mented in the framework of 3D cellular automata (CA) whose dynamics is governed by stochastic rules.
Some simulations are displayed showing the growth of a tumour and the fractions of different lineages
and age classes of CCs. Then, an approach that considers the same dynamics of aging, replication, and
apoptosis, but with the aim to study the time evolution of the fractions of the different lineages and
age classes of cells averaged over the total volume is presented. The dynamics is governed by a system
of ordinary differential equations (ODEs), hence by deterministic rules. Numerical simulations of the
solution of this system show qualitative similarity with the CA results, although the crowding effect is
no longer a local effect, but also averaged over the total volume. The Appendix provides the proof of
the mathematical well-posedness of this model in a general framework.
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1. Introduction

The growth of tumours in presence of stem cells has been the object of an increasing number of papers on
theoretical and experimental research (see e.g. [2, 8–10, 21, 22, 27, 32, 34, 35, 42]).

The mathematical modeling of such a phenomenon frequently uses methods of population dynamics. The
basic idea consists in studying the evolution and mutual interactions of two sub-populations of malignant cells,
namely cancer stem cells (CSCs) and differentiated cancer cells (CCs). The former are assumed to be immortal
and capable of proliferating indefinitely; their mitosis can be asymmetric (i.e., producing one CSC and one
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1 Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Av. Trab. São Carlense 400, São Carlos
(SP), 13566-590 Brazil.
2 Dipartimento di Matematica “U. Dini”, Università degli Studi di Firenze, Viale Morgagni, 67/a - 50134 Firenze (FI), Italy.

* Corresponding author: luca.meacci@gmail.com

© The authors. Published by EDP Sciences, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/mmnp/2023011
https://www.mmnp-journal.org/
https://orcid.org/0000-0001-9341-8593
mailto:luca.meacci@gmail.com
https://creativecommons.org/licenses/by/4.0


2 L. MEACCI AND M. PRIMICERIO

CC) or symmetric (i.e., producing two cells of the same type, either CSCs, or CCs).1 Differentiated cells CCs
can belong to different lineages, in which the usual process of age progression, replication, and apoptosis takes
place. The replication of CCs is always symmetric, i.e., it produces two newborn CCs. There is an extensive
bibliography in this area ([3, 4, 13, 15, 16, 28, 29, 40, 41, 43, 44] and the references quoted therein).

In [12] it has been suggested that an important role in the replication of cells might be played by the local
“crowding” of cells. From a mathematical point of view, it corresponds to assuming the proliferation rate of
each cell may depend on its position, since it can be hindered by the presence of other cells in its vicinity. This
fact has been incorporated in different classes of models, namely (i) the classified as “agent-based” ones [1]
i.e., considering the evolution of each cell, using computer simulations and/or cellular automata (CA) methods
([17, 23–25, 30, 31, 33, 38], and the reviews [6, 26, 36]), (ii) those that introduce partial differential equations
and integral terms to take into account the space-dependence of the cellular dynamics [7, 14, 19, 20, 38], and (iii)
models that are “mean field approximations” of the dynamics of individual cells, taking the averaged fraction
of each sub-population as unknown and modifying the compartmental schemes of the population dynamics
multiplying the proliferation rate by a monotonic function of the fraction of cells and decreasing to zero when
all available space is filled by other cells [5, 24, 25].

In general, the effect of aging was not taken into account in the cited literature (although in some individual
based models, e.g. [12], the replication rate is assumed to decrease after every mitosis) and the possibility of
multiple lineages of differentiated cells was neglected. Moreover, the CA simulations are always two-dimensional.

The introduction of “crowding” effect enables descriptions of the tumour growth paradox, which consists of
an accelerated tumour growth as a consequence of cytotoxic treatment [12, 18, 45, 46].

Section 2 introduces a 3D model with cellular automata whose evolution is governed by stochastic rules.
Several lineages of CCs can be present and each cell is characterized by a different degree of maturity (newborn,
juvenile, adult, and senescent), hence by different probabilities for dormancy, aging, replication, and apoptosis.2

The crowding effect is also taken into account. In a generalized version of the model, all probabilities can be
supposed to be space-dependent and variable in time; also the case of a proliferation rate decreasing at each
cycle (see [13]) could be taken into account. Section 2.1 discusses models with only one lineage of differentiated
cancer cells and Section 2.2 addresses some simulations that evidence the tumour growth paradox. Section 2.3
focuses on different lineages and some simulations, also considering the case of a specific treatment on one
lineage. The model is conceptual; the values of the parameters are chosen in a speculative way and thus the
numerical simulation does not provide experimental-based results, but a correct qualitative insight in this
complex phenomenon. In particular, the results highlight the tumour paradox, offering suggestions towards
optimizing the strategy of cytotoxic treatment.

Section 3 presents a deterministic model that describes the growth of the tumour in terms of total number
of cells of each type and lineage in the domain under consideration. The age distribution of the CCs is assumed
continuous; consequently, its evolution is governed by a first-order partial differential equation (PDE) (Sect. 3.1).
The crowding effect is no longer considered a local effect but it is averaged over the whole region in the typical
spirit of mean field approximations. The mathematical well-posedness of the model is proved in the Appendix A.
Section 3.2 provides some numerical results of the model after its reduction to a system of ordinary differential
equations (ODEs), as usual in compartmental models. Global information on the growth of the tumour was
obtained, confirming the tumour growth paradox. Section 3.3 presents a short comparison between CA models
and models based on differential equations.

Finally, Section 4 is devoted to conclusions.

1For simplicity, in the sequel, we confine to the case in which symmetric mitosis produces two new CSC (see [17]). However, the
model can be easily adapted to cover both types of symmetric mitosis.

2In the following the terms aging, dormancy, replication, and apoptosis denote, respectively, the progressive change of the
physiological mechanisms in the cell cycle, the possibility of the cell cycles being temporarily interrupted and the cell entering a
quiescent state, the conclusion of the cycle leading to mitosis, and the programmed death of the cell.
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2. Cellular automata modelling

2.1. The basic model

To illustrate the model, we first assume to neglect the lineages, i.e., we consider the case in which there exists
only one lineage of CCs.

Let us suppose the cells live in a 50 × 50 × 50 cubic lattice. At each time step, each site in the lattice can
be either vacant (white), or occupied by a CSC (black), or by a CC, which may be newborn, juvenile, adult, or
senescent, denoted with blue, green, yellow and red colors, respectively.

Starting from a given time tk, the following rules are applied towards updating the system:

1. Each CC may undergo apoptosis in the following time interval with probability µ1, µ2, µ3, µ4 (where, here
and henceforth, indexes 1, 2, 3, and 4 refer to newborn, juvenile, adult, and senescent cells, respectively).
The corresponding site becomes vacant, illustrated by white color.

2. Each cell may undergo dormancy with probability δ in case of CSC, or δ1, δ2, δ3, δ4 for the CCs (according
to its age class). The cell remains in the same state (i.e., it does not change color) and does not replicate
in the time step (tk, tk+1).

3. The probability of replication of each surviving and nondormant cell is equal to ρ in case of CSC, or
ρ1, ρ2, ρ3, ρ4 in case of CCs (according to its age class) multiplied by a crowding factor given by the
fraction θ of the vacant sites3 in a neighborhood of the mother cell (see Rems. 2.2 and 2.3).

4. The mitosis of a CC is always symmetric and modelled as follows: the site of the mother cell and one
of the vacant sites of the neighbourhood randomly chosen (with a uniform distribution) become pale
blue. In the case of a CSC, a constant d ∈ [0, 1] can be defined and provides the ratio of the asymmetric
mitosis (producing one CSC and one CC). Therefore, a daughter CSC appears in its neighbourhood with
probability (1− d). Otherwise, the new cell is a pale blue CC.

5. Each surviving and nondormant CC that did not replicate may change its state (from newborn to juvenile,
form juvenile to adult, from adult to senescent) with probabilities p1, p2, p3.

Remark 2.1. The model does not include the mechanism of de-differentiation i.e., the effect that a CC cell
can gain CSC behavior. This process was not incorporated in our simulations; however, such an effect might
increase the growth paradox. This effect and the occurrence of a “differentiated symmetric mitosis” (i.e., a CSC
originating two CCs) will be considered in future studies.

Remark 2.2. In the simplest case, the neighborhood of the would-be mother cell in which the newborn cell
can be located is a cubic shell of 3 × 3 × 3 lattice sites centered in the site of the replicating cell. A possible
generalization might consist in considering the 5× 5× 5 adjacent cubic shell when no vacant sites are present
in the 3 × 3 × 3 shell, and so on. In this case, in each step the probability of replication is reduced, because
energy is spent in the displacement of the nearest cells. In the sequel, we will use the 3× 3× 3 shell.

Remark 2.3. Regarding the definition of the crowding effect, instead of multiplying ρ by fraction θ of the
vacant sites, it can be multiplied by a chosen function G(θ) belonging to [0, 1], with G(0) = 0 and G(1) = 1.

Remark 2.4. It is evident that a single simulation made through CA is not representative, due to the stochastic
character of the method. Therefore the plots of Figures 3–9 represent the average over 10 simulations. To evaluate
the order of variability, the Figures 3, 5, and 6 display the standard deviation around the average of the results.

Starting from a specific initial condition, the CA model runs through all positions of the lattice following a
geometric order (otherwise, a random order can be used; see Rem. 2.5).

For each unit of time and, based on the presence or absence of a certain type of cell and its state with respect
to the age progression, the algorithm decides on how to update the system. Figure 1 shows a flowchart that
implements the aforementioned hypotheses. The algorithm makes nondeterministic decisions, but responds to

3θ = νv/ν, being νv the number of the vacant sites in the chosen neighborhood and ν is the total number of sites in the
neighborhood.
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Figure 1. Flowchart of CA algorithm concerning the model for the tumour progression with
cancer stem cells and one lineage of cancer cells.

probabilities, thus having a certain degree of randomness. The running of a sufficient number of simulations
shows on average, the overall behaviour tends to a specific situation with respect to a certain parameter setup.
The usefulness of an approach based on cellular automata is its possibility of prescription of local processes and
interactions (on single cells) and study the collective behaviour of the system over time i.e., in our case, the
tumour progression.

By following the previous instructions, the model can predict and visualize the three-dimensional evolution
of tumour growth, retaining details of the characterization of each single cell with respect to type and age.

According to the panels in Figure 2, starting from a condition of a small central nucleus of 3 × 3 × 3
CSCs (see panel (a)), it is possible to study the evolution of the tumoral tissue during a certain time.
Panel (b) shows the visualization by age class after a certain time progression (t = 50) when the param-
eters setup is chosen as in Table 1. To simulate tests with different choices of the parameters, the reader
can refer to the Matlab code freely accessible in the GitHub repository https://github.com/LucaMeacci/
ConceptualCSCmathmodellingForCancers.

2.2. Tumour growth paradox

This conceptual model can perform simulations to illustrate the qualitative behaviour of the system. Indeed,
the choice of parameters according to only laboratory experiments would enable a quantitative validation of the
model.

Firstly, the tumour response will be evaluated against a hypothetical medical treatment. Therefore, let us
mimic the effect of the treatment by an increase of the mortality of the CCs; a parameter ξ is introduced and
the new mortality for each cell age class j is assumed to be ξ µj .

We also mention some premises. The time unit can be arbitrarily chosen as long as the parameters are
adjusted. Indeed, parameters µ, ρ, and p represent the probability a given event (apoptosis, mitosis, or age

https://github.com/LucaMeacci/ConceptualCSCmathmodellingForCancers
https://github.com/LucaMeacci/ConceptualCSCmathmodellingForCancers
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(a) (b)

Figure 2. Progression of the tumour tissue using the computational model of cellular automata.
The panel (a) shows the initial condition of a 3× 3× 3 CSCs nucleus in the center. The panel
(b) displays the prediction of tumour progression after a certain time (t = 50) by displaying
the respective age cell classes. The parameters setup can be found in Table 1. To run similar
simulations, a Matlab code is published in the public GitHub repository https://github.com/
LucaMeacci/ConceptualCSCmathmodellingForCancers.

Table 1. Setup of parameters for the CA simulations.

CSC Newborn CC Juvenile CC Adult CC Senescent CC

ρ = 1 ρ1 = 0.7 ρ2 = 0.9 ρ3 = 1.0 ρ4 = 0.5
− µ1 = 0.30 µ2 = 0.30 µ3 = 0.30 µ4 = 0.48
− p1 = 1 p2 = 1 p3 = 1 −

δ = 0 δ1 = 0 δ2 = 0 δ3 = 0 δ4 = 0
d = 0.8 − − − −

progression) occurs in the time unit chosen and depend on the choice of the time step. ρ = 1 was chosen so
that the time step corresponds to the average cycle duration of a CSC in absence of dormancy. In accordance
with the choice, we list the setup of parameters in Table 1 for the case of one lineage of CCs. The values of
dormancy (δ, δ1, δ2, δ3, δ4) that simply slow down the process are zero. In this case, no differentiation in lineages
is assumed.

27 CSCs were arranged in a cube in the lattice center as the initial condition for the study of the evolution
of the system with respect to mortality variation. Figure 3 displays the graphs of the fraction of tumour cells
(number of CSCs and CCs over all available spaces in the lattice under consideration) in the lattice, modifying
the mortality (starting at t = 0) by different values of the parameter ξ.

The results appear to be counter-intuitive at first glance. After certain time, the tumour volume turns out
to be greater as mortality increases. This occurrence means that a more aggressive treatment would not benefit
the patient. The phenomenon is called the “tumour growth paradox” because an increased mortality of the CCs
may cause a faster growth of the tumour. Nevertheless, the model helps to understand why this situation can
be expected under our assumptions. Let us consider the two cases with ξ = 1.0 and ξ = 1.5 and focus on the
evolution of CSCs and CCs for the age groups. Figure 4 displays the corresponding graphs.

CSCs are not affected by the increase in mortality; on the contrary, when ξ = 1.5, they are significantly
become more numerous than in the previous simulation. From the point of view of the tumour progression,

https://github.com/LucaMeacci/ConceptualCSCmathmodellingForCancers
https://github.com/LucaMeacci/ConceptualCSCmathmodellingForCancers
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Figure 3. Quantitative evolution of the fraction of tumoral cells (number of CSCs and CCs
over all the available spaces in the lattice) with respect to the mortality variation, according to
the CA model. At the starting time, 27 CSCs are placed in the lattice center. The parameters
setup is listed in Table 1. The values are given by the average over 10 simulations and the
standard deviation is displayed in the graphs.

(a) (b)

Figure 4. Quantitative evolution of the lattice fraction of CSCs and CCs divided into age
classes. The case (a) corresponds to a mortality value induced by ξ = 1.0, while the case (b)
results from ξ = 1.5. The simulation is the same of Figure 3.
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Figure 5. Quantitative evolution of the fraction of tumoral cells (number of CSCs and CCs
over all the available spaces in the lattice) with respect to the mortality variation, using the
CA model with a lattice random order of updating (instead of geometric sequential order). The
initial conditions and the setup of parameters are the same of the simulation of Figure 3. The
values are given by the average over 10 simulations and the standard deviation is displayed in
the graphs.

in this case, therefore the CSCs (more aggressive and able to reproduce) have more free space and freedom of
growth in comparison with ξ = 1.0. In a certain sense, when the mortality of the CCs is lower, they compete
with CSCs for space and resources, thus reducing their proliferation.

Remark 2.5. As stated in Section 2.1, the updating of the state of the lattice model at each time step is made
in sequential geometric order. In Figure 5 it is shown that using a different criterion (e.g., random order) for
the case simulated in Figure 3 the difference is negligible.

2.3. The case of several lineages of CCs

We can proceed with a further step forward. Although common characteristics and properties are usually
clustered into two types of cancerous cells, namely ordinary or stem, the fact that differentiated cancer cells CCs
belong to different lineages and their heterogeneity can play a significant role in the evolution of the tumour
must be taken into account in some cases.

Let m be the number of different lineages, meaning there exist m positive constants d1, d2, . . ., dm such
that dj represents the fraction of asymmetric mitosis, resulting in cells of the jth lineage. Since d =

∑
di, it

should be < 1. In the CA model, the replication of a CSC has probability 1− d of producing a new CSC and
a probability dj of producing a CC of the jth lineage. Such a feature enables the differentiation of parameters
on the basis of the lineage. As an example, a CC of a certain lineage may assume a different apoptosis behavior
or proliferation rate compared with a CC belonging to another lineage. Specifically, the following simulations
consider the generation of 3 lineages, each of them characterized by certain values of the parameters, as shown
in Table 2. Clearly, lineage 1 is the most aggressive of all lineages.
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Table 2. Update of the setup of parameters concerning CCs differentiation in cells lineages for
CA simulations. In the variables, the subscript stands for the age and the superscript stands
for the lineage.

Lineage 1 Lineage 2 Lineage 3

d1 = 0.2 d2 = 0.3 d3 = 0.3
ρ11 = 0.7 ρ21 = 0.6 ρ31 = 0.5
ρ12 = 0.9 ρ22 = 0.8 ρ32 = 0.7
ρ13 = 1.0 ρ23 = 0.9 ρ33 = 0.8
ρ14 = 0.5 ρ24 = 0.4 ρ34 = 0.3
µ1
1 = 0.30 µ2

1 = 0.33 µ3
1 = 0.33

µ1
2 = 0.30 µ2

2 = 0.33 µ3
2 = 0.33

µ1
3 = 0.30 µ2

3 = 0.33 µ3
3 = 0.33

µ1
4 = 0.48 µ2

4 = 0.50 µ3
4 = 0.50

Figure 6. Quantitative evolution of the fraction of tumoral cells (CSCs and CCs) according
to the CA model and the cell differentiation for different ξ. The initial condition is the same
shown in panel (a) in Figure 2 and the parameters setup is provided in Tables 1 and 2 for the
CSCs and for the 3 lineages of CCs, respectively. The values are given by the average over 10
simulations and the standard deviation is displayed in the graphs.

Each lineage may differ to some extent with respect to certain characteristics. From the model point of view,
such a possibility can be translated with a parameters setup, when the values significantly differ from one lineage
to another. We suppose to consider the previous configuration of the parameters for the CSCs as in Table 1
but, moreover, to differentiate by lineage CCs we set the other ones as in Table 2.

Also in this case with the generation of different lineages of CCs, if we mimic the cytotoxic treatment
modifying the mortality (starting at t = 0) by tuning the parameter ξ, we can observe the development of the
tumour growth paradox. Figure 6 shows the graphs of the fraction of CSCs and CCs in the lattice over time. At
t = 0, the simulation starts with a central nucleus of 3× 3× 3 CSCs and at the final time, the tumour volume
is clearly bigger when ξ = 1.5 in comparison with ξ = 1.0.
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Figure 7. Quantitative evolution of the fraction of tumoral cells (CSCs and CCs), with no
intervention and with removal of the CCs of lineage 1 at time t = 100. The initial condition is
the same illustrated in Figure 2 and the parameters setup is provided in Tables 1 and 2 for the
CSCs and for the 3 lineages of CCs, respectively.

The level of detail of the model allows us to intervene with specificity in order to simulate the strategies to
combat the disease. Analogously to the previous study, we can hypothesize on a model medical treatment to
reduce the cancer cells. The further assumption is to choose an intervention time for eliminating the CCs of a
specific lineage, i.e., number 1 in the subsequent simulations. The algorithm is instructed to completely remove
the CCs of the first lineage at time t = 100. Assuming to mimic in this way the treatment, we remark that no
further mortality modification will be applied during the simulation; therefore, ξ = 1.0. Figure 7 shows the time
evolution of the fraction of number of tumoral cells (CSCs and CCs) over the spaces available in the lattice with
and without this kind of intervention.

The sudden decrease in tumour volume is evident in the proximity of the intervention. Nonetheless, once
again, a nonintuitive trend appears, showing the removal of a greater number of CCs (of lineage 1) is unfavorable
for the progression of the disease.

We can analyze what happened at the level of age classes and lineages in the two cases. The respective
behaviours are plotted in Figure 8.

Once again, such a nonintuitive conclusion can be justified. Due to the particular evolutionary characteristics
of lineage 1, before the intervention time, the CCs of the first lineage turn out to be in the majority. Their
removal facilitates the proliferation of CSCs which, finding more space available, accelerates the global growth
of the tumour volume.

More complex scenarios can be explored, leading to similar conclusions. For instance, the apoptosis probability
can be reduced only within a certain time interval to model a temporarily limited treatment. Moreover, many
drugs used in oncology are mitotic inhibitors, e.g., they aim to reduce cellular reproduction. Maintaining the
same previous configuration and the setup in Table 2, we show corresponding examples of tumour growth
paradoxical behaviour. Panel (a) in Figure 9 displays a comparison of the spontaneous evolution of the tumour
with the application of a 50% increase in the mortality of all age stages of the cell lineage 1 in time interval
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(a) (b)

(c) (d)

Figure 8. Quantitative progression of the tumour (fraction of CSCs and CCs over the lattice
spaces) displayed according to the lineages (panel (a) without intervention and panel (b) con-
sidering t = 100 as removal time) and divided into age classes (panels (c) and (d) without and
with the treatment). The simulation is the same of Figure 7.

[100, 130]. On the other case, Panel (b) shows a simulation of the drug-induced mitotic inhibition decreasing
50% of the reproduction parameters for the entire set of cells of lineage 1 within time interval [60, 90].

Remark 2.6. The tumour heterogeneity is thoroughly documented as a pivotal factor in the fighting of cancer
[37]. The heterogeneous population of the cancer cells undergoes a continual evolution with different patterns
of treatment sensitivity. Our simulations showed an arbitrary differentiation of the treatment response for a
specific lineage.
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(a) (b)

Figure 9. Quantitative evolution of the fraction of the number of CSCs and CCs over the lattice
spaces. Treatments are simulated: cell lineage 1 assumes the mortality parameters increased
of 50% for t ∈ [100, 130] (in panel (a)) and reproduction parameters decreased of 50% for
t ∈ [60, 90] (in panel b)). We refer to the same initial condition and parameters setup described
in the caption of Figure 7 .

3. Modelling based on differential equations

This Section describes the growth of the tumour in terms of the total number of cells in the region under
consideration. Therefore, the space dependence of the fractions of both CSCs and CCs is not considered, but
we average such fractions over the entire region. Indeed, the approach will lead to a loss of the individual-based
description of the phenomenon displayed in Section 2.

3.1. From a PDE model to a compartmental system

Specifically, the number of the CSCs and of the M lineages of CCs was defined by U(t), V 1(t), V 2(t), . . .,
VM (t) in the region and the existence of numbers di (i = 1, 2, . . . ,M) was assumed such that if d =

∑
i d
i < 1,

then 1 − d represents the fraction of symmetric replication of CSC (i.e. mitosis originating 2 CSCs), whereas
each di is the fraction of the mitosis of CSC that originates a CC of the ith lineage.

Towards incorporating the effect of competition for space (“crowding effect”), the mitosis rate of the cells
will be multiplied by a function F , depending on the total number of cells, and being zero when the cell fraction
reaches a maximum carrying capacity, in this case set to 1 for simplicity. The volumes of all cells are implicitely
assumed equal so that, with a little abuse of notation, quantities U(t), V 1(t), V 2(t), . . ., VM (t) will represent
the fractions of the total volume of the region under consideration occupied by both CSC and the M lineages
of CCs.

Therefore, the time evolution of the number of CSCs in the region is governed by the following equation:

U̇(t) = ρ (1− d)U(t)F (P (t)), U(0) = U0 , (3.1)

where

P (t) = U(t) + V (t), V (t) =
∑
i

V i(t) , (3.2)
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ρ is the replication rate of CSC and F is a monotonic decreasing function such that F (0) = 1 and F (1) = 0.
Age distribution functions vi(a, t), where a denotes the “age” of the cell and for any t > 0 and 0 < a1 < a2,∫ a2

a1
vi(a, t)da is the number of cells of the i-th lineage whose age ranges between a1 and a2 is introduced so that

both aging and apoptosis of the CCs can be considered. Therefore, V i(t) =
∫∞
0
vi(a, t)da.

Assuming biological age coincides with chronological age, the evolution of the age distribution function of
the ith lineage of CC is governed by the following equations

∂ vi(a, t)

∂t
+
∂ vi(a, t)

∂a
= −µi(a) vi(a, t)− ρi(a) vi(a, t) F (P (t)) , i = 1, 2, . . . ,M , (3.3)

where µi(a) and ρi(a) represent the mortality and the replication rate of the cells of the i-th lineage in function
of their age.

Equations (3.3) are supplemented by the following initial-boundary conditions

vi(a, 0) = vi,0(a) > 0 , i = 1, 2, . . . ,M , (3.4)

vi(0, t) = ρ di F (P (t))U(t) + 2

∫ ∞

0

ρi(a) vi(a, t)F (P (t)) da , i = 1, 2, . . . ,M , (3.5)

The well-posedness of problem (3.1)–(3.5) is discussed in Appendix A. Moreover, we refer the interested reader
to examine the McKendrick’s age-structured population model [11, 39].

A special case in which functions ρ1(a) and µi(a) are piecewise constant are considered towards simplifying
numerical calculations and comparing the model with the results of simulations based on space-dependent
mechanisms and stochastic rules. Specifically, the existence of 4 age intervals (0, a1), (a1, a2), (a2, a3), (a3, A)
(newborn, juveniles, adult and senescent cells) and A being the maximum age of the cells are assumed. The
values of ρ and µ are denoted by ρ(1), ρ(2), ρ(3), ρ(4) and µ(1), µ(2), µ(3), µ(4) in those intervals. Moreover, the
numbers of CCs of the age classes of the i-th lineage are indicated by V i(1), V

i
(2) , V i(3) , V i(4).

Then, equation 3.3 is integrated in each age interval and equation 3.5 is considered, resulting in

V̇ i(1)(t) = ρdF (P (t))U(t) +
(
ρ(1)V

i
(1)(t) + 2ρ(2)V

i
(2)(t) + 2ρ(3)V

i
(3)(t) + 2ρ(4)V

i
(4)(t)

)
F (P (t))−

− vi(a1, t)− µ(1)V
i
(1)(t) ,

V̇ i(2)(t) = vi(a1, t)− vi(a2, t)− ρ(2)V(2)(t)F (P (t))− µ(2)V
i
(2)(t) ,

V̇ i(3)(t) = vi(a2, t)− vi(a3, t)− ρ(3)V(3)(t)F (P (t))− µ(3)V
i
(3)(t) ,

V̇ i(4)(t) = vi(a3, t)− ρ(4)V(4)(t)F (P (t))− µ(4)V
i
(4)(t) .

(3.6)

The total number of CCs is given by

V̇ (t) = ρ dF (P (t))U(t)

M∑
i=1

4∑
j=1

ρ(j)V
i
(j) F (P (t))−

4∑
j=1

µ(j)V
i
(j) . (3.7)

Since it is usual in compartmental models, the case in which the age distribution within each class is negligible
can be considered; therefore,

ψ(j)v
i(aj , t) = V i(j)(t) , (3.8)

where ψ(j) measures the width of the j-th age class (or the time spent by the cell in the j-th class).
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Table 3. Setup of parameters for the differential equations numerical simulations. In variables,
the subscript stands for the age and the superscript stands for the lineage. When the superscript
is not reported all the lineages have the same configuration.

CSC Newborn CC Juvenile CC

ρ = 1
d1 = 0.2
d2 = 0.3
d3 = 0.3

Lineage 1 Lineage 2 Lineage 3
ρ1(1) = 0.7 ρ2(1) = 0.6 ρ3(1) = 0.5

µ1
(1) = 0.30 µ2

(1) = 0.33 µ3
(1) = 0.33

Lineage 1 Lineage 2 Lineage 3
ρ1(2) = 0.9 ρ2(2) = 0.8 ρ3(2) = 0.7

µ1
(2) = 0.30 µ2

(2) = 0.33 µ3
(2) = 0.33

− γ(1) = 1 γ(2) = 1

Adult CC Senescent CC
Lineage 1 Lineage 2 Lineage 3
ρ1(3) = 1.0 ρ2(3) = 0.9 ρ3(3) = 0.8

µ1
(3) = 0.30 µ2

(3) = 0.33 µ3
(3) = 0.33

Lineage 1 Lineage 2 Lineage 3
ρ1(4) = 0.5 ρ2(4) = 0.4 ρ3(4) = 0.3

µ1
(4) = 0.48 µ2

(4) = 0.50 µ3
(4) = 0.50

γ(3) = 1 −

Omitting the lineages for a further simplification of the notation and combining equations (3.1), (3.6) and
(3.8), we obtain the following complete system

U̇(t) = ρ (1− d)U(t)F (P (t))

V̇(1)(t) = ρ dF (P (t))U(t)− (γ(1) + µ(1))V(1)(t)

+
(
ρ(1)V(1)(t) + 2ρ(2)V (2)(t) + 2ρ(3)V(3)(t) + 2ρ(4)V(4)(t)

)
F (P (t)) ,

V̇(2)(t) = γ(1)V(1)(t)− (γ(2) + µ(2))V(2)(t)− ρ(2)V(2)(t)F (P (t)) ,

V̇(3)(t) = γ(2)V(2)(t)− (γ(3) + µ(3))V(3)(t)− ρ(3)V(3)(t)F (P (t)) ,

V̇(4)(t) = γ(3)V(3)(t)− µ(4)V(4)(t)− ρ(4)V(4)(t)F (P (t)) .

(3.9)

with γ(j) = 1/ψ(j), for j = 1, 2, 3.

Remark 3.1. In an oversimplified case, ρ and µ are constant and the integration of equation (3.3) yields

V̇ i(t) = ρ di F (P (t))U(t) + ρV i F (P (t))− µV i , i = 1, 2, . . . ,M , (3.10)

and summing over i hence we have the following system of ordinary differential equations (ODEs){
V̇ (t) = ρ dF (P (t))U(t) + ρ V (t)F (P (t))− µV (t) ,

U̇(t) = ρ (1− d)F (P (t))U(t) .
(3.11)

3.2. Numerical simulations

Problem (3.9) is numerically solved considering 3 cell lineages with ode45 Matlab solver based on explicit
Runge-Kutta method. Since the crowding effect is averaged over the entire available space, a duration of the
phenomenon is naturally considered such that a large part of the entire domain can be occupied by the cells.
At this point, if U(0) > 0, then system (3.9) has only one equilibrium state, i.e., U = 1 and V i = 0. The initial
conditions are analogous to the simulations performed with CA, i.e., U(0) = 27/503 and V i(j)(0) = 0, for all

i and j. Monotonic decreasing function F (P ) = (1 − P )2 was set in the subsequent simulations so that the
crowding effect could be taken into consideration. The other parameters are listed in Table 3.



14 L. MEACCI AND M. PRIMICERIO

Figure 10. Quantitative evolution of the number of tumoral cells (CSCs and CCs) over the
lattice spaces with respect to the mortality variation (ξ = 1.0 and ξ = 1.5), adopting the
differential equations model. The initial conditions are U(0) = 27/503 and V i(j)(0) = 0, for all i

and j. Parameters are listed in Table 3.

Similarly to the case with cellular automata, the behaviour of the system is studied with respect to the
variation in mortality tuning the values of the last parameter with multiplicative factor ξ. Figure 10 displays
the graphs of the total (CSCs and CCs of all ages and lineages) volume fraction of the tumour. Again, the
tumour growth paradox occurs. Let us observe the phenomenon in detail in Figure 11, considering once again,
what happens at the level of age classes and lineages, choosing the mortality setting ξ equal to 1.0 and 1.5.

In the case of a lower mortality, the initial phase of tumour evolution shows a greater crowding of CCs (panels
(a), (b), and (c)), in particular with respect to the lineage 1 (panel (a)). In the case with a higher mortality
(which could be induced by medical treatment), the progression of the disease seems to initially benefit from a
significant lowering of the CCs (panels (d), (e), and (f)). However, this same event also results to be not positive
over time. Again, the differential equations model also suggests that the presence of CCs contributes to limiting
an accelerated tumour growth induced by CSCs.

3.3. Differential equations vs. CA models

The introduction of a function F to take into account for the competition for space was suggested for the first
time in the seminal paper [20]. This seems to be a heuristic way of approaching the problem since competition
is clearly a local effect, whereas multiplying the replication rate by F (P ) affects equally every cell of the system.
Nevertheless, it proves to be an useful shortcut to avoid time-consuming simulations based on agent-based
methods in some cases. As an example, let us consider the plots of Figure 12 where the time evolution of the
total number of tumoural cells in the given lattice 50× 50× 50 is shown. We have considered the same setup
of parameters (Tabs. 1 and 2 for the 3 lineages of CCs) of simulation of Figure 6 with ξ = 1.0. Initially, there
are 1000 CSCs and four different initial situations are considered: cells that are initially uniformly distributed
over the grid, or cells that are initially divided in 1, 2, or 8 blocks. These limit cases show the importance of
using numerical methods that include space dependence whereas models of differential equations based on an
“averaged” crowding effect cannot be used in general if spatial inhomogeneity is relevant.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Quantitative cancer progression according to age class and lineage. The panels (a),
(b) and (c) show the results for a mortality value resulting from ξ = 1.0, while the panels for
(d), (e) and (f) concern the simulations with ξ = 1.5. In the legends L1, L2 and L3 stand for
first, second and third lineage, respectively. The simulation is the same of Figure 10.

Nevertheless, it can be seen experimentally that the solution obtained by CA can be easily approximated by
compartmental models if a particular form of F (P ) is chosen, to fit the particular class of problems that are
considered.

For example, let us consider the first case illustrated in Figure 12 (initially, uniformly distributed cells). It
can be seen (Fig. 13) that the system of differential equations fits satisfactorily the solution found with CA if
F (P ) is taken equal to (1 − P )η, with η = 1. Comparing Figure 12 with Figure 13, we can observe that the
exponent η = 2 allows to fit better cases with inhomogeneous initial conditions. The results of Figure 13 were
obtained by solving the equations of the system 3.9, with the parameters of Table 3 and ξ = 1.0, and setting
the initial conditions U(0) = 1000/503 and V i(j)(0) = 0, for all i and j.

We add a final comment. According to Remark 2.2, throughout the CA model we have considered as the
neighborhood of a would-be mother cell a cubic domain of 3× 3× 3 cells where a newborn cell can be generated.
One can ask if the CA model (even with an unfavorable initial condition, such as the case of a centralized mass
of CSCs) approximates the results of the model based on differential equations with F (P ) = 1 − P when the
dimensions of the neighborhood are increased. The results of CA simulations using different sizes of neighborhood
are shown in Figure 14. The test are performed with the same setup of Tables 1 and 2 and ξ = 1.0. We set
1000 CSCs in the center of lattice as initial condition. As we can observe from the graphs, as the size of the
neighborhood increases, the curves tend towards the solution of the differential model with F (P ) = 1− P . In
particular, the purple curve (neighborhood 15×15×15) is a good approximation of the black one, corresponding
of the solution of ODEs system 3.9 with F (P ) = 1− P .
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Figure 12. CA simulations for different initial distributions. The parameters setup is provided
in Table 1 for the CSCs, in Table 2 for the 3 lineages of CCs, and with ξ = 1.0. The initial
condition of 1000 CSCs uniformly distribuited or separeted in 1, 2, 8 masses are displayed on
the left-side (under t = 0). We report also the panels of the system evolution at time t = 25.
On the right-site, the graph concerns the quantitative evolution (averaged over 10 test) of the
fraction of tumoral cells (CSCs and CCs).

4. Conclusions

This article presented and discussed a conceptual model for the growth of tumours in the presence of CSCs
and several lineages of ordinary CCs, assuming mitosis can be hindered by the crowding of cells. Aging and
apoptosis of CCs were also taken into account.

The model was implemented in the framework of 3D cellular automata, where the rules governing the evolu-
tion of CA are expressed in terms of stochastic dynamics. The development of the tumour mass can be simulated
as well as the evolution of the different lineages and age classes of CCs.

The model exhibits the so-called tumour growth paradox, i.e., the fact that the speed of the tumour growth
can be greater when the mortality of the CCs increases. Examples in which cytotoxic intervention exerts a
counterproductive effect were provided. The same paradoxical effect occurs as well when the rate of replication
of CCs is artificially reduced, a fact that was not considered in the existing literature on tumour growth paradox.

A deterministic model was also introduced and studied in which the unknown functions to be determined
are the total number of CSCs and the age distribution of each lineage of CC. Since this approach neglects
space dependence, the crowding effect cannot be modeled as a local effect but its influence is modeled assuming
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Figure 13. Quantitative time evolution of the number of tumoral cells (CSCs and CCs) solving
the differential equations model 3.9, for different choices of F (P ) = (1 − P )η. Parameters are
listed in Table 3 and ξ = 1.0. The initial conditions are U(0) = 1000/503 and V i(j)(0) = 0, for

all i and j. Is is also displayed the curve (in black colour) corresponding to the solution of the
CA model with initially uniformly distributed CSCs, as simulation of Figure 12.

Figure 14. Quantitative time evolution of the number of tumoral cells (CSCs and CCs) per-
forming CA simulations for different size of neighborhood. The parameters are listed in Table
1 and in Table 2 for the 3 lineages of CCs, and ξ = 1.0. The initial condition is a central mass
of 1000 CSCs. Is is also displayed the curve (in black colour) corresponding to the solution of
the differential equations model (system 3.9) with F (P ) = 1− P , as computed Figure 13.
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that the rate of reproduction of the cells is reduced as a function F (P ) of the fraction of the volume of the
tumour with reference to to the total available volume. The mathematical model is a non-standard system of
first order ordinary and partial differential equations whose well-posedness is proved in an Appendix. Numerical
simulations were made using the same values for the parameters as in the case of the CA model. We showed
that the two classes of models give the same qualitative results (including the tumour growth paradox) and
that the plots of the evolution of the tumoural mass over time are in agreement when the initial conditions are
sufficiently homogeneous in space and for properly chosen function F (P ). As expected, the two models differ
when the initial condition is such that the cells are concentrated in a small portion of the available volume, but
that the difference tends to decrease when the “local crowding” modelled in the CA scheme concerns a larger
neighborhood of the replicating cell.

As we pointed out in the Introduction, the models presented and discussed here extend the validity of the
results presented in recent literature since they can be applied to cases of 3D and to tumours with several
lineages of differentiated cancer cells and take into account the variability of the parameters of the cells with
their age. Moreover, we showed that also a decreased reproduction rate of CCs can paradoxically lead to
accelerated tumour growth. Finally, it is of some interest the comparison of the simulations based on individual
cell description and of computations based on quantities averaged over the available space.

Appendix A. Well-posedness of problem (3.1)–(3.5)

We aim to prove the well-posedness (existence and uniqueness of a solution whose value depends continuously
on data) of problem (3.1)–(3.5) in a time interval (O, T ). With no lack of generality and towards simplifying
notation, the case of only one lineage of CCs will be treated in 2 steps. First, an auxiliary problem will be
introduced for proving it has a unique solution. The result will used to solve the main problem.

Step 1. For any prescribed function Ψ(t), 0 ≤ Ψ(t) ≤ 1, with Lipschitz constant K in [0, T ], the following
auxiliary problem is solved:

va + vt = h(a, t) v , a ∈ (0, A) , t ∈ (0, T ) ,

v(a, 0) = v0(a) , a ∈ (0, A) ,

v(0, t) = Φ(t) + 2Ψ(t)
∫ A
0
ρ(a)v(a, t)da , t ∈ (0, T ) ,

(A.1)

where

h(a, t) = −µ(a)− ρ(a) Ψ(t), a ∈ (0, A) , t ∈ (0, T ) , (A.2)

Φ(t) = ρ0 dΨ(t)U0 exp

[
ρ0(1− d)

∫ t

0

Ψ(t)(τ)dτ

]
, t ∈ (0, T ) . (A.3)

Concerning the initial data, it is assumed that

H1 U0 > 04,
H2 v0(a) is a continuous non-negative function with support in (0, α) and such that U0 +

∫ α
0
v0(a) da ≤ 1.

Finally, A = α+ T is taken in (A.1).

Proposition A.1. Under hypotheses (H1)–(H2), the auxiliary problem (A.1)–(A.3) is well-posed, having a
unique solution.

4Case U0 = 0 corresponds to the trivial case in which no CSCs are present.



INTERACTION BETWEEN CROWDING AND GROWTH IN TUMOURS WITH STEM CELLS 19

Proof of Proposition A.1. A fixed point argument is used to solve problem (A.1)–(A.3) and a non-negative
function X(t) ∈ C1(0, T ) is assigned such that

0 ≤ X(t) ≤ K1 , | Ẋ(t) | ≤ K2 , (A.4)

(where K1 and K2 are constants to be chosen). The following linear problem is solved:
va + vt = h(a, t) v , a ∈ (0, A) , t ∈ (0, T ) ,

v(a, 0) = v0(a) , a ∈ (0, A) ,

v(0, t) = Φ(t) + 2Ψ(t)X(t) , t ∈ (0, T ) .

(A.5)

Since the data are non-negative and bounded and h(a, t) is non-positive, v(a, t) is non-negative and bounded in
(0 , A)× (0 , T ). Defining

X̃(t) =

∫ A

0

ρ(a)v(a, t)da , t ∈ (0, T ) , (A.6)

where v(a, t) is the solution to problem (A.5), we obtain a mapping T

X̃(t) = T X(t) , t ∈ (0, T ) . (A.7)

Since v(a, t) vanishes for α+ t < a < A, 0 < t < T , then

X̃(t) =

∫ t

0

ρ(a) v(a, t) da+

∫ α+t

t

ρ(a) v(a, t) da . (A.8)

Clearly, X̃(t) in non-negative. Moreover, the second term is bounded by a constant B = Amax ρ, whereas the
first (the only one depending on X(t)) is O(t). Therefore, choosing e.g. K1 = 2B, T can be determined so that

0 ≤ X̃(t) ≤ K1 . (A.9)

In addition, it is

| ˙̃
X(t) |≤ max ρ

[ ∫ A

0

∣∣∣∣∂v∂t
∣∣∣∣ da] = max ρ

[ ∫ t

0

∣∣∣∣∂v∂t
∣∣∣∣ da +

∫ α+T

t

∣∣∣∣∂v∂t
∣∣∣∣ da]. (A.10)

The second term in the r.h.s of (A.10) does not contain X and
˙̃
X is bounded by a constant C, while the first

term is O(t). Therefore, choosing e.g., K2 = 2C, a value T can be determined so that the r.h.s. of (A.10) is
dominated by K2 and thus T maps the set defined by (A.4) into itself.

Next, the uniform norm of X̃1 − X̃2 must be evaluated where, for i = 1, 2 it is X̃i =
∫ A
0
ρ(a) vi(a, t) da and

vi(a, t) is the solution to problem (A.5) with boundary datum

vi(0, t) = Φ(t) + 2Ψ(t)Xi(t) , t ∈ (0, T ) .

As a result,

| X̃1(t)− X̃2(t) |≤ max ρ

∫ t

0

| v1(a, t)− v2(a, t) | da .
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In turn, difference | v1(a, t) − v2(a, t) | can be estimated in terms of difference of the boundary data. Conse-
quently, reducing T , if necessary, the transformation is a contraction and the Banach fixed point theorem ensures
T has a unique fixed point. Consequently, problem (A.1)–(A.3) has a unique solution.

Step 2. The previous result is used to prove the following theorem.

Theorem A.2. Problem (3.1)–(3.5) is well-posed in a suitable domain (0 , A)× (0 , T ).

Proof of Theorem A.2. Similarly to the previous case of Proposition A.1, a fixed point technique will be adopted.
For a given function p(t) ∈ C1(0, T ), such that

0 < P1 ≤ p(t) ≤ P2 , | ṗ(t) |< P3 , (A.11)

function Ψ(t) = F (p(t)) is defined. Then, with the choice of Ψ(t) problem (A.1)–(A.3) is solved, as in Step 1,
obtaining a function v(a, t). We define

p̃(t) = U0 exp[ρ (1− d)

∫ t

0

F (p(τ)) dτ ] +

∫ A

0

v(a, t)da. (A.12)

Also in this case, the only term dependent on p is O(t); therefore, if the second integral is denoted by I, it is
sufficient to choose P1 = I/2 and P2 = 2I to conclude p(t) satisfies the first inequality in (A.11). Moreover, it is

˙̃p(t) = U0 exp[ρ (1− d)

∫ t

0

F (p(τ)) dτ ]F (p(t)) +

∫ A

0

∂v

∂t
(a, t) da, (A.13)

and, therefore, ˙̃p(t) is bounded independently of p̃(t). The third inequality in (A.11) holds for p̃(t), meaning
transformation P defined by (A.13) maps set (A.11) into itself. Consequently, T can be chosen so that P is a
contraction. Indeed

| p̃1(t)− p̃2(t) | = U0

∣∣∣∣ exp[ρ (1− d)

∫ t

0

F (p1(τ)) dτ ]− exp[ρ (1− d)

∫ t

0

F (p2(τ)) dτ ]

∣∣∣∣
+

∫ A

0

| v1(a, t)− v2(a, t) | da.

The first term is estimated in term of | p1 − p2 | O(t) because of the Lipschitz continuity of F . The integral in
the second term can be splitted∫ A

0

| v1(a, t)− v2(a, t) | da =

∫ t

0

| v1(a, t)− v2(a, t) | da+

∫ A

t

| v1(a, t)− v2(a, t) | da.

Functions vi (i = 1, 2) solve problem (A.1)–(A.3), in which the boundary datum is given by Φ(t) +

2Ψ(t)
∫ A
0
ρ(a)v(a, t) da and the r.h.t. in (A.1) is given by hi(a, t) v = −[µ(a) + ρ(a)Ψi(t)] v. In the second

term, the initial data of v1 and v2 are equal and the difference is estimated in terms of the integral of | h1− h2 |,
hence | F (p1(τ)) − F (p2(τ)) | O(t). The integrand of the first term is estimated in terms of difference in the
boundary data plus the integral of | h1 − h2 |. Therefore, the first term is | p1 − p2 | O(t) and T can be chosen
so that | p̃1 − p̃2 |< β | p1 − p2 | with β < 1. Using again the Banach fixed point theorem, the proof of the
well-posedness of problem (3.1) – (3.5) is finally concluded.
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