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1 | INTRODUCTION

unit information, which we distinguish from the other forms of information
blending, in particular aliasing and marginality. We outline a factor-allocation
paradigm for describing experimental designs with the aim of (i) exhibiting the
confounding in a design, using analysis-of-variance-like tables, so as to under-
stand and evaluate the design and (ii) formulating a linear mixed model based
on the factor allocation that the design involves. The approach exhibits the
dispersal of treatments information between units sources, allows designers a
choice in the strategy that they adopt for including block-treatment interactions,
clarifies differences between experiments, accommodates systematic allocation
of factors, and provides a consolidated analysis of nonorthogonal designs. It
provides insights into the process of designing experiments and issues that com-
monly arise with designs. The paradigm has pedagogical advantages and is
implemented using the R package dae.

KEYWORDS
block-treatment interaction, confounding, factor allocation, linear mixed model, repeated-
measurements experiments

An experimental design for a comparative experiment usually involves the random allocation of a set of treatments to
a set of units in a manner that reduces the effects of large sources of unit variation on the estimation of the treatment
effects. This can be formally cast as the selection of a design that minimizes an optimality criterion under a model that
has terms for the treatments and the sources of unit variation. The traditional method of determining the model is to list
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FIGURE 1 Flowchart of items produced in using the factor-allocation paradigm for the design of an experiment.

all the treatment and unit terms thought likely to be important in the experiment and to designate each term as being
either fixed or random. A number of authors have stressed the importance of identifying treatment and either block or
unit factors (Brien, 1989; Littell et al., 2006; Milliken & Johnson, 1992; Nelder, 1965a, 1965b; Piepho et al., 2003; Stroup, 2012;
Wilk & Kempthorne, 1956). However, the details differ between their implementations. What is generally not specifically
addressed by these authors is the confounding that results from the allocation of treatments to units.

Here, a distinction is made between confounding and aliasing that is consistent with the usage originally established
by Fisher (1935b) and Finney (1943) for factorial experiments and continues to be employed in modern experimental
design textbooks (see, e.g., Montgomery, 2013). While confounding was originally confined to the relationship of treatment
contrasts to block contrasts, a more general view is taken here: confounding is the blending together of treatment contrasts
and unit contrasts. A consequence of this more general view is that all experiments, whether randomized or systematic,
involve confounding by virtue of the allocations they employ. On the other hand, aliasing is the mixing up of different
treatment contrasts, or, less frequently, of different units contrasts. It was originally introduced in the context of fractional
factorial experiments. In such experiments, various factorial effects associated with the treatments are aliased with each
other. It occurs in factorial experiments in which the replication of the combinations of the levels of the treatments factors
are not (proportionally) balanced.

This paper describes an approach for designing, evaluating, and model formulation for comparative experiments, called
the factor-allocation paradigm, an objective of which is to identify the confounding in an experimental design. To do this,
a design is analyzed to produce an anatomy table, that is like a skeleton analysis-of-variance (ANOVA) table but that
gives a concrete depiction of the design’s confounding. The approach has been developed by Brien and his coauthors for
multiphase experiments (Brien, 2017, 2022; Brien et al., 2011). However, its applicability to the more usual, single-phase
experiments is obscured in these publications by the complexities of multiphase experiments. Here, a simplified version
is described and its practical benefits are stressed. The paradigm is based on the identification of the factors that are
allocated (treatments) and those that are recipient (units) factors, this characterization of the factors emphasizing their
roles in the assignment of treatments for an experimental design. As Brien (1983) suggests, this approach has its origins
in the separation of the “topographical” and “treatment” structures identified by Fisher (1935a).

Section 2 uses simple experimental designs on a 5 X 5 grid of plots to introduce the factor-allocation paradigm and to
demonstrate the role that the anticipated effects play in the design of an experiment. Section 3 considers the incorporation
of block-treatment interactions in designing an experiment and contrasts the paradigm with traditional approaches. Using
examples in which time is a factor, Section 4 illustrates several further insights that accrue from considering the factor
allocation in a design. Section 5 demonstrates how the approach handles nonorthogonal designs. Section 6 discusses the
practical benefits of the paradigm. Supporting information is available that provides (i) a glossary of the terminology used
in the paper, (ii) figures showing the layouts and the R (R Core Team, 2023) scripts for the examples, and (iii) the theory
on which the approach is founded.

2 | DESIGNING EXPERIMENTS ON A 5x5 GRID OF PLOTS

The process underlying the factor-allocation paradigm is depicted in Figure 1, which is a modified version of Brien (2022,
fig. 1). The process begins with determining the anticipated model as a means to identifying the effects that are to be taken
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into account in the experimental design, preferably in concert with the researchers. This step formalizes the deliberations
traditionally undertaken in designing an experiment. It can be facilitated by considering all of the factors in the exper-
iment and identifying those that are the unit factors and those that are the treatment factors. The unit factors belong
to the units and are, potentially at least, recipient factors in that they are to receive factors that are allocated to them.
Generally, the treatment factors are the allocated factors, bearing in mind that not all factors of interest are allocated. In
considering the terms for effects to be taken into account in a design, it is useful to identify the inherent crossing and
nesting relationships between the recipient factors. Then it can be decided whether the factor allocation in the design
being developed is to respect any crossing of unit factors or that, because some effects can be ruled out as being unlikely
in the experiment, some crossed factors are to be treated as nested. The initial and homogeneous allocation models are
called allocation models because they are based on terms appropriate to the allocations represented in the factor alloca-
tion diagram. Some common types of allocations are those that use randomization, restricted randomization, spatially
optimal allocation, or systematic allocation. When all allocations employ (restricted) randomization, the initial allocation
model will be equivalent to a randomization model and randomization-based inference is available. The homogeneous
allocation model is derived from the initial allocation model by changing the fixed/random designation of terms and by
including block-treatment interactions. Thus, randomization inference is no longer possible. However, the models retain
all terms appropriate to the allocations performed in generating the layout for an experiment.

To illustrate the factor-allocation approach to designing experiments, consider an experiment in which five varieties
are to be allocated to a 5 x 5 grid of 25 plots. The factors are, say Rows, Columns, and Varieties. For a grid of plots, Rows
and Columns are intrinsically crossed. However, in this situation, one might employ a completely randomized design
(CRD), a randomized complete-block design (RCBD) or a Latin square design (LSqD). Which of these three designs is
appropriate depends on which, if any, of the Rows and Columns main effects are expected to be present. The situation
in which both effects cannot be ruled out is investigated first and then we examine the case when Columns effects are
not expected.

2.1 | Both Rows and Columns effects expected

The anticipated model

The paradigm begins with the specification of the anticipated model, which serves to capture formally the terms that need
to be accounted for in selecting a design. The symbolic anticipated model, that uses abbreviated term names consisting of
just the initial capital letters of the factor names for the terms, is, for this experiment when both Rows and Columns main
effects are expected:

Mean + V | Mean + R + C + R:C, @

where terms before the “|” are fixed and so form the expectation model, while those after it are random and form the
variance model; the underlined term, called an identity term, uniquely indexes the observational units, the plots; the “:”
signifies that this term is based on all observed combinations of the levels of the factors R(ows) and C(olumns). That both
Rows and Columns main effects are in (1) means that it is inherent to this model that Rows and Columns are crossed. In
this case, the crossing inherent to the model matches the intrinsic crossing of the physical layout of the units in a grid.

Each of the random terms is assumed to contribute a variance component, g2, to the variance of the response. The fixed
terms will contribute to the expectation of the response.

A term for the trivial factor (overall) Mean is included in both the expectation and variation models. It is needed in
both models to allow for an expectation model with no treatment effects and to give a variance model whose eigenspaces
are orthogonal. The Mean term in the expectation model represents the overall population mean for comparable experi-
ments; the Mean term in the variance model represents the basic covariance between observations within experiments,
or equivalently reflects the excess variation in the overall mean between comparable experiments over and above that
within experiments.

A formal marginal linear mixed model for the experiment is

E[Y] = 1 + Xyzy,vafY] = 0;Syiean + 05Sr + 93Sc + 0pSres )

95U8017 SUOWILLIOD BAIS1D) 3[qedt|dde sy Aq peusenob ale sajoiLe YO ‘8sh JO Sajni Joj Akeiqi] auluo A3JIA UO (SUONIPUOD-PUe-SWLB)/LI0D A8 IM Akelqpuluo//sdny) SUonIpuoD pue ste 1 auy) 89S *[£202/50/62] Uo Aeiqiauliuo A1 ‘S3d VO Ad 82002202 fuig/Z00T 0T/I0p/wod’ e im Akelqijput|uo//sdny wolj pspeojumod ‘0 ‘9E0rTeST



sof2s | Biometrical Journal BRIEN ET AL
5 Rows
5 treatments 25 units

FIGURE 2 Factor-allocation diagram showing the treatments allocation to units for a Latin square design: the arrow indicates that the
allocation is randomized; the “©” at the end of the arrow indicates that an orthogonal design is used; the two lines from the “©” indicate that
the Treatments are allocated to the combinations of Rows and Columns using the design.

where Y is the vector for a random response variable, 1 is a vector of ones, Xy is an indicator matrix for the fixed Varieties
term, Syjean» Sr» Sc» and Sy are relationship matrices for the random terms (S. = Z.Z|, where Z. is the indicator matrix
for the random term indicated by the subscript); u and 7y are the fixed parameters for the Mean and for Varieties, and aﬁ,
0122, aé, and 0122C are the variance components for the terms Mean, Rows, Columns, and Rows:Columns. For the rest of the
paper, only symbolic models will be presented, these models being readily incorporated into scripts for model fitting.

Design selection & construction

Informally, a design that honors the crossing between Rows and Columns is required and an LSqD is such a design.
Formally, a design that minimizes the average variance of the pairwise variety differences under the anticipated model
is sought. For the examples in this paper, this implies that they are A-optimal, a property that is further elaborated upon
in the Anatomy table section below. The LSqD is an orthogonal design under the anticipated model in (1) and is the A-
optimal design under this model, or any alternative designation of the Rows and Columns terms as either fixed or random
(Shah & Sinha, 1989).

In general, a design for an experiment can be chosen using: (i) standard designs (e.g., CRD, RCBD, LSqD), (ii) a cata-
log of designs (e.g., Cochran & Cox, 1957), or (iii) computer searches. Software available for computer searching includes
CycDesigN (VSN International, 2022a), odw (Butler, 2022), JMP (SAS Institute Inc., 2022), and SAS PROC OPTEX (SAS Insti-
tute Inc., 2020). However, to quote Mead et al. (2012, p. 558), “It is our belief that ... packages and catalogues provide a
relatively small contribution to the overall designing of practical experiments.” On the other hand, the formal process of
specifying an anticipated model and seeking a design that is A -optimal under it can be, and often is, dispensed with in
practice, especially for approaches (i) and (ii); it could be for all of the examples in this paper. Nonetheless, it does make the
underpinnings of design selection explicit and, when computer searches are employed, the anticipated model is needed,
it being the model that is available.

A design is usually a systematic arrangement of the treatments to the units. A general method of randomizing a system-
atic design to obtain a randomized layout is to appropriately permute its units factors followed by a joint reordering of its
treatments and units factors such that its units factors are returned to standard order. This method of randomization has
been implemented in the designRandomize function from the R package dae (Brien, 2023) and is used for all the designs
in this paper. The appropriate permutations for an LSqD are to permute (i) the Rows and (ii) the Columns. The R script
in Supplement Section C.1 produces a randomized layout and plots it. The permutation chosen for Rows was (5,1,2,3,4)
and for Columns was (3,1,2,4,5). These permutations are combined to form a single, combined, units permutation. So the
randomized layout can be obtained by forming a table with (i) Rows and Columns numbers in the permuted order for the
combined, units permutation and (ii) Varieties in systematic order for an LSqD, say A-E in the first row and then these
letters just cycled one position to the right from one row to the next. Reordering the rows of this table so that Rows and
Columns are in standard order produces the randomized design in Supplement Figure 1.

The factor-allocation diagram

Figure 1 suggests that the allocations are exhibited in a factor-allocation diagram. Figure 2 does this for the LSqD. It
consists of two panels, each of which contains the factors that index the, possibly conceptual, objects that label the panels.
In this paper, we always label the objects as treatments and units; lower case labels are used for objects to distinguish them
from factors whose names use an initial capital letter. There is one allocation: the allocation of treatments to units using
randomization, as indicated by the solid arrow. The factors in different panels differ in their roles in the allocations: (i)
the factor in the treatments panel is allocated; and (ii) the factors in the units panel are recipient factors. In this case, the
permutations used in randomizing the design determine that Rows and Columns are crossed, and so there is no nesting
of factors in the units panel.
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The initial allocation model

In keeping with Figure 1, the initial allocation model is now derived from the factor-allocation diagram. Terms are formed
by taking all combinations of the factors within a panel, including individual factors and subject to the restriction that a
factor that is nested cannot occur without its nesting factors. Each term is a combination of factors, whose levels are the
observed combinations of the levels of the constituent factors. In the initial allocation model, terms with factors that were
only ever allocated are designated as fixed. The other terms are designated as random and each has a variance component
associated with it. The initial allocation model for this example is the same as in (1). Thus, the crossing of Rows and
Columns inherent to the anticipated model has been reflected in the combined, units permutation employed in allocating
treatments to units for the chosen design. This permutation has determined the factor-allocation diagram, which was then
used to produce the initial allocation model. The desired outcome of the crossing and nesting encapsulated in the initial
allocation model matching that inherent to the anticipated model has been achieved.

The homogeneous allocation model
The homogeneous allocation model is obtained from the initial allocation model, as portrayed in Figure 1, by transferring
terms from the fixed part to the random part of the model, or vice versa, and by adding interactions between terms from
different panels, or block-treatment interactions. Our view on the controversial topic of deciding whether a term is fixed
or random is that, in essence, it is a decision about the appropriate model for the term. To be random, the effects for a term
need to behave in a manner that it is appropriate to characterize them by a probability distribution, by default a normal
distribution. Otherwise, they should be designated as fixed, which allows for arbitrary values of the effects and so involves
less restrictive assumptions. In practice, a term is likely to be declared (i) random if its effects exhibit random behavior and
there is, at least conceptually, a large number of population levels for its factors, and (ii) fixed if there is either a small or
large number of population levels and its effects exhibit systematic or other nonrandom behavior. A further consideration
for declaring a term to be random is whether it is desired to draw conclusions using it beyond the observed levels of its
factors, such as for a units term that has treatment information confounded with it and conclusions about the treatments
beyond the observed levels of the units terms are wanted, or conclusions about the future performance of a set of its
levels are required, such as when a subset of plant or animal genotypes is to be selected from a candidate set of observed
genotypes. Notwithstanding this, the behavior of the effects for such a term needs to conform to the behavior required for
a random term and it is incumbent on the designer to ensure that the number and levels of the factors involved ensures
this. A commonly advanced criterion for declaring a term to be random is that it includes at least one factor whose levels
are randomly sampled, or could be so regarded. While this may be a desirable property, it appears not to be a sufficient
criterion. For example, it would not be valid to treat as random, a term for Blocks that has been randomly sampled along a
field fertility or laboratory temperature trend. The crucial point is that random sampling of the levels does not guarantee
an appropriate distribution of the effects.

If it were decided that it is appropriate to assume that the Rows and Columns terms are fixed in this example and that
there is block-treatment additivity, then the homogeneous allocation model is

Mean +V + R + C | Mean + R:C. ©)

It is a fixed model, having only the Mean and an identity term being random. Suppose that ultimately it was decided
that this change is inappropriate and the homogeneous allocation model is given by (1), which is equivalent to a
randomization model.

Anatomy table

An important aspect of the approach outlined in Figure 1 is the production of an anatomy table for the homogeneous
allocation model as a means of checking and understanding the design by studying the confounding integral to it. Brien
(2017) describes the anatomy as the structure built on the allocations in the design and is expressed in the confounding
relationships between the sources derived from the terms in a model for the design. A source for a term is the subspace of
the units space for the term made orthogonal to all column spaces of the indicator matrices for marginal terms from the
panel. The units space is the column space for an identity term. A term is marginal to another term from the same panel if
the column space of its indicator matrix is a subspace of the column space of the other term’s indicator matrix. For the units
panel in Figure 2, the Mean term is marginal to all terms from that panel and the Rows and Columns terms are marginal
to the term R:C. The degrees of freedom (DF) for a source is the dimension of its subspace. Sources specify contrasts on
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TABLE 1 The anatomy and traditional, skeleton ANOVA tables under the homogeneous allocation model for an experimentona 5 x 5
grid of plots where both Rows and Columns main effects are anticipated: R: Rows; C: Columns; V: Varieties; EMS: expected mean square; DF:
degrees of freedom.

(a) Anatomy table (b) Traditional, skeleton ANOVA table

units treatments EMS* EMS?*

Source DF  Source DF o}, o, o o, 6 Source DF o’ o, o o,

Mean 1 Mean 1 1 5 5 25 9# Mean 1 1 5 5 25 "

Rows 1 5 Rows 1 5

Columns 4 1 5 Columns 4 1 5

R#C 16 Varieties 4 1 Oy Varieties 4 1 Oy
Residual 12 1 Residual 12 1

Total 25 Total 25

aEach o? is a variance component whose subscripts are comprised of the first letter of each factor in the corresponding term and the numbers in the table are
the coefficients of the variance components in their linear combination that is their contribution to the EMS. Each 6. is a fixed contribution that is added to an
EMS. It is a quadratic form in the expectation of a response variable, with the subscript indicating the source whose scaled projection matrix is the matrix of the
quadratic form. Here, 8y simplifies to the sum of the squared population Varieties effects, multiplied by five, the number of Varieties replicates, and divided by
four, the Varieties DF.

the units, those involving single factors being referred to as main effects and those involving more than one factor specify
interactions and/or nested effects, depending on the crossing and nesting relations between the factors intrinsic to the factor
allocation for the design. To show the nature of a source, a “#” separates any factors that interact, these being the factors
that do not nest any factor; all the factors that nest another factor, if any, are enclosed within square braces (“[ ... ]”), being
separated by “:” to indicate a combined factor whose levels are the observed combinations of the nesting factors.

The anatomy table is like a skeleton ANOVA table, being similar in form to the multistrata skeleton ANOVA tables
produced by Genstat (VSN International, 2022b). However, anatomy and ANOVA tables differ in their function. The sole
purpose of anatomy tables is to reveal the confounding and aliasing relationships between the terms associated with a
design, thus facilitating a study of the design’s properties. These relationships are ascertained from an analysis of the
projection matrices derived from the terms. The role of skeleton ANOVA tables has generally been to establish the form
of the analysis of the data from a designed experiment prior to performing an ANOVA on the data. This role is no longer
required when linear mixed model fitting is employed, whereas anatomy tables remain relevant because their focus is on
the design.

The confounding in a design is summarized in an anatomy table that is divided into three major columns, one for the
units sources and DF, a second for the treatments sources and DF and, if possible, a third for the expected mean square
(EMS) for each of its rows (e.g., Table 1a). The sources in each Source column correspond to the terms in the homogeneous
allocation model derived from one of the panels in the factor-allocation diagram, although the treatments panel may at
times involve both treatments and units factors. To manually construct the anatomy table, first list the units sources and
their DF, thereby creating the first major column. Then, create the second major column by adding each treatment source
and its DF, aligning it with the units source(s) with which the treatments source is confounded, putting multiple treatment
sources confounded with the same units source one under the other. For a main-effects treatments source, the source with
which it is confounded is usually the units source to which it was allocated. The confounding of interaction treatments
sources may depend on the design, but often an interaction source is confounded with the units source that occurs lowest in
the table among the units sources with which main-effects sources for the factors in the interaction term are confounded.
Once all treatments sources have been placed in the table, a line with a Residual source is added for any units source
whose DF in the first major column exceeds the sum of the DFs for the treatments sources confounded with it; the DF
difference is the DF for the Residual source. Thus the alignment of the treatment sources with units source displays the
confounding relationships, the units sources being partitioned by the treatment sources. The two sets of sources, with their
DF, specify the joint decomposition of the units space. Clearly, the division of the factors into two panels, as illustrated in
the factor-allocation diagram, is essential to representing the confounding.

The anatomy table, without EMS, can be obtained using the function designAnatomy from the R package dae (see the
R script in Supplement Section C.1). The function uses a formula for the terms in each panel and a design or layout in
the form of an allocation of the treatments factors to the unit factors. To determine the confounding, it forms projection
matrices for all sources, and then uses them to check, for each treatments source, with which of the units sources it is
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confounded. To check if a treatments source is confounded with a units source, the harmonic mean of the canonical
efficiency factors, the A-efficiency criterion, for these two sources is obtained (John & Williams, 1995); the A-efficiency
criterion can be interpreted as giving the proportion of the information for the treatment source associated with the units
source. The canonical efficiency factors are the nonzero eigenvalues of a certain product of the projection matrices for
the two sources in each pair. The number of canonical efficiency factors is equal to the DF of the confounded source (for
details, see Supplement Section D). For each treatments source in an orthogonal design, all canonical efficiency factors
are one for just one units sources. Consequently, all A-efficiency criteria are one, the maximum value for an A-efficiency
criterion. A design is said to be A-optimal for a fixed model if its A-efficiency criterion is maximized for each treatments
source for the smallest units entity with which the source is confounded. It may also be A-optimal for a mixed model.
All of the designs presented in this paper are A-optimal for a mixed model and are universally optimal for a fixed model,
the latter meaning that they are A-, D-, and E-optimal (Shah & Sinha, 1989). The EMSs in the anatomy table are obtained
using the rules in the Appendix.

Table 1a shows the anatomy table for the LSqD; Examples Al and A2 in the Appendix describe the use of the rules
to obtain the EMS for the Rows and R#C lines in this table. Here, the Varieties source was checked for confounding
with the sources Mean, Rows, Columns, and R#C. It was found that, only for Varietiess and R#C, were there canonical
efficiency factors, there being four of them all of which were equal to one. Thus, the A-efficiency for Varieties is one
and all Varieties information is confounded with R#C. The LSqD design is orthogonal and so is A-optimal under the
anticipated model in (1). It is also seen that, of the total 16 DF for R#C, 12 are left over for estimating oﬁc. All designs
involve confounding, but this is not widely recognized. This is to be expected as traditional ANOVA tables have only a
single sequence of sources listed in the order in which they are to be fitted and so there is no opportunity to portray
the confounding (cf. the anatomy table with two sets of sources). Also contributing to this neglect of confounding is the
general practice of not accommodating specific sources for all recipient terms in the table; in this case, R#C is habitually
omitted. To demonstrate how the tables differ, the traditional, skeleton ANOVA table is presented in Table 1b. It is based
on the model (see, e.g., Littell et al., 2006):

Mean+V | Mean + R + C + units, 4)

where units indicates a term for each observation whose effects are assumed to be independent and identically distributed
with common variance o2.

The decompositions of the units space portrayed in Tables 1a and 1b are equivalent. The crucial difference is that, while
one can see that the Varieties source is confounded with the interaction R#C in Table 1a, this confounding is not apparent
in Table 1b. Certainly, the EMSs in Table 1b show that the Varieties source is only affected by residual variation, the overall
differences between Rows and Columns having being eliminated. However, the origins of this variation are not obvious. On
the other hand, Table 1a suggests that the Varieties source is confounded with unit variaton, rather than block-treatment
interaction. We will return to this point in Section 3.

Table 1a includes the source Mean for the overall mean, u. It is often omitted from ANOVA tables, but it is retained
here for completeness and to explore the ramifications of the two Mean sources in the models. However, because both
a fixed and a random effect are included for u in the model for the experiment, the variance component Gi and the
fixed contribution 6, occur in the EMS for the source. The EMS for the Mean row shows that the two parameters are
confounded and the value of y, incorporated in 6,,, is inseparable from the variability in g, oﬁ. This is the case for all
comparative experiments, so called, because only treatments contrasts are estimable.

2.2 | No Columns effects expected

In this section, an examination is made of the effects on the design and analysis of experiments on a grid when no Columns
effects are expected.

The anticipated model
Speculating that there will only be Rows main effects and that their effects are likely to follow a systematic trend, it is

concluded that the anticipated model should include a fixed Rows term. Thus, the symbolic anticipated model is

Mean+R +V | Mean+R:C. )
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FIGURE 3 Factor-allocation diagram showing the treatments allocation to units for a randomized complete-block design: the arrow
indicates that Varieties are allocated to Columns within R using randomization; R: Rows.

That there is a Rows main effect term in (5), but not a Columns main effect term, means that it is inherent to this model
that Columns is nested within Rows. Here, as opposed to the example in Section 2.1, the crossing and nesting inherent in
the anticipated model for the current example does not match the crossing and nesting innate to the physical site.

Design selection & construction

A design for which Columns are nested within Rows is required. An RCBD is the A-optimal design under the anticipated
model; an LSqD may be less efficient. A strategy for avoiding an efficiency loss might be to always employ an LSqD and
to omit from the analysis any block terms deemed to be unimportant. However, this is a sometimes-pool strategy (Janky,
2000), a practice that Janky argues is not applicable if a randomization argument is being used to justify the assumption of
random blocking effects; even if this argument is not being relied upon, Janky concludes the strategy should not be used
routinely because (i) it compromises the size of the Type I error rate, and (ii) there can be power losses, and power gains
that, when they occur, are generally modest.

The appropriate permutations for an RCBD are to permute (i) the Rows and (ii) the Columns within Rows. An R script
to produce and plot a randomized layout is in Supplement Section C.2 and the plotted layout is in Supplement Figure 2.
The permutation chosen for Rows was (4,2,1,3,5) and for the Columns of each Row was: (2,4,5,3,1), (2,5,1,4,3), (3,4,1,5,2),
(4,3,2,5,1), (4,3,2,1,5). These are combined to form a single, units permutation.

The factor-allocation diagram
Figure 3 exhibits the factor allocation for the RCBD. The nesting in this diagram reflects the permutations used in
randomizing the design.

The initial allocation model
The initial allocation model for this example is

Mean+V | Mean+R +R:C. (6)

Again, our design selection has been successful because the crossing and nesting encapsulated in the initial alloca-
tion model, that reflects the permutations for the chosen design, matches the crossing and nesting inherent in the
anticipated model.

The homogeneous allocation model

The initial allocation and anticipated models differ in whether Rows are random or fixed. Also, suppose that it is appro-
priate to assume that there is block-treatment additivity, as was done for the anticipated model. Thus, the initial allocation
model needs to be changed to produce a homogeneous allocation model that is the same as the anticipated model in (5).

Anatomy table

Table 2 has the anatomy table (an R script that produces the table, without EMSs, is in Supplement Section C.2). It shows
that (i) Varieties differences are confounded with differences between Columns within Rows, (ii) the design is orthogonal
and, as the anticipated model is a fixed model, it is A-optimal, and (iii) there are 16 Residual DF for estimating aﬁc.

3 | BLOCK-TREATMENT AND UNIT-TREATMENT INTERACTIONS

In Section 2, the anticipated models assumed both no block-treatment and no unit-treatment interactions, where
block-treatment interactions result from the differences between treatments not being the same in different blocks and
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TABLE 2 Anatomy table under the homogeneous allocation model for an experiment on a 5 X 5 grid of plots where no Columns effects
are anticipated: R: Rows; C: Columns; V: Varieties; EMS: expected mean square; DF: degrees of freedom.

units treatments EMS

Source DF Source DF c';c a';

Mean 1 Mean 1 1 25 u

Rows 4 1 Or

Columns[R] 20 Varieties 4 1 Oy
Residual 16 1

Total 25

unit-treatment interactions arise when differences between treatments, when allocated to the same unit if that was possi-
ble, are not the same for different units (Hinkelmann & Kempthorne, 2008, Sect. 9.6). In general, it is impossible to detect
unit-treatment interactions, but there exist circumstances in which block-treatment interactions need to be included in
the model, as is envisaged in the modification of the initial allocation model to form the homogeneous allocation model.
Indeed some commonly used approaches to model building for comparative experiments essentially incorporate all pos-
sible block-treatment interactions (Bate & Chatfield, 2016a, 2016b; Littell et al., 2006; Loughin, 2005). In this section,
situations that include block-treatment interactions are investigated.

3.1 | Therandomized complete-block design

Suppose that, during the discussion with the researcher about the design of the experiment on a 5 x 5 grid of plots, it had
been suggested that, not only were no overall column differences expected, but that Varieties may interact with Rows.
How does the factor-allocation approach deal with this situation?

The anticipated model
Presuming that the block-treatment interactions can be assumed to be random, the symbolic anticipated model is now:

Mean+R+V | Mean+R:V+R:C. @)
This model involves a random two-factor term, R:V, whose main-effect terms are fixed. As Harville (1991) suggests, this
would be inappropriate if the criterion for declaring a term to be random is that the levels of one or more of its factors must
be randomly sampled. If Rows and Varieties are not randomly sampled then this criterion mandates that R and V, and
hence the R:V interaction, are fixed. If Rows can be regarded as being a random sample, then this criterion would result
in both Rows and the R:V interaction being random. However, the criterion that we have espoused in Section 2.1 is that
a term will be random only if its effects can legitimately be viewed as conforming to a probability distribution. For this
criterion, each term’s effects are considered separately. Thus, taking the Rows main effects term, is it reasonable to assume
that a probability distribution is an appropriate model for them? Suppose there is a systematic trend across the Rows, in
which case the Rows term must be fixed, regardless of whether they are randomly sampled. Turning to the R:V interaction
effects, are these random across the Rows-Columns combinations? If yes, a probability distribution is a feasible model
and so the interaction can be regarded as a random term, irrespective of whether the Rows and Varieties effects are fixed
or random. If not, R:V should be designated as fixed.

Design selection & construction
An RCBD remains the proposed design.

The factor-allocation diagram
Figure 3 shows the factor allocation for the RCBD.

The initial allocation model
Again, the initial allocation model is in (6).
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TABLE 3 Anatomy table for the homogeneous allocation model for an RCBD with a block-treatment interaction: R: Rows; C: Columns;
V: Varieties; EMS: expected mean square; DF: degrees of freedom.

(a) Anatomy table (b) Traditional, skeleton ANOVA table

units treatments-blocks EMS EMS?

Source DF Source DF c';c a'f‘ ol 0. Source DF o2y a'i

Mean 1 Mean 1 1 25 1 " Mean 1 1 25 p

Rows 4 1 1 Or Rows 1 Or

Columns[R] 20 Varieties 4 1 1 Oy Varieties 4 1 Oy
R#V 16 1 1 R#V 16 1

Total 25 Total 25

The homogeneous allocation model

To produce the homogeneous allocation model from the initial allocation model, Rows needs to be designated as a fixed
term and the random term R:V needs to be added. The resulting homogeneous allocation model is then the same as the
anticipated model in (7).

Anatomy table

The anatomy table is in Table 3a (an R script that produces the table, without EMSs, is in Supplement Section C.2). It can
be obtained from Table 2 by (i) labeling the second major column as treatments-blocks, (ii) adding the block-treatment
interaction source R#V to the treatments sources and adding a variance component for it (wa), and (iii) replacing the
Rows variance component with a fixed contribution 8y to reflect that Rows are now regarded as fixed. As in Table 2,
Varieties is confounded with differences between Columns within Rows in Table 3a. In addition, R#V is also confounded
with Columns[R]. Indeed, Varieties and R#V together exhaustively confound the units source Columns[R], as evidenced
by the lack of a Residual source for Columns[R]. The EMSs show that variability between Columns within Rows (UIZ{C)
cannot be separated from the interaction variance of Rows and Varieties (afw), because all EMSs include both components.
Nonetheless, Varieties can be tested using the R#V mean square. This would not be the case if R:V is assumed to be fixed.

The effect of the exhaustive confounding of Columns[R] is that the variance matrix under the proposed homogeneous
allocation model is singular. Thus, the homogeneous allocation model cannot be fitted with mixed model fitting software.
An equivalent nonsingular model that can be fitted must be identified. This can be achieved by removing either of the
terms R:C or R:V, resulting in what Brien and Demétrio (2009) term a model of convenience: a model that does not include
all the possible terms at play in the experiment, but which is nonsingular and can be fitted. We would remove the block-
treatment interaction term R:V, so that the term germane to the allocations used in the design is retained. On the other
hand, Piepho et al. (2003), who give a method for formulating linear models related to ours, appear to favor removing R:C.
However, which is removed makes no difference to the fit of the model. The important point is that, whichever term is
retained, the estimated value of its variance component is the sum of the confounded components. Thus, an estimate of
ofzc isin reality an estimate of a}zzc + azRV. The nonsingular homogeneous allocation model, derived from the homogeneous
allocation model in (7) by removing the term R:V, is the same as the anticipated and initial allocation models in (5), for
which no block-treatment interaction was assumed.

The traditional approach to formulating an ANOVA for an RCBD, as expounded by Littell et al. (2006) and Loughin
(2005), does separate the blocking and treatment aspects of a design. Crucially, it does this by identifying factors that are
related to blocks in the design, rather than the full set of units factors. For the example, it would only nominate Rows as a
blocking factor and Varieties as a treatment factor, omitting Columns. Based on this, it seeks to identify experimental units
as potential sources of variation in the experiment, where an “experimental unit is defined as the smallest entity to which a
treatment is independently applied” (Littell et al., 2006, Sect. 4.2). In practice, their experimental unit is the combination of
the block and treatment factors to which the levels of the treatment factor are assigned. For the example, their experimental
unit is said to be a Rows-Varieties combination. This appears to be a contradiction in terms in that “each treatment must
be assigned to an experimental unit” (Littell et al., 2006, Sect. 4.2) and one cannot allocate Varieties to Rows-Varieties
combinations because the Variety associated with one of these combinations cannot be changed. Rather, Varieties are
randomly allocated to Rows—Columns combinations and this determines the Rows—-Varieties combination associated with
each Rows-Columns combination. Thus, it is in fact the Rows—Columns combinations that are the experimental units,
as depicted in Figure 3.
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FIGURE 4 Factor-allocation diagram showing the treatments allocation to units for a generalized randomized block design: the arrow
indicates that Zinc is allocated to Pots within B using randomization; B: Blocks.

The traditional, skeleton ANOVA table, which omits the source Columns[R], is given in Table 3b. Thus, the inability of a
traditional table to portray confounding gives the impression here that Varieties is tested against just the block-treatment
interaction, obscuring the contribution of Columns[R] to the test for Varieties. On the other hand, Table 3a makes explicit
that both the inherent random variability between Columns (units) within Rows (blocks) and the interaction between
Rows and Varieties (a block-treatment interaction) contribute to the test for Varieties. The proposed paradigm addresses
the distinction that Samuels et al. (1991) made between inherent random variability and block-treatment interaction by
including separate terms for each, as Harville (1991) suggests.

3.2 | The generalized randomized-block design

Addelman (1969) recommended the increased use of the generalized randomized-block design (GRBD), an important
reason being that it allows testing for block-treatment interactions.

A glasshouse experiment is being planned to compare the effects of four Zinc levels on plants of a medic species. It is
to involve 12 replicates and the experimental area can accommodate 48 pots in grid of four lanes by 12 positions, each pot
having a single plant.

The anticipated model

Previous experience is that the differences between pots in the same lane separated by more than two pots are likely to be
larger than between those separated by no more than two pots. Also, pots in the front pair of lanes are likely to differ from
pots in the back pair of lanes. That is, Blocks consisting of eight pots arranged in two lanes by four positions are likely
to be relatively homogeneous. Furthermore, suppose that it is thought that the response to Zinc may differ between the
Blocks. Thus, the factors for the experiment are Blocks, Pots and Zinc, and the anticipated model is

Mean+Z | Mean+ B+ B:Z+ B:P. ©)]

Design selection & construction

A GRBD is the A-optimal design. The appropriate permutations for a GRBD are to permute (i) the Blocks and (ii) the Pots
within Blocks. An R script to produce and plot a randomized layout is in Supplement Section C.3 and the plotted layout is
in Supplement Figure 3.

The factor-allocation diagram

Figure 4 exhibits the factor allocation for the GRBD. This example raises a problem for specifying the experimental unit
as the interaction of block and treatment factors, as in Littell et al. (2006). Here the experimental units are not the combi-
nations of Blocks and Zinc; they are the combinations of Pots and Blocks, but Pots is traditionally omitted because, while
it is a units factor, it is not a block factor.

The initial allocation model
The initial allocation model for this example is

Mean+Z | Mean+ B+ B:P. )

The homogeneous allocation model

The initial allocation model does not contain the term for the block-treatment interaction that is in the anticipated model.
Thus, to form the homogeneous allocation model, this term would be added to the initial allocation model so that the
resulting model is the same as the anticipated model in (8).
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TABLE 4 Anatomy table for the homogeneous allocation model for a GRBD with a block-treatment interaction: B: Blocks; Z: Zinc; EMS:
expected mean square; DF: degrees of freedom.

units treatments-blocks EMS

Source DF Source DF ok, o o o2, 2

Mean 1 Mean 1 1 8 48 2 u

Blocks 5 1 8 2

Pots[B] 42 Zinc 3 1 2 0,
B#Z 15 1 2
Residual 24 1

Total 48

Anatomy table

Table 4 has the anatomy table (an R script that produces the table, without EMSs, is in Supplement Section C.3). Using the
rules to add the EMSs to the table is illustrated in Supplement Section E.3. The table shows (i) the design is orthogonal
and so is A-optimal and (ii) the sources Zinc and B#Z are confounded with Pots differences within Blocks. It also reveals
that the denominator in an F-test for Zinc is the B#Z mean square, with 15 DF, rather than the Residual mean square with
24 DF. The block-treatment interaction B#Z is tested using the Residual mean square.

4 | FURTHER INSIGHTS PROVIDED BY CONSIDERING THE FACTOR ALLOCATION

Three examples in which time is a factor are used to illustrate how similar factors can be either allocated or recipient
factors, that recipient factors can be of interest to the researcher, that systematic allocation can be accommodated, and that
pseudoreplication causes unwelcome confounding: (i) an experiment in which measurements at different times are made
on different units; (ii) a longitudinal experiment in which repeated measurements are made on the same entity, and (iii)
a repeated-measurements experiment in which the different treatments are applied to the same entity at different times.

4.1 | An experiment with a randomized time factor

A design is required for a conventional greenhouse experiment to investigate Zinc effects on plants of a medic species.
A response over 5 weeks is to be measured, but the measurement of the response requires destructive harvesting of the
plants. It is to involve four levels of Zinc and there are to be eight replicates of the Zinc-Weeks combinations.

The anticipated model

The total number of units is 160 and pots must be arranged four deep on a long bench so that the experimental area is four
Lanes by 40 Positions. In discussions with the researcher, it is decided to maximize the precision of response differences
between the Zinc levels, the response differences between weeks being expected to be large. Because it is known that there
are differences between the front and back pairs of Lanes, it is best if a replicate of the Zinc treatments is kept within a
pair of Lanes. This implies a complete block that is two Lanes by 10 Positions. It is felt that differences between pots at
opposite ends of such a block are likely to be larger than between pots at the same end and so subdividing a block to form
main units is seen as advantageous. Thus, the factors for the experiment are Blocks, MainUnits, Pots, Zinc, and Weeks.
The anticipated model is

Mean+Z+W+Z:W | Mean+ B+ B:M + B:M:P. (10)

Design selection & construction

An orthogonal split-unit design is A-optimal under the anticipated model for Zinc and for Weeks, given that Weeks is
allocated to MainUnits within Blocks. To achieve the desired precision for the comparison of Zinc levels, a main unit
could be formed from four pots in a 2 X 2 grid and the Zinc levels randomized to the pots. Five main units are needed in
each of eight blocks to accommodate the five weeks of destructive observations, with four blocks in each pair of Lanes.
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FIGURE 5 Factor-allocation diagram showing the treatments allocation to units for the split-unit experiment that randomizes the time
factor Weeks; the arrows indicate that randomization is used to allocate Weeks to MainUnits within B and Zinc to Pots within each
combination of B and M; B: Blocks; M: MainUnits.

TABLE 5 Anatomy table for the homogeneous allocation model for a longitudinal experiment in which Weeks is randomized: B: Blocks;
M: MainUnits; W: Weeks; Z: Zinc; EMS: expected mean square; DF: degrees of freedom.

units treatments-blocks EMS

Source DF Source DF olp ol o i o o, CE

Mean 1 Mean 1 1 4 20 160 1 5 4 p

Blocks 7 1 4 20 1 5 4

MainUnits[B] 32 Weeks 4 1 4 1 4 Ow
B#W 28 1 4 1 4

Pots[B:M] 120 Zinc 3 1 1 5 6,
ZHW 12 1 1 O
B#Z 21 1 1 5
B#ZH#W 84 1 1

Total 160

The weeks are randomized to the main units. To randomize this design, permute (i) Blocks, (ii) MainUnits within Blocks,
and (iii) Pots within each combination of Blocks and MainUnits. An R script to produce and plot a randomized layout is in
Supplement Section C.4 and the plotted layout is in Supplement Figure 4. A combined, units permutation, that combines
the three permutations for this design, is applied as a single randomization by designRandomize from dae.

The factor-allocation diagram
Figure 5 exhibits the factor allocation.

The initial allocation model
The initial allocation model for this example is the same as the anticipated model in (10).

The homogeneous allocation model
Here a policy of including all possible block-treatment interactions is followed and these need to be added to the initial
allocation model to yield the following homogeneous allocation model:

Mean+Z+W+Z:W | Mean+ B+ B:Z+ B:M + B:W + B:Z:W + B:M:P. (11)

Anatomy table

The anatomy table, without EMSs, was produced using the R script in Supplement Section C.4 and the EMSs derived
using the rules in the Appendix, resulting in Table 5. It shows that the sources Weeks and B#W are confounded with
MainUnits[B]. The remaining treatments sources are confounded with Pots[B:M]. It also shows that the only variance
components that are separately estimable are those for Blocks and B:Z. To fit the homogeneous allocation model, terms
would need to be removed, for example, B#W and B#Z#W. While hypothesis tests for all three fixed effects are possible,
the F-test for the Zinc main effect would use the B#Z mean square, which has 21 DF, as opposed to the B#Z#W mean
square with 84 DF. If the block-treatment additivity is assumed then the tests for Zinc and Z#W would be against a
Residual mean square with 105 DF. The model under this assumption, the initial allocation model in (10), is equivalent to
a randomization model and a randomization analysis is available.
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FIGURE 6 Factor-allocation diagram showing the treatments allocation to units for the longitudinal experiment that uses a generalized
randomized block design: the arrow indicates that Zinc is allocated to Pots within B using randomization; B Blocks.

4.2 | Afactor of interest that is not allocated: a longitudinal experiment

It often happens that the factors of interest are the treatment factors that have been allocated in the design for an exper-
iment. However, it is also common for factors intrinsic to the units, and so (potential) recipient factors, to be of interest
also. Some examples are Times of observation in longitudinal studies, the Sex of animals in animal studies, and Tasters in
sensory evaluation experiments. These factors block the units, and interactions between them and treatment factors are
block-treatment interactions that are often of interest to researchers.

Consider an experiment in a glasshouse that has equipment to automatically image plants daily, the images being
processed to produce a measure related to plant biomass. Suppose that the experiment to investigate the effects of four
levels of Zinc on medic plants, discussed in Section 3.2, is to be run in this glasshouse and that the plants are to be imaged
over 14 Days.

The anticipated model

The factors for this experiment are Blocks, Pots, Zinc, and Days. The anticipated model for this experiment extends the
anticipated model for the GRBD in Section 3.2 by adding terms for the longitudinal factor Days and all interactions of
the GRBD terms with Days. Here, Days is acting as a blocking factor by grouping the units according to when they were
produced. Experience with such experiments suggests that smooth trends over the Days and random deviations from these
trends can be expected for some terms involving Days; it is also thought possible that there will be correlations between
Days and that Days variances will be heterogeneous. The anticipated model is

Mean + Z + td(D) + Z:td(D) | Mean + B + dev(D) + Z:dev(D) + B:td(D) + B:dev(D) 12)
+B:Z + B:P + B:Z:D + B: P:sch(D),

where td(D) indicates a smooth trend over Days, dev(D) indicates random deviations from a smooth trend over Days, and

sch(D) allows for serial correlation (sc) between Days and for heterogeneous (h) Days variances. The form of the smooth

trend and the correlation between Days are left unspecified.

Design selection & construction
It was established, in Section 3.2, that a GRBD is the A-optimal design for allocating Zinc to Pots. An R script to produce
and plot a randomized layout is in Supplement Section C.5 and the plotted layout is in Supplement Figure 5.

The factor-allocation diagram

Figure 6 exhibits the factor allocation for the longitudinal experiment. Of note is that Days is a recipient factor, not being
allocated; it forms “blocks” of units and is intrinsic to the units, the units being pots-days combinations. While these
experiments have been referred to as split-units-in-time (e.g., Steel & Torrie, 1960), they are not true split-unit designs
because Days is not allocated, being a recipient factor, and Days are not nested within Pots. This is in marked contrast
to the experiment in Section 4.1 where the time factor Weeks is randomized, and so an allocated factor, and the subunits
factor Pots is nested within MainUnits. However, like Weeks and in spite of being a units factor, Days is of interest because
growth trends for the different Zinc levels are to be compared. In conclusion, because of the very different allocations for
this type of experiment compared to the split-unit design, we contend that split-unit-in-time is a misnomer that serves to
obscure several of its features, which will be elaborated upon below.

The initial allocation model
The initial allocation model for this example is

Mean+Z | Mean+ B+ B:P+ D+ B:D + B:P:D. (13)
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TABLE 6 Anatomy table for the homogeneous allocation model for a longitudinal experiment that uses a GRBD: B: Blocks; P: Pots; D:
Days; Z: Zinc; EMS: expected mean square; DF: degrees of freedom.

units treatments-blocks EMS
Source DF Soturce DF . o o2, o2 o L. o,
Mean 1 Mean 1 1 8 14 112 672 2 28 u
Blocks 5 1 8 14 112 2 28
Pots|[B] 42 Zinc 3 1 14 2 28 0,
B#Z 15 1 14 2 28
Residual 24 1 14
Days 13 1 8 2 6b
B#D 65 1 8 2
D#P[B] 546 Z#D 39 1 2 67p
B#Z#D 195 1 2
Residual 312 1
Total 672

This model differs from the initial allocation model for a split-unit design given in (10) in that it includes terms that have
Days combined with other units factors, but not Days combined with the treatments factor Zinc. In particular, the term
B:D is automatically included because of the relationships between the units factors; it is not always included in the model
for the split-unit-in-time, as it should be (Piepho et al., 2004). The interaction terms Z:D and B:Z:D are not included here
because they are block-treatment interactions in that they involve both treatments and units factors.

The homogeneous allocation model
The homogeneous allocation model, obtained from the initial allocation in (13) by moving Days to the expectation model
and adding the terms for the block-treatment interactions that are in the anticipated model, is

Mean+Z+D+Z:D | Mean+ B+ B:Z+ B:P+ B:D + B:Z:D + B:P:D. (14)

That is, the only difference between a term in this model and the term with the same factors in the anticipated model is in
their parameterizations. Restricting the homogeneous model to the assumption of uniform covariance for all of its terms
retains the possibility of forming an anatomy table incorporating sources for all of its terms. Of course, the anticipated
model would provide a good initial model for the analysis of observed responses.

Anatomy table

The R script in Supplement Section C.5 was used to produce the anatomy table, without EMSs, and the EMSs derived using
the rules in the Appendix, yielding Table 6. As in Table 4, it shows that Zinc and B#Z are confounded with Pots[B]. It also
shows that Z#D and B#Z#D are confounded with D#P[B] and that Zinc and Z#D can be tested against the Residual for
D#P[B]. What this table does show is that, like the anatomy of a split-unit design with block-treatment additivity, there are
two Residual or error terms, and hence the use in the past of split-unit-in-time. Here, the block-treatment interactions B#Z
and B#Z#D can be tested. However, because Days are not randomized, a randomization test (Hinkelmann & Kempthorne,
2008, Sect. 6.5) is not available for Z#D, an interaction of interest (cf. the example in Section 4.1), and so any test must
either use an assumed model or be a permutation test. This is not obvious from the split-unit-in-time analysis.

4.3 | Arepeated-measurement experiment with systematic allocation of treatments

Farewell and Herzberg (2003) describe a pain-rating experiment that is a two-phase experiment. Here, only the first phase,
in which patients self-assess for pain while moving a painful shoulder joint, is considered. It involved eight patients, each
of whom were observed on two occasions. Four of the patients had been judged to be expressive patients, having high
levels of pain, and the other four had been judged to be unexpressive patients, having low levels of pain. Two motions are
to be allocated to the two occasions for each patient: active motion performed by the patient without assistance and passive
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4 Patients in E
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2 treatments 16 units

FIGURE 7 Factor-allocation diagram showing the treatments allocation to units for the Farewell and Herzberg pain experiment; the
dashed arrow indicates that the allocation of Motions to Occasions is systematic; E: Expressiveness.

TABLE 7 Anatomy tables for the homogeneous allocation models with Occasions (a) crossed with and (b) nested within Patients and
Expressiveness for the Farewell and Herzberg pain experiment: E: Expressiveness; P: Patients; M: Motions; EMS: expected mean square; DF:
degrees of freedom.

(a) Occasions crossed (b) Occasions nested

treatments- treatments-
units blocks EMS units blocks EMS
Source DF Source DF o7, o7, o, 6. Source DF Source DF o} = 0., 0. 6
Mean 1 Mean 1 1 2 16 0, Mean 1 Mean 1 1 2 16 6,
Expressiveness 1 1 2 Ok Expressiveness 1 1 2 Ok
Patients[E] 6 1 2 Patients[E] 6 1 2
Occasions 1 Motions 1 1 Boem® O[E:P] 8 Motions 1 1 ht?
O#E 1 M#E 11 BopemE’ M#E 11 Oz
O#P[E] 6 1 Residual 6 1
Total 16 Total 16

2The subscripts of the Os indicate that the fixed source on the right of the left arrow is confounded with the fixed source on the left.
®The sources for these 8s are confounded with the source O[E:P] that has been omitted from the 6 subscripts because both sources are only confounded with the
random source O[E:P] and so neither 6 involves O[E:P].

motion in which a therapist guided the patient’s limb through its range of movement. The response is a pain rating made by
each patient on each of the occasions that they underwent a shoulder motion. The experiment is a repeated-measurement
experiment. It differs from the longitudinal example in Section 4.2 in having treatments (Motions) assigned to the time
factor (Occasions) so that interest focusses on treatments, rather than times, differences. Because the design is already
known, it is evaluated without formally employing the paradigm.

The factors for the experiment are Expressiveness, Patients, Occasions, and Motions, with Motions allocated to the
Occasions for each Patient. The factor Expressiveness is an inherent characteristic of each patient and so Patients is nested
within Expressiveness. The factor Occasions is crossed with Expressiveness and Patients because, for all eight patients,
the first occasion has the consistent property that it occurs before the second occasion. However, for the example, the
motions were completed in the standard clinical order of active then passive (Brien, 2022). That is, they are systematically
allocated to Occasions and hence the dashed arrow in the factor-allocation diagram given in Figure 7.

The homogeneous allocation model is

Mean+ M+ E+ME+O+O:E | Mean+ E:P+ E:P:O.

This model includes the term M:E, a term that gives rise to a block-treatment interaction. It also assumes that the units
terms E and O:E are fixed.

The anatomy table is in Table 7a. It shows that a test between patients with different Expressiveness is possible. However,
Motions and Occasions are inextricably confounded with each other, inextricable confounding being a special form of
exhaustive confounding in which there is only one allocated source confounded with the units source. The result is that
their effects are inextricable in that they cannot be separately estimated. Further contributing to this is that both terms are
fixed, as indicated by 8. Similarly, the two fixed terms M#E and O#E are inextricably confounded. Pseudoreplication
of Motions is the cause, each Motion occurring on only one Occasion for each patient.

The inextricable confounding would be rectified if it is appropriate to assume that there is no Occasions main effect so
that Occasions is nested within Patients. Along these lines, one might regard any order effect related to Occasions as being
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FIGURE 8 Factor-allocation diagram showing the treatments allocation to units for a Youden square design: the arrow indicates that
the allocation is randomized; the “O” at the end of the arrow indicates that a nonorthogonal design was used; the two lines from the “O”
indicate that the Products are allocated to the combinations of Tasters and Evaluations using the design. (cf. Figure 2).

necessarily absorbed into the clinical procedure. The anatomy table for nested Occasions is in Table 7b. This analysis is the
same as for a GRBD, with Expressiveness acting as a block factor and M#E being a block-treatment interaction of interest.
Tests for both M and M#E are available in this analysis. Clearly, in designing this experiment a crucial question is whether
the design needs to account for an Occasions order effect. The use of the function designAnatomy from the R package
dae to produce the anatomy tables for the homogeneous allocation models, for both crossed and nested Occasions, is
demonstrated in the R script in Supplement Section C.6. The EMSs were derived using the rules in the Appendix.

5 | ANONORTHOGONAL DESIGN

A sensory evaluation experiment is planned to assess eight food products using seven tasters, each of whom will evaluate
all eight products.

The anticipated model.

The factors involved in the experiment are Tasters, Evaluations, and Products. It is thought that overall differences between
both the Tasters and Evaluations are likely and that Tasters’ evaluations of the Products may differ. Carry-over effects from
a Taster’s earlier evaluations are not expected. Thus, the anticipated model is

Mean+P | Mean+ T+ E+T:P+T:E. 5)

Design selection & construction.

Given the anticipated model, a row-column design is required and the Youden square design (YSD) for eight treatments
(Cochran & Cox, 1957, Tab. 13.2) is the universally optimal design under the anticipated model or any alternative designa-
tion of Evaluations and Tasters as either fixed or random (Shah & Sinha, 1989). It is a nonorthogonal design, because it has
canonical efficiency factors not equal to one so that the A-efficiency is also not one. The appropriate permutations for a
YSD are the same as for the LSqD. An R script to produce and plot a randomized layout is in Supplement Section C.7 and
the plotted layout is in Supplement Figure 7.

The factor-allocation diagram.
Figure 8 exhibits the factor allocation for the YSD.

The initial allocation model.
The initial allocation model for this example is

Mean+P | Mean+ T+ E+TE. (16)

The homogeneous allocation model.

The initial allocation model does not contain the term T:P for the block-treatment interaction that is in the anticipated
model. Also, given that the A-efficiency for the design is 0.98, only 2% of the Products information is confounded with
Evaluations; this information could be ignored in estimating Products main effects, as would happen if Evaluations is
assumed to be fixed. Thus, the homogeneous allocation model, based on the initial allocation model in (16), is

Mean+E+P | Mean+ T+ T:P+ TE. a7)
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TABLE 8 Anatomy and traditional, skeleton ANOVA tables for the homogeneous allocation model for a YSD with a block-treatment
interaction: T: Tasters; E: Evaluations; P: Products; EMS: expected mean square; DF: degrees of freedom; Eff: A-efficiency

(a) Anatomy table. (b) Traditional, skeleton ANOVA table

units treatments-blocks EMS EMS

Source DF Eff* Source DF o3 o o. o, ©OF Source DF o, o2 o, 6

Mean 1 1.00 Mean 1 1 8 56 1 u Mean 1 1 8 56 "

Tasters 6 1 8 1 Tasters 6 1 8

Evaluations 7 0.02  Productsg 7 1 1 Bt p Evaluations 7 1 Ok

THE 42 0.98 Productsyy 7 1 1 Orgrp Products (Adj.) 7 1 Op(adj)
1.00 T#P 35 1 1 T#P 35 1

Total 56 Total 56

2Each Eff is the A-efficiency value for a treatments source when it is confounded with the units source aligned with or immediately to the left.

PEach 6. is a quadratic form in the expectation of a response variable, with the subscript indicating the source whose scaled projection matrix is the matrix of the
quadratic form. The subscript E < P connotes that the matrix of the quadratic form is the scaled projection matrix for Products confounded with Evaluations and,
as both source names do not have asterisks, they are fixed sources. On the other hand, 6Tg: _p indicates the matrix of the quadratic form is the scaled projection
matrix for Products confounded with T#E and that T#E is a random source, so that only Products will contribute to the expectation.

Anatomy table

The anatomy table is in Table 8a. It includes a major column that is labeled treatments-blocks because it involves the block-
treatment interaction T:P. Being a nonorthogonal design, the table involves partial confounding that is exposed in the
table by a treatments source being confounded with multiple units sources. To portray how much treatment information
is associated with each units source, the table includes a column of A-efficiency values for treatments-blocks sources. All
of the other designs in this paper have their A-efficiency column omitted because their A-efficiency values are all one, that
is, they are orthogonal.

Table 8a shows that, while no Products information is confounded with Tasters, Products is partially confounded with
both Evaluations and T#E, there being two Products sources that are differentiated by subscripts that are the abbreviated
names for the sources with which they are partially confounded; the amounts of Products information confounded with
E and T#E are 2% and 98%. Each of the Products sources has seven canonical efficiency factors and so their DFs are seven.
The number of unique values of the canonical efficiency factors for a treatments(-blocks) source confounded with a units
source is called its order of balance. For balanced designs, such as the YSD, all treatments(-blocks) sources are order one
and the single value of the canonical efficiency factors for a treatments(-blocks) source is its A-efficiency. The smallest
entity with which Products is confounded is T#E, each entity being a single unit. An A-optimal design must have the
maximum possible A-efficiency for Productsrg; the YSD being A-optimal, 0.98 is the maximum possible for a design of 7
rows X 8 columns for eight treatments.

There is also partial aliasing in that only 35 of the 42 DF for T#P is estimable, the other seven DF being aliased with Prod-
ucts when Products is estimated from the source T#E. It is termed aliasing, rather than confounding, because it involves
two sources, Productsty and T#P, that are associated with the same panel; both sources include Products. However, the
estimable part of T#P is confounded with T#E.

Because of the partial aliasing, the EMS rules in the Appendix cannot be used directly. However, it is shown in Sup-
plement Section F that the rules can be applied by transferring U%P from treatment to units, and adding it to U%E (see
also Example A3 in the Appendix). The EMSs in Table 8a reveal that (i) G%E and ‘7'2r1> are not separately estimable, (ii) the
fixed effects of E and Productsg cannot be separately estimated and so the Products main effect must be estimated using
Productstg, which is of little consequence seeing that Productstg contains 98% of the Products information, and (iii) an
F-test for the Products main effect would use the ratio of the Productstg mean square to the T#P mean square. The use
of the function designAnatomy from the R package dae to produce the anatomy table, with A-efficiency criteria and the
orders of balance, but without EMSs, is demonstrated in the R script in Supplement Section C.7. Also produced is a table
that details the partial aliasing.

Table 8b shows the traditional, skeleton ANOVA. This ANOVA decomposition is equivalent to that in the anatomy
table. In particular, the Products(Adj.) source and the Productsrg source are the same and 8p(sqj) equals Op._rg:. However,
Table 8b does not provide the insights into the properties of the experiment to same extent as Table 8a: it does not reflect the
partial confounding of Products with two units sources, draw attention to the partial aliasing of T#P or separate inherent
random variability and block-treatment interaction, the sources THE and T#P being merged into a single source. Indeed,
the terms in Table 8b are fitted in order from top to bottom and all intermingling of information may well be characterized
as aliasing, rather than confounding (see, e.g., Chambers et al., 1992, Sect. 5.3.2).
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For this example, the homogeneous allocation model is singular, reflecting that T:P is not separately estimable for this
design. To be able to fit a model, a nonsingular model must be identified. Omitting either T:E or T:P will result in a
nonsingular model, such as the following model that results from the removal of T:P:

Mean+E+P | Mean+ T+ T:E.

2

For this model, the estimate of G%E actually estimates o7

gt G%P, that is T:P is not separatelestimable.

6 | DISCUSSION

The paradigm outlined in Figure 1 provides a conceptual framework for designing experiments. While we acknowledge
that strict adherence to the steps outlined is not always necessary, the use of its core elements, the identification of the
treatments and units factors, the inclusion of block-treatment interactions and the production of an anatomy table with
EMSs, provides a designer with the following benefits that are not available using the traditional ANOVA approach:

* An appreciation of the distribution of treatments information across the units sources, this being provided by an explicit
depiction of the confounding in a design. As well as gaining an understanding of the design’s properties, it aids in the
evaluation of its suitability for an experiment.

* A capacity to check that the randomized layout for an experiment has been correctly generated. Typos and programming
mistakes can be detected.

» The ability to separately consider the likelihood of block-treatment interactions and sources of inherent random unit
variability at the design stage, and, if necessary, allow for them in the design.

* An automatic warning in the anatomy table when the design involves pseudoreplication.

* The means to display singularities in the variance model.

To achieve these benefits does require keeping to the discipline of including ALL units factors, rather than just blocking
factors, in the description and models of a design. It is the authors’ experience that a failure to do so often results in mistakes
in the description of the experiment and the analysis. For instance, in Section 4.3, Occasions has not been included in
previous descriptions of this experiment and so the systematic allocation and the pseudoreplication of Motions had not
been recognized. At the very least, the pseudoreplication should be acknowledged when reporting the experiment.

The major issues highlighted by the paradigm are now summarized.

Anticipated effects determine the design for an experiment

Whether or not an anticipated model is explicitly formulated, the anticipated effects are crucial to the choice of a design
for an experiment. The factor allocation involved in the chosen design will need to be restricted to reflect the crossing and
nesting of factors inherent in the anticipated effects, rather than the crossing and nesting of the factors intrinsic to the
physical setup of an experiment. That is, the nesting and crossing of factors arising from the allocations should match that
associated with anticipated effects, as has been demonstrated using alternative designs for a 5 X 5 grid of plots in Section 2.

Understanding the confounding intrinsic to a design is valuable

Using software, such as the R package dae, to produce an anatomy table that exhibits the confounding arising from a
proposed layout for an experiment is crucial to understanding the confounding. We urge designers to always produce
the anatomy table for a proposed design, even if other aspects of the paradigm are not adopted, and to do this using
software, rather than manually, in order to validate one’s perception of the confounding. It is particularly appropriate
for designs whose models have multiple errors, such as designs with split-units, repeated-measurements designs, and
nonorthogonal designs.

Fundamentally, the confounding indicates how the treatment information is distributed between the units sources,
from which the proper error for each treatments source can be gleaned. This is equivalent to identifying the experimen-
tal unit, because an experimental unit for a treatment factor can be defined as the smallest entity, identified by the units
factors in a source, with which a treatment source is confounded. For example, the experimental unit for Zinc for the
GRBD in Section 3.2 is a pot in a block, Zinc being confounded with Pots[B]. However, this requires that the factors
are separated into treatments and units factors and ALL units factors for the design are included. The alternative where
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some units factors are omitted so that experimental units must be specified using block-treatment interactions is problem-
atic: (i) it is incongruous to speak of allocating treatments to block-treatment interactions; (ii) the experimental units do
not always correspond to block-treatment interactions, for example, for the GRBD. Furthermore, it leads to all variation
between experimental units being interpreted as block-treatment interactions and obscures the contribution of inherent
unit variability.

A particular advantage arises when a design involves pseudoreplication so that a treatments effect is inextricably con-
founded with a units effect (e.g., Section 4.3). This characterization of the problem with pseudoreplication is more readily
comprehended by researchers than the more usual explanation of the treatments not being appropriately replicated; it
directly addresses the problem that arises.

Block-treatment interaction differs from inherent random unit variability

The paradigm distinguishes between these two different types of variation and allows different strategies to be employed
with respect to the inclusion of block-treatment interactions in linear mixed models for comparative experiments. Two
extreme strategies are: (i) always assume block-treatment additivity and (ii) always include all block-treatment interac-
tions. A motivation for employing (i) is that, when all allocations are randomizations, it produces a randomization model
and randomization tests are available. Strategy (ii) is perhaps driven by the practice of identifying experimental units in
terms of block-treatment interactions. Here we have employed an intermediate strategy of only including block-treatment
interactions that are thought to be relevant for the current experiment, this being consistent with the strategy of formu-
lating an anticipated model. They are particularly relevant when units factors are of interest to the researcher, as for the
examples in Sections 4.2 and 5. Nonetheless, the paradigm that we have outlined has the flexibility to allow one to choose
any of the three strategies as a default strategy.

It is left to the reader to choose their own strategy, but the inclusion of block-treatment interaction can affect the prop-
erties of a design. Three situations arise: (i) no differences between analyses based on additivity and on nonadditivity
(Section 3.1); (ii) only some block-treatment interactions can be estimated separately (Section 4.1); and (iii) block-treatment
interactions can be estimated separately from inherent random variability (Section 3.2). For (ii), it does not seem satis-
factory to test only some of the block-treatment interactions. More serious effects from the addition of block-treatment
interactions are: (i) hypothesis tests for effects of interest may entail denominator mean squares with reduced DF, and (ii)
randomization tests are no longer appropriate.

Allocation differences elucidate experiment differences

The three experiments in Section 4 have in common that time is a factor. However, they differ in whether the time factor
is an allocated or a recipient factor and whether treatment factors are allocated to the time factor. Only when the time
factor was allocated, as in Section 4.1, was a split-unit design used and randomization inferences involving the time factor
are possible. The other two experiments are repeated-measurements experiments, in which observations are made on
an entity over time and/or space, and the time factor is a recipient factor. The example in Section 4.2 is a longitudinal
experiment because there are no treatments allocated to its time factor and, as in the split-unit experiment, the time
differences are of interest. For the example in Section 4.3, the time factor Occasions is of no interest.

Factor allocation provides the basis for determining a linear mixed model

The terms in a linear mixed model should be based on the factor allocation used for the design to ensure that the terms
appropriate to this allocation are included in the initial allocation model. The first benefit of this is that, if all allocations
are randomized, the initial allocation model will be equivalent to a randomization model. Second, an anatomy based
on the homogeneous model will reflect the confounding induced by the allocations, the only difference between the
initial and homogeneous allocation model, as far as what terms they contain, being that the latter model includes block-
treatment interactions. These interactions are incorporated to account for effects that might occur in practice. Also, as
Brien and Demétrio (2009) suggest, a third stage of model modification may be necessary to produce an initial model
for data analysis that they term a prior allocation model; in this stage, model terms may be reparameterized to include
trend terms and/or random effects that are not assumed to be independent and identically distributed. The longitudinal
experiment in Section 4.2 is an example where this is likely to be the case.

Pedagogical advantages
We assert that, given the benefits outlined above, our approach to designing experiments has pedagogical advantages. In
particular, with the ongoing shift from ANOVA to mixed model fitting as the prime method of analyzing an experiment’s
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data, an understanding of how treatments information is distributed across the units sources for a design has become
increasingly difficult to acquire. We argue that assessing designs using anatomy tables can help to reverse this trend.

Support in R

The paradigm is supported by the R package dae (Brien, 2023), as is illustrated in Supplement Section C. The functions
in dae require a systematic design to be supplied, which is straightforward for orthogonal designs like RCBDs, LSqDs,
and split-unit designs, including the Loughin (2005) design. For nonorthogonal designs, either a catalog of designs or
software that searches for optimal designs (odw (Butler, 2022) is an R package) is required. In the case of computer searching
for optimal designs, it is commonly thought that, because random interchanges of treatments are employed, the design
has been randomized. However, while a random design may have been generated, it cannot be guaranteed that is has
the property required for it be properly randomized, namely, that, given the restrictions of the blocking structure, all
treatments had the same probability of being allocated to each unit. Their proper randomization can be ensured by using
the function designRandomize from dae.

For more complicated design, it can be useful to verify that the appropriate model terms have been specified, given
the nesting and crossing of factors inherent in the anticipated model and which is captured in the factor allocation dia-
gram; this has been achieved in the R scripts in Supplement Section C by using crossing and nesting operators in the
designAnatomy functions calls.
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APPENDIX: RULES FOR OBTAINING THE EXPECTED MEAN SQUARES FOR A DESIGN USING AN
ANATOMY TABLE

The rules for obtaining the expected mean squares (EMSs) given here apply to experiments in which the anatomy table
is formed from a set of units sources and a set of treatments sources for which (i) the sources within each set of sources
are mutually orthogonal, (ii) the set of treatment sources is structure-balanced with respect to the joint decomposition of
the sets of treatments and units sources (Brien, 2019), (iii) fixed and random terms are not constrained to correspond to
treatments and units terms, respectively, and (iv) allow for when a fixed source is confounded with other fixed sources.
The rules may apply when these conditions are not met. For example, when the design is not structure-balanced because
it involves aliasing, but it is first-order balanced because all of the orders for the design are one (for an example, see
Section 5). They are also likely to apply when any unbalanced sources are for fixed treatment terms only. The derivation
of these rules is outlined in Supplement Section E.

These conditions can be checked with the designAnatomy function in the R (R Core Team, 2023) package dae (Brien,
2023). For structure-balanced designs, all orders are one and there is no partial aliasing; an orthogonal design is a
structure-balanced design for which all aefficiency values produced by dae are one.

The anatomy tables that have been presented in this paper consist of three major columns, labeled as follows: (i) units,
(ii) treatments or treatments-blocks, and (iii) EMS. In a row, there will be either (i) just a units source, (ii) the Residual of
a units source, or (iii) a units source and a treatments(-blocks) source that is confounded with the units source; the source
for (iii) is a joint source. For each row, there is a single EMS.

The rules are now presented and are followed by some examples of their application.

For each row in the anatomy table: The EMS consists of the sum of contributions for each source in the row, these sources
being the right-most source in the row and those sources with which it is confounded, if any; that is, contributions from
either a single units source or two sources that come from different major columns in the table. Determine the EMS for a
row as follows:

Obtain the random contribution for each contributing source in the row: The random contribution for a source is a linear
combination of the variance components for terms from the same major column as the source.
Beginning with the left-most column of sources and continuing across to the right-most source for that row, obtain
the linear combination that is the random contribution for each of these sources (ignore Residual sources) as
follows:

1. For the current source, identify its term: it is comprised of all factors in the current source and it is referred
to as the current term. Both are represented by abbreviated names formed from the initial capital letters of
the factors that comprise them. If the source is not from the first major column and it is confounded with the
units source for the current row, ascertain the value of the A-efficiency criterion for the current source in the
current row, the value being the harmonic mean of its canonical efficiency factors.

2. For the current source, determine its random contribution to the EMS for the row: it is the linear combination
of the variance components for all random terms to which the current term is marginal; that is, the column
space for the current term will be a subspace of the column space for each of these random terms.

If the current term is random, also add its variance component to the linear combination.

The coefficient of each variance component in the linear combination is the number of replicates of the
observed combinations of the levels of the factors in the component’s random term; it is calculated as the
number of observations for which the experimental design has been generated divided by the number of
observed combinations of the levels of the factors in the component’s random term.

If the current source is not a units source, then the linear combination is now multiplied by the value of the
A-efficiency criterion for the current source in the current row.

Form the EMS for the row: It is the sum of the random contributions of its sources, that is, the sum of the linear
combinations, to which is added a fixed contribution, provided at least one fixed source is involved in the row.
The fixed contribution for a row, 0, is a quadratic form in the expectation for a response. Here, the 6 for a row is
specified by nominating the matrix of the quadratic form for the row using a subscript that is a list of the abbreviated
names for sources in the row, beginning with the left-most source and proceeding to the right-most source and with
sources separated by left arrows («). The left arrow indicates that the source at the tail is (partially) confounded
with the source at the head of the arrow; thus, the matrix of the quadratic form is the projection matrix for the part
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of the source at the head that pertains to the source at the tail. All sources in the subscript are fixed unless they are
asterisked, in which case they are random sources; note that while the projection matrix may incorporate random
sources, only fixed sources have terms that contribute to the expectation.

Suppose that we have allocated source A confounded with recipient source B. Thus, 8- _ 5 indicates that the matrix
of the quadratic form is the scaled projection matrix for the part of B that pertains to A, where A is fixed and B is
random. Consider the Os for the four combinations of the A and B sources being either fixed or random:

Both fixed: Og_x;

Only A fixed: Og«_4 or, if A is only confounded with B, 8,; while B may affect the projection matrix for the
quadratic form, it is not involved in the expectation;

Only B fixed: 6.5+ and Op,_, where Bi- means that part of the recipient source B that is orthogonal to all allocated
sources; A only plays a role in the projection matrix for the quadratic form, it making no contribution to the
expectation;

Both random: no 6 is applicable.

If there is no allocated source confounded with B and B is fixed, then the 6 is O5.

Example Al. Take the Rows line in the body of Table 1a; its right-most source is the Rows source and it is the only
source.

We begin with the left-most source Rows that comes from the units major column. Its term is R and an A-efficiency
criterion does not apply. The only random term in the units major column to which R is marginal is R:C. Also, Ris a
random term. Then the random contribution for the current source is a linear combination of the variance components
for R:C and R. The numbers of replicates for these terms are 1 and 5. Thus, the contribution of Rows is alic + Saﬁ.
There are no other sources in this line to contribute. The EMS for the line is just the Rows contribution, as shown in
Table 1a.

Example A2. Take the line in Table 1a that includes Varieties. Its right-most source is Varieties and is confounded with
R#C.

4.

We begin with the left-most source R#C, that is a units source. Its term is R:C and an A-efficiency criterion does not
apply. It is a random units term and, being an identity term, there is no random term to which it is marginal; so it is
the only random contribution for this source. The number of observed combinations of the factors in R:C equals the
number of observations. Thus, the coefficient of its variance component is 1 and the contribution of R#C is Géc‘

The next source in the line is Varieties from the treatments major column. Its term is V and it is a fixed treatments term.
There are no random terms from the treatments major column to which it is marginal, it being the only treatments
term. Thus, there is no random contribution from the treatments major column in this line of the table.

The only fixed source in the current line of the table is Varieties and its contribution is Ogc+v; given that Varieties is
only confounded with R#C, the fixed contribution simplifies to 6y,.

The EMS for the line is the sum of the random and fixed contributions, as shown in Table 1a;

Example A3. Take the row of Table 8a that contains the source Productsg. It is the right-most source and is confounded
with Evaluations. The rules apply, even though T#P is partially aliased with other treatments sources, because if this
source is omitted then the design is structure-balanced.

We begin with the left-most source Evaluations, which is a units source. Its term is E and an A-efficiency criterion does
not apply; it is a fixed term. The only units term to which it is marginal is T:E. Thus the random contribution for the
current source is the variance component for T:E, with coefficient one.

The next source is Productsg, a treatments source, whose term is P. It is a fixed term and the source has A-efficiency
0.02. The only random treatments term to which it is marginal is the identity term T:P. Thus, the random contribution
for the current source is the variance component for T:P, with coefficient one.
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3. The combined random contribution to the EMS is o7 + 02,

4. There is a units and a treatments fixed source involved in this row of Table 8a. The fixed contribution 6 for this row is
Orp- Thus, the EMS for the row is the sum of the combined random contribution and the fixed contribution: O'%E +
025 + Opp, as shown in Table 8a.
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