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Background: Alzheimer’s disease (AD) is the leading cause o major neurocognitive disorders, aecting

approximately 50 million people worldwide. Due to its high prevalence, AD signicantly impacts patients’

quality o lie and poses a substantial challenge to healthcare systems. Diagnosis is intricate, with specicity

and sensitivity rates alling below the ideal. Early identication o AD is essential to increase the eectiveness

o pharmacotherapeutic treatment and improve quality o lie. Consequently, there is a quest or innovative

methods, such as machine learning and deep learning, to automate the diagnosis o AD in its early stages.

Methods: We developed and validated a convolutional neural network (CNN) algorithm using the Keras

Sequential API in Python to investigate the impact o slicing T1-weighted magnetic resonance images on the

classication o patients with mild cognitive impairment (MCI) and healthy patients (NC), grouped based on

scores on the Mini-Mental State Examination (MMSE). We selected 318 patients (250 healthy and 68 MCI)

with a minimum o 16 years o education (equivalent to a completed undergraduate degree). The training,

testing, and validation datasets were split in a 70/15/15 ratio or each slice.

Results: The CNN achieved high accuracy values in classiying healthy and MCI groups, ranging

between 97% and 99% depending on the slice, the number o training epochs, and batch size. In addition

to precision, the F1-score, recall, and precision parameters were also evaluated, with values above 91%.

Generally, the coronal slice produced the best results, ollowed by the axial and the sagittal slices, which

nevertheless showed high perormance, standing out individually in dierent evaluation parameters. Notably,

the choice o batch size and the number o epochs also infuenced the network’s classication.

Conclusions: Our study ndings indicate that utilizing CNN in conjunction with selecting a coronal slice

proves to be a promising tool or acilitating the early-stage diagnosis o neurodegenerative diseases, such
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Introduction

Background

The aging o the population has led to an increase in

the prevalence o chronic diseases, particularly among

those aged 65 years and older. One class o diseases that

is particularly prominent is neurodegenerative diseases,

especially Alzheimer’s disease (AD) (1-3), a progressive

neurodegenerative disorder that results in progressive

neuronal death. Currently, AD is identiied as the leading

cause o major neurocognitive disorder (MNCD), or

dementia, worldwide (4), accounting or 50–70% o all

cases (5). AD symptoms typically begin with memory

issues, primarily aecting recent memory. As the disease

progresses, patients start experiencing more pronounced

cognitive diiculties, such as problems with speech,

comprehension, and decision-making, ultimately leading to

the inability to perorm basic daily activities (6).

It is estimated that up to 75% o patients aected by

dementia have not received a proper diagnosis (7). This

act underscores the need to develop a highly accurate

methodology to diagnose these conditions quicker and more

precisely, capable o distinguishing similar presentations.

The pharmacological approach to AD demonstrates greater

ecacy when implemented in the early stages o the disease,

where patients exhibit only mild cognitive impairment

(MCI). Such interventions signiicantly contribute to

delaying disease progression and mitigating the emergence

o more severe symptoms. Given this, and the aim to

improve the patient’s quality o lie, developing a tool that

assists in early-stage AD diagnosis is imperative today (8-12).

The diagnosis o AD is complex. It necessitates a highly

qualiied neurologist who must comprehend both the

patient’s clinical and amily history, conduct appropriate

neuropsychological tests such as the Mini-Mental State

Examination (MMSE), and interpret imaging tests like

magnetic resonance imaging (MRI), which can reveal

characteristic disease-related indings (13,14). Due to its

reliance on multiple interpretative actors, the diagnostic

methodology contends with wide sensitivity intervals and a

speciicity typically below an ideal value (15). Clinical and

pathological studies suggest that physicians have a probability

ranging rom 70.9% to 87.3% accuracy in diagnosing AD (15).

Unortunately, proessionals suciently qualied to precisely

diagnose AD in its various progression stages are scarce.

Given the imprecision in AD diagnosis, the use o

advanced machine learning and deep learning tools

emerge as promising alternatives or achieving highly
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Key fndings

• The use o convolutional neural networks (CNNs) has signicant

potential to aid in the early diagnosis o neurodegenerative diseases

such as Alzheimer’s disease.

• Our study explored how artiicial intelligence (AI) detects mild

cognitive impairment (MCI) in magnetic resonance imaging (MRI)

scans with varying slice orientations. Surprisingly, we ound that

AI could detect MCI more accurately based on slice orientation,

suggesting its crucial role in improving AI-based disease detection.

What is known and what is new?

• CNNs are currently utilized in Alzheimer’s diagnosis, but a major

limitation is the number o intermediate layers, leading to long

processing times and hardware demands.

• Our approach aims to optimize e iciency and accuracy

by analyzing CNN metrics using the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) 1 dataset to assess patients with

a level o education equal to or greater than a graduate degree

and understanding how MRI slice orientation infuences network

classication.

What is the implication, and what should change now?

• The synergistic use o CNNs, particularly in conjunction with

coronal slice selection, presents a promising and eective tool or

early neurodegenerative disease diagnosis, such as Alzheimer’s,

through T1-weighted MRI analysis.

as AD, through magnetic resonance imaging analysis, enabling more eective treatments and appropriate

uture planning. Moving orward, we aim to investigate whether these results replicate across other imaging

modalities, such as positron emission tomography, and explore additional datasets.
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precise classiication regarding the disease’s development

and stage using image data generated by various types

o examinations, such as MRI and positron emission

tomography (PET)-scan (16-19). Convolutional neural

networks (CNNs) represent an artiicial neural network

(ANN) architecture specialized in extracting complex

eatures rom images, thereby detecting patterns related

to disease progression. For instance, they can identiy

degenerative changes in brain morphology (particularly in

the cortex) caused by neuronal loss in AD (20-24). A CNN

consists o layers that unction like ilters, traversing the

entire image to extract relevant characteristics.

CNNs require image data or training to learn to

characterize speciic actors and generate classiication.

Hence, using data rom open-source repositories like the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

proves advantageous in developing this category o

networks. ADNI is an initiative that aims to collect and

provide quantitative clinical data and images o patients

with AD and healthy individuals or researchers worldwide.

These data contribute to advancing the understanding o

the disease and the pursuit o treatments and diagnostic

methodologies (25,26).

Related studies

Accurate diagnosis in the early stages o AD is crucial or

initiating more eective treatment (27-30). Consequently,

there is a continuous search or diagnostic strategies

that employ machine learning tools, such as CNNs

(17,18,31,32). In the study conducted by Basaia et al. (17), a

total o 1,409 individuals were monitored, which included

294 probable AD patients, 763 patients with MCI, and

352 normal controls. An additional 229 individuals

(comprising 124 probable AD patients, 50 patients with

MCI, and 55 healthy controls) were included in an

independent database. The study utilized 3D T1-weighted

MRI images and employed a CNN architecture consisting

o 12 repeated blocks o convolutional layers (2 blocks

with 50 kernels o size 5×5×5 alternating steps 1 and 2 and

10 blocks with 100 to 1,600 kernels o size 3×3×3 alternating

steps). The activation unction used was ReLU (rectiied

linear unit). The network also included a ully connected

layer and an output layer (logistic regression). Notably,

this work replaced Max-Pooling layers with standard

convolutional layers with step 2 (a ully convolutional

network). The network successully discriminates patients

with MCI rom those without, achieving accuracy,

sensitivity, and specicity values exceeding 86%.

The study by Alsaeed and Omar in 2022 (33) used CNNs

in conjunction with dierent traditional classiiers used

in machine learning techniques: support vector machine

(SVM), random orest (RF), and Sotmax. All these methods

were done while still using MRI images rom an open

database. The dataset rom ADNI included 741 individuals,

comprising 314 with AD and 427 healthy individuals. The

study also incorporated images rom the MIRIAD database,

obtained rom 46 AD patients and 23 normal controls.

The researchers employed data augmentation techniques

to increase the dataset size by making minor modications

to the original images (e.g., rotation and mirroring). The

approach utilized a CNN architecture named ResNet-50,

which consists o ve stages o Conv blocks, pooling layers,

and a ully connected layer. Both datasets were divided into

60% or training, 20% or validation, and 20% or testing.

The results indicate that, with the ADNI dataset, ResNet-50

with Sotmax achieved 99% accuracy, ResNet-50 with

SVM obtained 92%, and ResNet-50 with Random Forest

achieved 85.7%. For the MIRIAD dataset, the accuracy was

96% or ResNet-50 with Sotmax, 90% or ResNet-50 with

SVM, and 84.4% or ResNet-50 with Random Forest. It’s

important to note that the accuracy values obtained in this

study reer to the classication o healthy individuals versus

patients with more advanced stages o AD.

Other research groups have conducted studies

(18,34,35) utilizing another commonly used imaging

technique or AD diagnosis, which is positron emission

tomography-computed tomography (PET-CT) using the

radiopharmaceutical 18F-luorodeoxyglucose (18F-FDG).

The study (18) employed combinations o 2D CNNs and

recurrent neural networks (RNNs) or AD classiication.

This developed architecture learns intra- and inter-slice

aspects or classiication ater decomposing the 3D PET

image into a sequence o 2D slices obtained rom 339

individuals, including 93 AD patients, 146 patients with

MCI, and 100 normal controls. The results o this study

showed an accuracy o 78.9% or classiying patients

with MCI and healthy individuals, which was the best

result. In the uture, with urther implementations and

enhancements, our CNN could be employed in the task

o AD classication, utilizing images obtained rom other

types o examinations besides MRI.

Objective

This study’s primary objective is to comprehensively
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analyze how the choice o orientation in anatomical slices

on magnetic resonance images inluences the accuracy o

AD classiication perormed through CNNs created with

the Sequential Keras API in Python. In addition, the study

considers patient screening rom the ADNI database based

on individuals’ educational levels and scores obtained in the

MMSE. The underlying hypothesis posits that these actors,

particularly the orientation o anatomical slices, could

signicantly impact the accuracy o AD classication by the

network. Thereore, this study represents an endeavor to

deepen the understanding o how these elements interact

and contribute to the eicacy o CNNs in accurately

classiying AD.

Methods

Dataset, ADNI data collection, and participants selection

All data utilized in this study were obtained rom the

ADNI. The ADNI is a public-private partnership database

originating rom longitudinal multicenter studies to develop

clinical, imaging, genetic, and biochemical biomarkers or

the early detection and tracking o AD. Presently, it serves

as a signicant inormation source or research in the eld

o AD and other neurodegenerative diseases (25,26).

The images utilized in this study were selected rom

the ADNI 1 databases. This initial phase commenced in

October 2004 and lasted or 5 years. The T1-weighted

MRI images were taken 6 months ater the patients began

their study ollow-up. The patient selection criterion was

a minimum study duration o 16 years, corresponding to

a complete graduation. Ater this initial selection, patients

were categorized into two groups based on their scores on

the MMSE: healthy [normal control (NC)] (scores 25–30)

and MCI (scores 21–24) (36). More inormation about the

groups is presented in Table 1.

MRI acquisition protocol

Our study utilized T1-weighted MRI scans eaturing axial,

coronal, and sagittal slices acquired with both GE Medical

Systems and SIEMENS Symphony scanners at a magnetic

ield strength o 1.5 Tesla. The data originated rom the

ADNI 1 database.

Detailed inormation about acquiring the MRI images

used rom the ADNI can be ound on the ocial study page.

The imaging acquisition protocol provides speciications

such as the acquisition plane, type, magnetic eld strength

used, image matrix, pixel spacing, pulse sequence, slice

thickness, and weighting, among other details. An example

o the acquisition o a sagittal slice available in ADNI is:

“acquisition plane = SAGITTAL; acquisition type = 3D;

coil = 8HRBRAIN; ield strength = 1.5 Tesla; lip angle =

8.0 degree; manuacturer = GE medical systems; matrix

X = 256.0 pixels; matrix Y =256.0 pixels; matrix Z =166.0;

Mg model = SIGNA EXCITE; pixel spacing X =0.9 mm;

pixel spacing Y =0.9 mm; pulse sequence = RM; slice

thickness =1.2 mm; echo time (TE) =4.0 ms; inversion

time (TI) =1,000.0 ms; repetition time (TR) =9.1 ms;

weighting = T1”.

MRI analysis and data separation

During the analysis stage o the MRI images, modiying the

original images supplied by ADNI was necessary. The image

les rom ADNI are primarily DICOM les captured in a

sagittal plane, adhering to the standard image acquisition

orientation. However, while the analysis o sagittal plane

images is pertinent or numerous clinical applications, it is

not the only easible method or diagnosing Alzheimer’s,

as elaborated in this study. Consequently, it was essential

to derive axial and coronal slices rom the original patient

images to extract valuable inormation rom diverse

viewpoints. To accomplish this, a Python algorithm was

devised to extract axial and coronal slices rom the sagittal

plane images provided (see Figure 1). This algorithm is

accessible as Appendix 1 and utilizes popular libraries or

medical image processing, such as PyDicom, employing

interpolation and resizing techniques to create the

Table 1 Demographic characteristics o studied subjects rom ADNI database

Classification n Gender (female/male) Age†, years MMSE† Education†

MCI 68 20/48 75.9±0.9 22.9±0.1 17.3±0.2

NC 250 84/166 75.6±0.4 28.1±0.1 17.6±0.1
†, data are presented as mean ± standard error. NC, normal control; MCI, mild-cognitive impairment; MMSE, Mini-Mental State 
Examination.
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required slices.

The magnetic resonance images o the patients were

careully shufed using a Python algorithm, available in the

Appendix 2, and then distributed among training, validation,

and test sets, adhering to a standard split ratio o 70%

or training, 15% or validation, and 15% or testing. This

deliberate approach ensures that the CNN model undergoes

training, validation, and testing on distinct and independent

datasets. Such a practice not only mitigates the risk o

overitting but also acilitates an accurate assessment o the

model’s perormance across both coronal and axial slices, thus

enhancing the reliability and generalizability o our ndings.

By shuling the images beore the division into sets, we

guarantee that each patient’s images are randomly distributed

among the sets, minimizing the possibility o any data leakage.

This rigorous process enables an accurate assessment o the

model’s perormance on coronal and axial slices, as it ensures

that the model is not biased by any unintended patterns or

correlations present in the data. The distribution o images in

each subdivision is presented in Table 2.

This approach ensures that the CNNs model is trained

across a variety o perspectives, thereby comprehensively

testing its generalization capabilities. The number o images

and their distribution in each subset were strategically

determined to balance the size o each set while maintaining

the representativeness and robustness o the data. This

preprocessing strategy and data subdivision are crucial in

ensuring the validity and reliability o the results obtained

rom our CNN analysis or Alzheimer’s diagnosis based on

magnetic resonance images.

CNNs

ANNs are mathematical models developed to enable

Figure 1 Comparison o axial (A,D), coronal (B,E), and sagittal (C,F) slices in T1-weighted MRI: (A-C) patient with mild cognitive

impairment (ADNI subject ID: 067_S_0336, MMSE: 21); (D-F) healthy patient (ADNI subject ID: 033_S_0734, MMSE: 29). ADNI,

Alzheimer’s Disease Neuroimaging Initiative; MRI, magnetic resonance imaging; MMSE, Mini-Mental State Examination.

A

D

B

E

C

F
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machines to solve problems like those o the human brain,

mimicking inormation processing in the brain. Neural

networks consist o processing units called ‘artiicial

neurons’. These units are organized into interconnected

layers so that each neuron in one layer communicates with

neurons in the next layer through weighted connections.

The weight o these connections varies based on the

importance o each input.

To achieve accurate and optimized results, networks

must undergo extensive training and adjustments (17,24,37).

The steps to reach the desired accuracy can be described

as ollows: (I) learning rom a series o inputs representing

the model o the data to be inserted; (II) propagating

inormation through the neural network, traversing

all layers rom the input layer to the output layer; (III)

calculating the error by comparing the obtained output

with the desired output; (IV) propagating the error signal

back to the input layer (backpropagation process); and (V)

adjusting the weights o the network’s connections based

on the previously measured error and repeating the process

or various inputs until the network gradually improves its

perormance over epochs.

CNNs are eedorward neural network architecture

used or image pattern recognition (38-41). CNNs can

take images as input, assign weights to dierent image

components, and thereby dierentiate complex patterns

within the input image. Additionally, CNNs are signicant

or reducing images to simpler ormats, allowing or lighter

processing without signicant loss o essential inormation

required or classication tasks. CNNs primarily consist o

two types o layers to extract crucial eatures rom the input

image: the convolutional layer and the pooling layer, which

are successively repeated. In the Convolutional Layer,

multiple lters (or kernels) are applied to the input image

to extract important eatures and generate a eature map.

This representation is achieved through matrix operations,

as both the image and the kernel are matrices. The kernels

convolve over the image during this process, traversing all

pixels. The result is a new image that preserves essential

inormation (high-level eatures) rom the original, useul

or tasks like classiication, segmentation, and object

detection (42,43). The pooling layer, typically ollowing the

convolutional layer, aims to reduce the spatial dimension

o the processed image. It replaces blocks o pixels with a

representative value (usually the maximum) in a process

called MaxPooling. These layers are crucial or improving

computational eciency, suppressing noise, and maintaining

important inormation in a condensed orm.

In addition to these layers, a fattening layer is added to

modiy the data structure. Up to this point, we had images

as two-dimensional matrices that needed to be transormed

into a one-dimensional vector to ensure the continuity

o the fow o inormation to the subsequent layers o the

network, which can only process this type o structure.

Finally, the ully connected (or dense) layers are added at

the network’s end, ollowing the convolutional, pooling, and

lattening layers. Their objective is classiication based on

interpreting high-level eatures generated by the previous

layers through complex reasoning. Thus, we can say that

this layer unctions as a nonlinear classiier composed o

articial neurons (44).

In this study, we constructed a CNN using the

Sequential API rom Keras in Python (45). The initial layer

o our network is a convolutional layer, named Conv2D,

Table 2 Number o magnetic resonance images obtained in each o the groups or each available slicing plane in the dataset

Classification Phase Axial slice Coronal slice Sagittal slice

MCI Training 3,987 6,619 4,935

Validation 854 1,418 1,057

Test 855 1,419 1,059

Total 5,695 9,455 7,050

NC Training 15,008 24,248 17,969

Validation 3,216 5,196 3,850

Test 3,217 5,197 3,852

Total 21,440 34,640 25,670

NC, normal control; MCI, mild-cognitive impairment.
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which takes input images and uses a convolution kernel

(3×3) that convolves with the input to produce an output

tensor. We utilized 32 ilters in this layer. Following each

convolutional layer, we applied the Exponential Linear Unit

(ELU) activation unction (46) to expedite the network’s

learning. We also employed “padding = same” to ensure

the output image maintains the same size as the input.

Ater the Conv2D layer, we added a MaxPooling2D layer

to reduce the dimensionality o the eature maps generated

by the preceding Conv2D layer, enhancing the network’s

eiciency and reducing overitting potential. We used a

pool_size o [2, 2] in the MaxPooling2D layer, indicating

that the maximum pooling operation would be applied to

a 2×2 pixel window in each eature map. We introduced

an additional pair o Conv2D and MaxPooling2D layers

with identical characteristics to the initial ones. The

inal pair o layers eatured a convolutional layer with 64

lters while maintaining the other parameters unchanged.

The subsequent pooling layer remained the same as the

previous ones. Finally, we added a lattening layer that

converts the output into a one-dimensional vector or

the subsequent network layers. From this stage, CNN

behaves like a traditional network. Three dense layers

composed o densely connected multilayer perceptrons

were added or classication purposes, aiming to minimize

errors. We utilized the ELU activation unction or the

irst two layers and Sotmax or the last layer and applied

binary cross-entropy (Log Loss) as the loss unction to

assess the network’s perormance, minimize mean squared

error, and consequently optimize the system. The network

architecture and other inormation are described in Table 3.

For the optimal training o this network, dierent

numbers o epochs o training (20, 50, 80, and 100) and

batch sizes (8, 16, 32, and 64) were tested to nd the best

possible coniguration or each type o anatomical slice.

Various parameters, such as accuracy, sensitivity, specicity,

and F1-score, inorm the network’s perormance.

Accuracy represents the proport ion o  correct

predictions compared to the total predictions and serves

as a general perormance metric or the model. Sensitivity,

also known as recall, highlights the model’s ability to

correctly identiy positive cases, which is particularly

relevant in Alzheimer’s detection, where early detection is

crucial. Specicity measures the model’s ability to correctly

identiy negative cases, which is crucial in minimizing alse

alarms. The F1-score, in turn, is a metric that combines

precision and recall, aiming or a balance between the

model’s ability to classiy both positive and negative cases

correctly. Together, these metrics provide a comprehensive

and balanced evaluation o the model’s perormance in

Alzheimer’s diagnosis.

Experimental setup

The analysis o MRI and the implementation o CNNs

were conducted on an Acer Nitro 5 notebook (AN-515-

Table 3 Architecture and parameters o the CNNs described in this work

Layer ID Layer name Kernel number Kernel size Output image size

1 Input – – 128×128

2 Conv2D + ELU 32 3×3 128×128

3 MaxPooling2D – 2×2 64×64

4 Conv2D_1 + ELU 32 3×3 64×64

5 MaxPooling2D_1 – 2×2 32×32

6 Conv2D_2 + ELU 64 3×3 32×32

7 MaxPooling2D_2 – 2×2 16×16

8 Flatten – – 256

9 Dense (Elu) 1,024 – 1,024

10 Dense_1 (Elu) 512 – 512

11 Dense_2 (Softmax) 2 – 2

12 Binary_Cross-Entropy – – –

CNNs, convolutional neural networks.
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44-R629). This equipment is equipped with an AMD Ryzen

7-4800H Octa-Core processor (with 16 threads), 16 GB

o DDR4 RAM operating at 3,200 MHz, and a dedicated

NVIDIA GeForce GTX 1650 graphics card with 4 GB

o memory. The operating system used was Windows 10,

version 2H22. For the implementation o CNNs, Jupyter

Notebook (version 6.5.4) was used, with codes written in

Python (version 3.11.5).

Analysis and statistics

Statistical analysis plays a pivotal role in assessing the

perormance o CNNs in our study. We employed

descriptive statistics, encompassing means and standard

deviations, to scrutinize key metrics evaluating CNN

perormance: accuracy, sensitivity, speciicity, and the F1-

score. Through a meticulous statistical examination o these

metrics, we gained a proound understanding o CNN’s

perormance in our classiication task, enabling a critical

assessment o our models’ eicacy against established

criteria. This robust statistical approach was indispensable

or result interpretation and inormed decision-making

within the scope o our research.

Results

We conducted a comparative analysis o three categories

o medical image slices (axial, coronal, and sagittal) and

our batch size conigurations (8, 16, 32, and 64 batches).

The perormance metric employed was accuracy, evaluated

across dierent epochs (20, 50, 80, and 100 epochs). Figure 2

presents radar-type graphs illustrating the accuracy achieved

or each slice concerning the various epochs and batches

congurations.

At 20 epochs, the coronal slice yielded an accuracy

0.99 across all batch sizes. The axial slice also achieved an

accuracy o 0.99, but only or batches 16 and 64, with a

slight decrease to 0.98 or batches 8 and 32. The sagittal

slice demonstrated an accuracy o 0.99 or batches 8 and 16,

with a minor decrease to 0.98 and 0.97 or batch sizes 32

and 64, respectively.

Upon increasing to 50 epochs, the accuracy o the

coronal slice improved to 1.00 or batches 8 and 16 while

remaining at 0.99 or batches 32 and 64. The axial and

sagittal slices showed equal accuracies, reaching 0.99 or

batches 8 and 16 and decreasing slightly to 0.98 or batches

32 and 64.

With a urther increase to 80 epochs, the coronal slice

maintained a high accuracy 1.00 or batch size 16 and

0.99 or the other batch sizes. The axial slice achieved an

accuracy o 0.99 or batches 16 and 32 and 0.98 or the

other batch sizes. The sagittal slice consistently hit the

0.99 mark or all batch sizes excluding batch 64, where it

achieved an accuracy o 0.98.

Lastly, at 100 epochs, the coronal slice achieved an

impressive accuracy o 1.00 or batches up to a size o 32,

with a slight decrease to 0.99 or batch 64. The axial slice

maintained a high accuracy o 0.99 or batch sizes 8 and 16

but was reduced to 0.98 or larger sizes. The sagittal slice

demonstrated consistency by achieving an accuracy 0.99

across all batch sizes.

This comprehensive analysis allowed or a thorough

evaluation o the perormance o the dierent slices across

various batch sizes and epochs.

The analysis o Figure 3 provides substantial insights into

the perormance o CNNs in medical image classication.

The layered metrics present a holistic perspective on

perormance luctuations concerning varying batch sizes

and slice orientations. The bar graphs in this igure

meticulously examine metrics such as “Precision-NC”,

“Precision-MCI”, “Recall-NC”, “Recall-MCI”, “F1-score-

NC”, and “F1-score-MCI”. Each metric is organized into

grouped arrangements to acilitate a more straightorward

interpretation. Moving rom let to right, these groups

correspond to dierent conigurations o the number o

training epochs.

Furthermore, within each metric grouping, we present

three distinct sets, each representing a dierent orientation

o magnetic resonance image slices—axial, coronal, and

sagittal. For each slice, we separate each batch size (8, 16,

32, and 64 batches), which are identied by dierent colors

in the legend, this detailed visual layout enables a thorough

comparison and analysis o perormance metrics across

various batch sizes and image orientations. By incorporating

these details, the igure enhances clarity. It provides a

more nuanced understanding o the study’s outcomes

in the context o AD diagnosis through medical image

classication using CNNs.

All evaluated parameters exhibit values above 90%,

demonstrating a consistently robust model perormance.

Overall, the coronal slice showed the highest precision,

ollowed by the axial and sagittal slices. However, it is

noteworthy that in speciic conigurations, the sagittal

slice demonstrates superior perormance to the axial slice,

especially in metrics such as recall and the F1-score or

the MCI case. This variation underscores the importance
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o considering dierent image slices when optimizing the

model or speciic cases in classiying neurodegenerative

diseases.

Discussion

This research aimed to explore the impact o the selection

o anatomical slice orientation in medical images, in

conjunction with iltering by education level and MMSE

scores, on the accuracy o AD classi ication using

CNNs. The CNN architecture employed consisted o

three 2D convolutional layers (Conv2D) interspersed

with MaxPooling2D layers. A lattening layer was used

to convert the image into a one-dimensional vector,

ollowed by three dense layers (comprising 1,024, 512, and

2 neurons, respectively).

Patients who had completed a minimum o 16 years

o education were categorized into two groups based on

their MMSE scores: those with scores ranging rom 21

to 24 were classiied as having MCI, while those between

25 and 30 were classiied as healthy. The dierentiation

o patients with MCI rom healthy individuals using MRI

poses a challenge due to the limited visibility o brain

degeneration in the early stages o AD. Moreover, our

CNN demonstrated exceptional perormance in classiying

these two groups using T1-weighted magnetic resonance

images, achieving an accuracy exceeding 99% in most

batch and epoch combinations. However, the F1-score

Figure 2 Radar graphs display the accuracy outcomes o network classiication or various epoch conigurations (20, 50, 80, and 100,

corresponding to images A, B, C, and D) and batch sizes (8, 16, 32, and 64). It is evident that, or most model congurations, the coronal

slice (depicted in red) consistently achieved the highest accuracy values.
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Figure 3 Perormance evaluation o CNNs in various congurations. This gure shows 24 stacked bar charts encompassing the metrics

“Precision-NC”, “Precision-MCI”, “Recall-NC”, “Recall-MCI”, “F1-score-NC” and “F1-score-MCI”. These metrics are evaluated

concerning our dierent batch size congurations (8, 16, 32, and 64 batches) or our dierent epoch congurations (A, B, C, and D reer

to 20, 50, 80, and 100 epochs, respectively). It can be seen that the coronal slice achieves better results than the sagittal and axial slices,

which perorm similarly, with a slight advantage or the sagittal slice. CNNs, convolutional neural networks; NC, normal control; MCI,

mild cognitive impairment.
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results exhibited signicant variation among combinations,

attributable to the dierences in the number o images in

the dataset between MMSE scores o 21–24 and 25–30.

Numerous studies (17-19,24,31,32,47-49) employ

medical images to train CNNs using sagittal, coronal,

or axial slices, depending on the available database.

Nevertheless, the choice o slice can signicantly infuence

the network’s learning eectiveness, as evidenced by

the results shown in Figure 2. The indings indicate that

coronal slice orientation may be more suitable in medical

image classication scenarios, given the consistently high

accuracy rates achieved, ollowed by axial and sagittal

slices. The dierence in accuracy between coronal

and axial slices is small, at just 0.01 percentage points.

However, the dierence in accuracy between the sagittal

and axial slices is greater, at 0.02 percentage points. On the

other hand, as more parameters such as Recall, F1-score,

and others are analyzed, it can be seen that classication

using the sagittal slice has a higher average perormance

than that based on the axial slice, and this dierence

is not directly related to the number o images used to

train the neural network. In MRI scans, the number o

images or each plane (coronal, sagittal, and axial) varies

substantially, which makes it uneasible to maintain a

uniorm proportion o images or each slice when training

the model. In addition, we chose not to use the data-

augmentation technique to align the number o images

to avoid any potential bias that could be introduced by

articially manipulating the training images.

The variation in accuracy between slices can be

attributed to several actors, including the viewing angle and

the amount o inormation in the image. The coronal slice

provides a rontal view o the body, the axial slice oers a

transverse view, and the sagittal slice provides a longitudinal

view. As a result, the coronal slice may oer more pertinent

inormation or image classication.

The batch size coniguration might also explain the

discrepancy in accuracy between slices. Larger batches

necessitate a more complex and robust deep-learning model.

The sagittal slice, which achieved the lowest accuracy or

batch size 64, might pose more o a challenge to classiy

with a more complex model.

The results presented in Figures 2,3 demonstrate that the

coronal slice is the most appropriate or classiying AD MRI

images. This result could be clariied because the coronal

slice provides a rontal view o the brain, which could be

advantageous in identiying typical eatures o AD, such as

cortical atrophy and senile plaques.

Strengths and limitations

The CNN developed in our work has relatively ew layers

(a total o 12) and was able to successully classiy healthy

patients versus patients with MCI based on MMSE scores

through T1-weighted MRI, achieving accuracy above

90% or all analyzed metrics regardless o the cutting

orientation. All data were selected rom the ADNI 1

database and ollowed a standardization proposed by the

study itsel, thus eliminating any unwanted bias or the

classiication perormed by the network. Additionally, no

data augmentation technique was used to increase the

dataset, thus eliminating any bias the network could acquire

during the learning o patterns related to the reuse o the

same altered images. Another important point addressed

by our study was how hyperparameters aect classication;

thereore, we varied the number o training epochs (20, 50,

80, and 100) and batch size (8, 16, 32, and 64) to determine

the best combination between image cutting orientation,

the optimized number o training epochs that provide the

best result, and batch size.

Although our article has demonstrated signiicant

results, it is crucial to recognize that the use o a single

database may be considered a potential limitation, as the

predominance o data rom a single geographical region

(the USA) may result in a lack o representative diversity.

The absence o validation on external datasets beyond

ADNI 1, such as the Open Access Series o Imaging Studies

(OASIS) database (50), although it did not compromise

the robustness o our results, highlights an area or

improvement. We recognize the importance o validating

the robustness o our algorithm through comparisons across

dierent datasets and are committed to incorporating this

analysis into our uture research.

Conclusions

This research emphasizes the signicance o considering

slice orientation and batch size when classiying medical

images using CNNs. The results o this study suggest

that the coronal slice is the most accurate or classiying

medical images, ollowed by the axial and sagittal slices.

Notably, in specic scenarios, the sagittal slice outperorms

the axial slice, particularly in metrics like recall and the

F1-score or classiying patients with MCI. This nuanced

understanding emphasizes the signiicance o tailoring

image slice considerations or optimizing the model,

providing valuable insights or rening neurodegenerative
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disease classication approaches.
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Supplementary

Python code for obtaining anatomical slices from a DICOM image

import os

import pydicom

import numpy as np

import matplotlib.pyplot as plt

import warnings

dicom_dir = ‘Add the path of the files in dicom format’

dicom_files = [os.path.join(dicom_dir, filename) for filename in os.listdir(dicom_dir) if filename.endswith('.dcm')]

def load_dicom_data(dicom_files):

slices = [pydicom.read_file(dicom_file) for dicom_file in dicom_files]

slices.sort(key=lambda x: int(x.InstanceNumber), reverse = False)

if len(slices) >= 2:

slice_thickness = np.abs(slices[0].ImagePositionPatient[2] -slices[1].ImagePositionPatient[2])

else:

print('There is only one slice in the list.')

image_shape = list(slices[0].pixel_array.shape)

image_shape.append(len(slices))

volume_data = np.zeros(image_shape, dtype=slices[0].pixel_array.dtype)

for i, slice in enumerate(slices):

volume_data[:, :, i] = slice.pixel_array

return volume_data, slice_thickness

volume_data, slice_thickness = load_dicom_data(dicom_files)

last = int(input(‘Enter the value of the last image saved in the folder:'))

for i in range(40,140): # This range depends on the slice orientation and the image.

image_slice = volume_data[i, :, :] #volume_data[axial, coronal, sagittal]

plt.figure(figsize=(6, 6))

plt.imshow(image_slice, cmap='gray')

plt.axis('off')

warnings.filterwarnings("ignore")

last += 1

plt.savefig(f'{last}.png', bbox_inches='tight', pad_inches=0.0)

Appendix 1
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Appendix 2

Python code for creating datasets with shuffled images

from pathlib import Path

import splitfolders

input_folder = 'images'

splitfolders.ratio(input_folder, output = 'dataset',

seed = 42, ratio = (.7,.15,.15),

group_prefix = None)


