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Background: Alzheimer’s disease (AD) is the leading cause o major neurocognitive disorders, aecting

approximately 50 million people worldwide. Due to its high prevalence, AD signicantly impacts patients’

quality o lie and poses a substantial challenge to healthcare systems. Diagnosis is intricate, with specicity

and sensitivity rates alling below the ideal. Early identication o AD is essential to increase the eectiveness

o pharmacotherapeutic treatment and improve quality o lie. Consequently, there is a quest or innovative

methods, such as machine learning and deep learning, to automate the diagnosis o AD in its early stages.

Methods: We developed and validated a convolutional neural network (CNN) algorithm using the Keras

Sequential API in Python to investigate the impact o slicing T1-weighted magnetic resonance images on the

classication o patients with mild cognitive impairment (MCI) and healthy patients (NC), grouped based on

scores on the Mini-Mental State Examination (MMSE). We selected 318 patients (250 healthy and 68 MCI)

with a minimum o 16 years o education (equivalent to a completed undergraduate degree). The training,

testing, and validation datasets were split in a 70/15/15 ratio or each slice.

Results: The CNN achieved high accuracy values in classiying healthy and MCI groups, ranging

between 97% and 99% depending on the slice, the number o training epochs, and batch size. In addition

to precision, the F1-score, recall, and precision parameters were also evaluated, with values above 91%.

Generally, the coronal slice produced the best results, ollowed by the axial and the sagittal slices, which

nevertheless showed high perormance, standing out individually in dierent evaluation parameters. Notably,

the choice o batch size and the number o epochs also infuenced the network’s classication.

Conclusions: Our study ndings indicate that utilizing CNN in conjunction with selecting a coronal slice

proves to be a promising tool or acilitating the early-stage diagnosis o neurodegenerative diseases, such
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Introduction

Background

The aging o the population has led to an increase in

the prevalence o chronic diseases, particularly among

those aged 65 years and older. One class o diseases that

is particularly prominent is neurodegenerative diseases,

especially Alzheimer’s disease (AD) (1-3), a progressive

neurodegenerative disorder that results in progressive

neuronal death. Currently, AD is identiied as the leading

cause o major neurocognitive disorder (MNCD), or

dementia, worldwide (4), accounting or 50–70% o all

cases (5). AD symptoms typically begin with memory

issues, primarily aecting recent memory. As the disease

progresses, patients start experiencing more pronounced

cognitive diiculties, such as problems with speech,

comprehension, and decision-making, ultimately leading to

the inability to perorm basic daily activities (6).

It is estimated that up to 75% o patients aected by

dementia have not received a proper diagnosis (7). This

act underscores the need to develop a highly accurate

methodology to diagnose these conditions quicker and more

precisely, capable o distinguishing similar presentations.

The pharmacological approach to AD demonstrates greater

ecacy when implemented in the early stages o the disease,

where patients exhibit only mild cognitive impairment

(MCI). Such interventions signiicantly contribute to

delaying disease progression and mitigating the emergence

o more severe symptoms. Given this, and the aim to

improve the patient’s quality o lie, developing a tool that

assists in early-stage AD diagnosis is imperative today (8-12).

The diagnosis o AD is complex. It necessitates a highly

qualiied neurologist who must comprehend both the

patient’s clinical and amily history, conduct appropriate

neuropsychological tests such as the Mini-Mental State

Examination (MMSE), and interpret imaging tests like

magnetic resonance imaging (MRI), which can reveal

characteristic disease-related indings (13,14). Due to its

reliance on multiple interpretative actors, the diagnostic

methodology contends with wide sensitivity intervals and a

speciicity typically below an ideal value (15). Clinical and

pathological studies suggest that physicians have a probability

ranging rom 70.9% to 87.3% accuracy in diagnosing AD (15).

Unortunately, proessionals suciently qualied to precisely

diagnose AD in its various progression stages are scarce.

Given the imprecision in AD diagnosis, the use o

advanced machine learning and deep learning tools

emerge as promising alternatives or achieving highly
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precise classiication regarding the disease’s development

and stage using image data generated by various types

o examinations, such as MRI and positron emission

tomography (PET)-scan (16-19). Convolutional neural

networks (CNNs) represent an artiicial neural network

(ANN) architecture specialized in extracting complex

eatures rom images, thereby detecting patterns related

to disease progression. For instance, they can identiy

degenerative changes in brain morphology (particularly in

the cortex) caused by neuronal loss in AD (20-24). A CNN

consists o layers that unction like ilters, traversing the

entire image to extract relevant characteristics.

CNNs require image data or training to learn to

characterize speciic actors and generate classiication.

Hence, using data rom open-source repositories like the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

proves advantageous in developing this category o

networks. ADNI is an initiative that aims to collect and

provide quantitative clinical data and images o patients

with AD and healthy individuals or researchers worldwide.

These data contribute to advancing the understanding o

the disease and the pursuit o treatments and diagnostic

methodologies (25,26).

Related studies

Accurate diagnosis in the early stages o AD is crucial or

initiating more eective treatment (27-30). Consequently,

there is a continuous search or diagnostic strategies

that employ machine learning tools, such as CNNs

(17,18,31,32). In the study conducted by Basaia et al. (17), a

total o 1,409 individuals were monitored, which included

294 probable AD patients, 763 patients with MCI, and

352 normal controls. An additional 229 individuals

(comprising 124 probable AD patients, 50 patients with

MCI, and 55 healthy controls) were included in an

independent database. The study utilized 3D T1-weighted

MRI images and employed a CNN architecture consisting

o 12 repeated blocks o convolutional layers (2 blocks

with 50 kernels o size 5×5×5 alternating steps 1 and 2 and

10 blocks with 100 to 1,600 kernels o size 3×3×3 alternating

steps). The activation unction used was ReLU (rectiied

linear unit). The network also included a ully connected

layer and an output layer (logistic regression). Notably,

this work replaced Max-Pooling layers with standard

convolutional layers with step 2 (a ully convolutional

network). The network successully discriminates patients

with MCI rom those without, achieving accuracy,

sensitivity, and specicity values exceeding 86%.

The study by Alsaeed and Omar in 2022 (33) used CNNs

in conjunction with dierent traditional classiiers used

in machine learning techniques: support vector machine

(SVM), random orest (RF), and Sotmax. All these methods

were done while still using MRI images rom an open

database. The dataset rom ADNI included 741 individuals,

comprising 314 with AD and 427 healthy individuals. The

study also incorporated images rom the MIRIAD database,

obtained rom 46 AD patients and 23 normal controls.

The researchers employed data augmentation techniques

to increase the dataset size by making minor modications

to the original images (e.g., rotation and mirroring). The

approach utilized a CNN architecture named ResNet-50,

which consists o ve stages o Conv blocks, pooling layers,

and a ully connected layer. Both datasets were divided into

60% or training, 20% or validation, and 20% or testing.

The results indicate that, with the ADNI dataset, ResNet-50

with Sotmax achieved 99% accuracy, ResNet-50 with

SVM obtained 92%, and ResNet-50 with Random Forest

achieved 85.7%. For the MIRIAD dataset, the accuracy was

96% or ResNet-50 with Sotmax, 90% or ResNet-50 with

SVM, and 84.4% or ResNet-50 with Random Forest. It’s

important to note that the accuracy values obtained in this

study reer to the classication o healthy individuals versus

patients with more advanced stages o AD.

Other research groups have conducted studies

(18,34,35) utilizing another commonly used imaging

technique or AD diagnosis, which is positron emission

tomography-computed tomography (PET-CT) using the

radiopharmaceutical 18F-luorodeoxyglucose (18F-FDG).

The study (18) employed combinations o 2D CNNs and

recurrent neural networks (RNNs) or AD classiication.

This developed architecture learns intra- and inter-slice

aspects or classiication ater decomposing the 3D PET

image into a sequence o 2D slices obtained rom 339

individuals, including 93 AD patients, 146 patients with

MCI, and 100 normal controls. The results o this study

showed an accuracy o 78.9% or classiying patients

with MCI and healthy individuals, which was the best

result. In the uture, with urther implementations and

enhancements, our CNN could be employed in the task

o AD classication, utilizing images obtained rom other

types o examinations besides MRI.

Objective

This study’s primary objective is to comprehensively
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analyze how the choice o orientation in anatomical slices

on magnetic resonance images inluences the accuracy o

AD classiication perormed through CNNs created with

the Sequential Keras API in Python. In addition, the study

considers patient screening rom the ADNI database based

on individuals’ educational levels and scores obtained in the

MMSE. The underlying hypothesis posits that these actors,

particularly the orientation o anatomical slices, could

signicantly impact the accuracy o AD classication by the

network. Thereore, this study represents an endeavor to

deepen the understanding o how these elements interact

and contribute to the eicacy o CNNs in accurately

classiying AD.

Methods

Dataset, ADNI data collection, and participants selection

All data utilized in this study were obtained rom the

ADNI. The ADNI is a public-private partnership database

originating rom longitudinal multicenter studies to develop

clinical, imaging, genetic, and biochemical biomarkers or

the early detection and tracking o AD. Presently, it serves

as a signicant inormation source or research in the eld

o AD and other neurodegenerative diseases (25,26).

The images utilized in this study were selected rom

the ADNI 1 databases. This initial phase commenced in

October 2004 and lasted or 5 years. The T1-weighted

MRI images were taken 6 months ater the patients began

their study ollow-up. The patient selection criterion was

a minimum study duration o 16 years, corresponding to

a complete graduation. Ater this initial selection, patients

were categorized into two groups based on their scores on

the MMSE: healthy [normal control (NC)] (scores 25–30)

and MCI (scores 21–24) (36). More inormation about the

groups is presented in Table 1.

MRI acquisition protocol

Our study utilized T1-weighted MRI scans eaturing axial,

coronal, and sagittal slices acquired with both GE Medical

Systems and SIEMENS Symphony scanners at a magnetic

ield strength o 1.5 Tesla. The data originated rom the

ADNI 1 database.

Detailed inormation about acquiring the MRI images

used rom the ADNI can be ound on the ocial study page.

The imaging acquisition protocol provides speciications

such as the acquisition plane, type, magnetic eld strength

used, image matrix, pixel spacing, pulse sequence, slice

thickness, and weighting, among other details. An example

o the acquisition o a sagittal slice available in ADNI is:

“acquisition plane = SAGITTAL; acquisition type = 3D;

coil = 8HRBRAIN; ield strength = 1.5 Tesla; lip angle =

8.0 degree; manuacturer = GE medical systems; matrix

X = 256.0 pixels; matrix Y =256.0 pixels; matrix Z =166.0;

Mg model = SIGNA EXCITE; pixel spacing X =0.9 mm;

pixel spacing Y =0.9 mm; pulse sequence = RM; slice

thickness =1.2 mm; echo time (TE) =4.0 ms; inversion

time (TI) =1,000.0 ms; repetition time (TR) =9.1 ms;

weighting = T1”.

MRI analysis and data separation

During the analysis stage o the MRI images, modiying the

original images supplied by ADNI was necessary. The image

les rom ADNI are primarily DICOM les captured in a

sagittal plane, adhering to the standard image acquisition

orientation. However, while the analysis o sagittal plane

images is pertinent or numerous clinical applications, it is

not the only easible method or diagnosing Alzheimer’s,

as elaborated in this study. Consequently, it was essential

to derive axial and coronal slices rom the original patient

images to extract valuable inormation rom diverse

viewpoints. To accomplish this, a Python algorithm was

devised to extract axial and coronal slices rom the sagittal

plane images provided (see Figure 1). This algorithm is

accessible as Appendix 1 and utilizes popular libraries or

medical image processing, such as PyDicom, employing

interpolation and resizing techniques to create the

Table 1 Demographic characteristics o studied subjects rom ADNI database

Classification n Gender (female/male) Age†, years MMSE† Education†

MCI 68 20/48 75.9±0.9 22.9±0.1 17.3±0.2

NC 250 84/166 75.6±0.4 28.1±0.1 17.6±0.1
†, data are presented as mean ± standard error. NC, normal control; MCI, mild-cognitive impairment; MMSE, Mini-Mental State 
Examination.
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required slices.

The magnetic resonance images o the patients were

careully shufed using a Python algorithm, available in the

Appendix 2, and then distributed among training, validation,

and test sets, adhering to a standard split ratio o 70%

or training, 15% or validation, and 15% or testing. This

deliberate approach ensures that the CNN model undergoes

training, validation, and testing on distinct and independent

datasets. Such a practice not only mitigates the risk o

overitting but also acilitates an accurate assessment o the

model’s perormance across both coronal and axial slices, thus

enhancing the reliability and generalizability o our ndings.

By shuling the images beore the division into sets, we

guarantee that each patient’s images are randomly distributed

among the sets, minimizing the possibility o any data leakage.

This rigorous process enables an accurate assessment o the

model’s perormance on coronal and axial slices, as it ensures

that the model is not biased by any unintended patterns or

correlations present in the data. The distribution o images in

each subdivision is presented in Table 2.

This approach ensures that the CNNs model is trained

across a variety o perspectives, thereby comprehensively

testing its generalization capabilities. The number o images

and their distribution in each subset were strategically

determined to balance the size o each set while maintaining

the representativeness and robustness o the data. This

preprocessing strategy and data subdivision are crucial in

ensuring the validity and reliability o the results obtained

rom our CNN analysis or Alzheimer’s diagnosis based on

magnetic resonance images.

CNNs

ANNs are mathematical models developed to enable

Figure 1 Comparison o axial (A,D), coronal (B,E), and sagittal (C,F) slices in T1-weighted MRI: (A-C) patient with mild cognitive

impairment (ADNI subject ID: 067_S_0336, MMSE: 21); (D-F) healthy patient (ADNI subject ID: 033_S_0734, MMSE: 29). ADNI,

Alzheimer’s Disease Neuroimaging Initiative; MRI, magnetic resonance imaging; MMSE, Mini-Mental State Examination.

A

D

B

E

C

F
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machines to solve problems like those o the human brain,

mimicking inormation processing in the brain. Neural

networks consist o processing units called ‘artiicial

neurons’. These units are organized into interconnected

layers so that each neuron in one layer communicates with

neurons in the next layer through weighted connections.

The weight o these connections varies based on the

importance o each input.

To achieve accurate and optimized results, networks

must undergo extensive training and adjustments (17,24,37).

The steps to reach the desired accuracy can be described

as ollows: (I) learning rom a series o inputs representing

the model o the data to be inserted; (II) propagating

inormation through the neural network, traversing

all layers rom the input layer to the output layer; (III)

calculating the error by comparing the obtained output

with the desired output; (IV) propagating the error signal

back to the input layer (backpropagation process); and (V)

adjusting the weights o the network’s connections based

on the previously measured error and repeating the process

or various inputs until the network gradually improves its

perormance over epochs.

CNNs are eedorward neural network architecture

used or image pattern recognition (38-41). CNNs can

take images as input, assign weights to dierent image

components, and thereby dierentiate complex patterns

within the input image. Additionally, CNNs are signicant

or reducing images to simpler ormats, allowing or lighter

processing without signicant loss o essential inormation

required or classication tasks. CNNs primarily consist o

two types o layers to extract crucial eatures rom the input

image: the convolutional layer and the pooling layer, which

are successively repeated. In the Convolutional Layer,

multiple lters (or kernels) are applied to the input image

to extract important eatures and generate a eature map.

This representation is achieved through matrix operations,

as both the image and the kernel are matrices. The kernels

convolve over the image during this process, traversing all

pixels. The result is a new image that preserves essential

inormation (high-level eatures) rom the original, useul

or tasks like classiication, segmentation, and object

detection (42,43). The pooling layer, typically ollowing the

convolutional layer, aims to reduce the spatial dimension

o the processed image. It replaces blocks o pixels with a

representative value (usually the maximum) in a process

called MaxPooling. These layers are crucial or improving

computational eciency, suppressing noise, and maintaining

important inormation in a condensed orm.

In addition to these layers, a fattening layer is added to

modiy the data structure. Up to this point, we had images

as two-dimensional matrices that needed to be transormed

into a one-dimensional vector to ensure the continuity

o the fow o inormation to the subsequent layers o the

network, which can only process this type o structure.

Finally, the ully connected (or dense) layers are added at

the network’s end, ollowing the convolutional, pooling, and

lattening layers. Their objective is classiication based on

interpreting high-level eatures generated by the previous

layers through complex reasoning. Thus, we can say that

this layer unctions as a nonlinear classiier composed o

articial neurons (44).

In this study, we constructed a CNN using the

Sequential API rom Keras in Python (45). The initial layer

o our network is a convolutional layer, named Conv2D,

Table 2 Number o magnetic resonance images obtained in each o the groups or each available slicing plane in the dataset

Classification Phase Axial slice Coronal slice Sagittal slice

MCI Training 3,987 6,619 4,935

Validation 854 1,418 1,057

Test 855 1,419 1,059

Total 5,695 9,455 7,050

NC Training 15,008 24,248 17,969

Validation 3,216 5,196 3,850

Test 3,217 5,197 3,852

Total 21,440 34,640 25,670

NC, normal control; MCI, mild-cognitive impairment.
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which takes input images and uses a convolution kernel

(3×3) that convolves with the input to produce an output

tensor. We utilized 32 ilters in this layer. Following each

convolutional layer, we applied the Exponential Linear Unit

(ELU) activation unction (46) to expedite the network’s

learning. We also employed “padding = same” to ensure

the output image maintains the same size as the input.

Ater the Conv2D layer, we added a MaxPooling2D layer

to reduce the dimensionality o the eature maps generated

by the preceding Conv2D layer, enhancing the network’s

eiciency and reducing overitting potential. We used a

pool_size o [2, 2] in the MaxPooling2D layer, indicating

that the maximum pooling operation would be applied to

a 2×2 pixel window in each eature map. We introduced

an additional pair o Conv2D and MaxPooling2D layers

with identical characteristics to the initial ones. The

inal pair o layers eatured a convolutional layer with 64

lters while maintaining the other parameters unchanged.

The subsequent pooling layer remained the same as the

previous ones. Finally, we added a lattening layer that

converts the output into a one-dimensional vector or

the subsequent network layers. From this stage, CNN

behaves like a traditional network. Three dense layers

composed o densely connected multilayer perceptrons

were added or classication purposes, aiming to minimize

errors. We utilized the ELU activation unction or the

irst two layers and Sotmax or the last layer and applied

binary cross-entropy (Log Loss) as the loss unction to

assess the network’s perormance, minimize mean squared

error, and consequently optimize the system. The network

architecture and other inormation are described in Table 3.

For the optimal training o this network, dierent

numbers o epochs o training (20, 50, 80, and 100) and

batch sizes (8, 16, 32, and 64) were tested to nd the best

possible coniguration or each type o anatomical slice.

Various parameters, such as accuracy, sensitivity, specicity,

and F1-score, inorm the network’s perormance.

Accuracy represents the proport ion o  correct

predictions compared to the total predictions and serves

as a general perormance metric or the model. Sensitivity,

also known as recall, highlights the model’s ability to

correctly identiy positive cases, which is particularly

relevant in Alzheimer’s detection, where early detection is

crucial. Specicity measures the model’s ability to correctly

identiy negative cases, which is crucial in minimizing alse

alarms. The F1-score, in turn, is a metric that combines

precision and recall, aiming or a balance between the

model’s ability to classiy both positive and negative cases

correctly. Together, these metrics provide a comprehensive

and balanced evaluation o the model’s perormance in

Alzheimer’s diagnosis.

Experimental setup

The analysis o MRI and the implementation o CNNs

were conducted on an Acer Nitro 5 notebook (AN-515-

Table 3 Architecture and parameters o the CNNs described in this work

Layer ID Layer name Kernel number Kernel size Output image size

1 Input – – 128×128

2 Conv2D + ELU 32 3×3 128×128

3 MaxPooling2D – 2×2 64×64

4 Conv2D_1 + ELU 32 3×3 64×64

5 MaxPooling2D_1 – 2×2 32×32

6 Conv2D_2 + ELU 64 3×3 32×32

7 MaxPooling2D_2 – 2×2 16×16

8 Flatten – – 256

9 Dense (Elu) 1,024 – 1,024

10 Dense_1 (Elu) 512 – 512

11 Dense_2 (Softmax) 2 – 2

12 Binary_Cross-Entropy – – –

CNNs, convolutional neural networks.
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44-R629). This equipment is equipped with an AMD Ryzen

7-4800H Octa-Core processor (with 16 threads), 16 GB

o DDR4 RAM operating at 3,200 MHz, and a dedicated

NVIDIA GeForce GTX 1650 graphics card with 4 GB

o memory. The operating system used was Windows 10,

version 2H22. For the implementation o CNNs, Jupyter

Notebook (version 6.5.4) was used, with codes written in

Python (version 3.11.5).

Analysis and statistics

Statistical analysis plays a pivotal role in assessing the

perormance o CNNs in our study. We employed

descriptive statistics, encompassing means and standard

deviations, to scrutinize key metrics evaluating CNN

perormance: accuracy, sensitivity, speciicity, and the F1-

score. Through a meticulous statistical examination o these

metrics, we gained a proound understanding o CNN’s

perormance in our classiication task, enabling a critical

assessment o our models’ eicacy against established

criteria. This robust statistical approach was indispensable

or result interpretation and inormed decision-making

within the scope o our research.

Results

We conducted a comparative analysis o three categories

o medical image slices (axial, coronal, and sagittal) and

our batch size conigurations (8, 16, 32, and 64 batches).

The perormance metric employed was accuracy, evaluated

across dierent epochs (20, 50, 80, and 100 epochs). Figure 2

presents radar-type graphs illustrating the accuracy achieved

or each slice concerning the various epochs and batches

congurations.

At 20 epochs, the coronal slice yielded an accuracy

0.99 across all batch sizes. The axial slice also achieved an

accuracy o 0.99, but only or batches 16 and 64, with a

slight decrease to 0.98 or batches 8 and 32. The sagittal

slice demonstrated an accuracy o 0.99 or batches 8 and 16,

with a minor decrease to 0.98 and 0.97 or batch sizes 32

and 64, respectively.

Upon increasing to 50 epochs, the accuracy o the

coronal slice improved to 1.00 or batches 8 and 16 while

remaining at 0.99 or batches 32 and 64. The axial and

sagittal slices showed equal accuracies, reaching 0.99 or

batches 8 and 16 and decreasing slightly to 0.98 or batches

32 and 64.

With a urther increase to 80 epochs, the coronal slice

maintained a high accuracy 1.00 or batch size 16 and

0.99 or the other batch sizes. The axial slice achieved an

accuracy o 0.99 or batches 16 and 32 and 0.98 or the

other batch sizes. The sagittal slice consistently hit the

0.99 mark or all batch sizes excluding batch 64, where it

achieved an accuracy o 0.98.

Lastly, at 100 epochs, the coronal slice achieved an

impressive accuracy o 1.00 or batches up to a size o 32,

with a slight decrease to 0.99 or batch 64. The axial slice

maintained a high accuracy o 0.99 or batch sizes 8 and 16

but was reduced to 0.98 or larger sizes. The sagittal slice

demonstrated consistency by achieving an accuracy 0.99

across all batch sizes.

This comprehensive analysis allowed or a thorough

evaluation o the perormance o the dierent slices across

various batch sizes and epochs.

The analysis o Figure 3 provides substantial insights into

the perormance o CNNs in medical image classication.

The layered metrics present a holistic perspective on

perormance luctuations concerning varying batch sizes

and slice orientations. The bar graphs in this igure

meticulously examine metrics such as “Precision-NC”,

“Precision-MCI”, “Recall-NC”, “Recall-MCI”, “F1-score-

NC”, and “F1-score-MCI”. Each metric is organized into

grouped arrangements to acilitate a more straightorward

interpretation. Moving rom let to right, these groups

correspond to dierent conigurations o the number o

training epochs.

Furthermore, within each metric grouping, we present

three distinct sets, each representing a dierent orientation

o magnetic resonance image slices—axial, coronal, and

sagittal. For each slice, we separate each batch size (8, 16,

32, and 64 batches), which are identied by dierent colors

in the legend, this detailed visual layout enables a thorough

comparison and analysis o perormance metrics across

various batch sizes and image orientations. By incorporating

these details, the igure enhances clarity. It provides a

more nuanced understanding o the study’s outcomes

in the context o AD diagnosis through medical image

classication using CNNs.

All evaluated parameters exhibit values above 90%,

demonstrating a consistently robust model perormance.

Overall, the coronal slice showed the highest precision,

ollowed by the axial and sagittal slices. However, it is

noteworthy that in speciic conigurations, the sagittal

slice demonstrates superior perormance to the axial slice,

especially in metrics such as recall and the F1-score or

the MCI case. This variation underscores the importance
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o considering dierent image slices when optimizing the

model or speciic cases in classiying neurodegenerative

diseases.

Discussion

This research aimed to explore the impact o the selection

o anatomical slice orientation in medical images, in

conjunction with iltering by education level and MMSE

scores, on the accuracy o AD classi ication using

CNNs. The CNN architecture employed consisted o

three 2D convolutional layers (Conv2D) interspersed

with MaxPooling2D layers. A lattening layer was used

to convert the image into a one-dimensional vector,

ollowed by three dense layers (comprising 1,024, 512, and

2 neurons, respectively).

Patients who had completed a minimum o 16 years

o education were categorized into two groups based on

their MMSE scores: those with scores ranging rom 21

to 24 were classiied as having MCI, while those between

25 and 30 were classiied as healthy. The dierentiation

o patients with MCI rom healthy individuals using MRI

poses a challenge due to the limited visibility o brain

degeneration in the early stages o AD. Moreover, our

CNN demonstrated exceptional perormance in classiying

these two groups using T1-weighted magnetic resonance

images, achieving an accuracy exceeding 99% in most

batch and epoch combinations. However, the F1-score

Figure 2 Radar graphs display the accuracy outcomes o network classiication or various epoch conigurations (20, 50, 80, and 100,

corresponding to images A, B, C, and D) and batch sizes (8, 16, 32, and 64). It is evident that, or most model congurations, the coronal

slice (depicted in red) consistently achieved the highest accuracy values.
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Figure 3 Perormance evaluation o CNNs in various congurations. This gure shows 24 stacked bar charts encompassing the metrics

“Precision-NC”, “Precision-MCI”, “Recall-NC”, “Recall-MCI”, “F1-score-NC” and “F1-score-MCI”. These metrics are evaluated

concerning our dierent batch size congurations (8, 16, 32, and 64 batches) or our dierent epoch congurations (A, B, C, and D reer

to 20, 50, 80, and 100 epochs, respectively). It can be seen that the coronal slice achieves better results than the sagittal and axial slices,

which perorm similarly, with a slight advantage or the sagittal slice. CNNs, convolutional neural networks; NC, normal control; MCI,

mild cognitive impairment.
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results exhibited signicant variation among combinations,

attributable to the dierences in the number o images in

the dataset between MMSE scores o 21–24 and 25–30.

Numerous studies (17-19,24,31,32,47-49) employ

medical images to train CNNs using sagittal, coronal,

or axial slices, depending on the available database.

Nevertheless, the choice o slice can signicantly infuence

the network’s learning eectiveness, as evidenced by

the results shown in Figure 2. The indings indicate that

coronal slice orientation may be more suitable in medical

image classication scenarios, given the consistently high

accuracy rates achieved, ollowed by axial and sagittal

slices. The dierence in accuracy between coronal

and axial slices is small, at just 0.01 percentage points.

However, the dierence in accuracy between the sagittal

and axial slices is greater, at 0.02 percentage points. On the

other hand, as more parameters such as Recall, F1-score,

and others are analyzed, it can be seen that classication

using the sagittal slice has a higher average perormance

than that based on the axial slice, and this dierence

is not directly related to the number o images used to

train the neural network. In MRI scans, the number o

images or each plane (coronal, sagittal, and axial) varies

substantially, which makes it uneasible to maintain a

uniorm proportion o images or each slice when training

the model. In addition, we chose not to use the data-

augmentation technique to align the number o images

to avoid any potential bias that could be introduced by

articially manipulating the training images.

The variation in accuracy between slices can be

attributed to several actors, including the viewing angle and

the amount o inormation in the image. The coronal slice

provides a rontal view o the body, the axial slice oers a

transverse view, and the sagittal slice provides a longitudinal

view. As a result, the coronal slice may oer more pertinent

inormation or image classication.

The batch size coniguration might also explain the

discrepancy in accuracy between slices. Larger batches

necessitate a more complex and robust deep-learning model.

The sagittal slice, which achieved the lowest accuracy or

batch size 64, might pose more o a challenge to classiy

with a more complex model.

The results presented in Figures 2,3 demonstrate that the

coronal slice is the most appropriate or classiying AD MRI

images. This result could be clariied because the coronal

slice provides a rontal view o the brain, which could be

advantageous in identiying typical eatures o AD, such as

cortical atrophy and senile plaques.

Strengths and limitations

The CNN developed in our work has relatively ew layers

(a total o 12) and was able to successully classiy healthy

patients versus patients with MCI based on MMSE scores

through T1-weighted MRI, achieving accuracy above

90% or all analyzed metrics regardless o the cutting

orientation. All data were selected rom the ADNI 1

database and ollowed a standardization proposed by the

study itsel, thus eliminating any unwanted bias or the

classiication perormed by the network. Additionally, no

data augmentation technique was used to increase the

dataset, thus eliminating any bias the network could acquire

during the learning o patterns related to the reuse o the

same altered images. Another important point addressed

by our study was how hyperparameters aect classication;

thereore, we varied the number o training epochs (20, 50,

80, and 100) and batch size (8, 16, 32, and 64) to determine

the best combination between image cutting orientation,

the optimized number o training epochs that provide the

best result, and batch size.

Although our article has demonstrated signiicant

results, it is crucial to recognize that the use o a single

database may be considered a potential limitation, as the

predominance o data rom a single geographical region

(the USA) may result in a lack o representative diversity.

The absence o validation on external datasets beyond

ADNI 1, such as the Open Access Series o Imaging Studies

(OASIS) database (50), although it did not compromise

the robustness o our results, highlights an area or

improvement. We recognize the importance o validating

the robustness o our algorithm through comparisons across

dierent datasets and are committed to incorporating this

analysis into our uture research.

Conclusions

This research emphasizes the signicance o considering

slice orientation and batch size when classiying medical

images using CNNs. The results o this study suggest

that the coronal slice is the most accurate or classiying

medical images, ollowed by the axial and sagittal slices.

Notably, in specic scenarios, the sagittal slice outperorms

the axial slice, particularly in metrics like recall and the

F1-score or classiying patients with MCI. This nuanced

understanding emphasizes the signiicance o tailoring

image slice considerations or optimizing the model,

providing valuable insights or rening neurodegenerative
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disease classication approaches.
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Supplementary

Python code for obtaining anatomical slices from a DICOM image

import os

import pydicom

import numpy as np

import matplotlib.pyplot as plt

import warnings

dicom_dir = ‘Add the path of the files in dicom format’

dicom_files = [os.path.join(dicom_dir, filename) for filename in os.listdir(dicom_dir) if filename.endswith('.dcm')]

def load_dicom_data(dicom_files):

slices = [pydicom.read_file(dicom_file) for dicom_file in dicom_files]

slices.sort(key=lambda x: int(x.InstanceNumber), reverse = False)

if len(slices) >= 2:

slice_thickness = np.abs(slices[0].ImagePositionPatient[2] -slices[1].ImagePositionPatient[2])

else:

print('There is only one slice in the list.')

image_shape = list(slices[0].pixel_array.shape)

image_shape.append(len(slices))

volume_data = np.zeros(image_shape, dtype=slices[0].pixel_array.dtype)

for i, slice in enumerate(slices):

volume_data[:, :, i] = slice.pixel_array

return volume_data, slice_thickness

volume_data, slice_thickness = load_dicom_data(dicom_files)

last = int(input(‘Enter the value of the last image saved in the folder:'))

for i in range(40,140): # This range depends on the slice orientation and the image.

image_slice = volume_data[i, :, :] #volume_data[axial, coronal, sagittal]

plt.figure(figsize=(6, 6))

plt.imshow(image_slice, cmap='gray')

plt.axis('off')

warnings.filterwarnings("ignore")

last += 1

plt.savefig(f'{last}.png', bbox_inches='tight', pad_inches=0.0)

Appendix 1
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Appendix 2

Python code for creating datasets with shuffled images

from pathlib import Path

import splitfolders

input_folder = 'images'

splitfolders.ratio(input_folder, output = 'dataset',

seed = 42, ratio = (.7,.15,.15),

group_prefix = None)


