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1 Introduction

In this note we study a priori bounds, existence and qualitative behavior of positive radial
solutions for fully nonlinear elliptic partial differential systems such as

M±(D2u) + vp = 0 in Aa,b

M±(D2v) + uq = 0 in Aa,b

u, v > 0 in Aa,b

u, v = 0 on ∂Aa,b

(1.1)

in the superlinear regime pq > 1 for p, q > 0 where for some a, b > 0,

Aa,b = {x ∈ RN : a < |x| < b}, with 0 < a < b < +∞,

is an annulus in RN for N ≥ 2. HereM± are the Pucci’s extremal operators, which play an essential
role in stochastic control theory and mean field games. We deal with classical solutions of (1.1)
that are C2 in Aa,b.

The analysis of the associated ODE problem for proving existence of annular or exterior domain
solutions has been performed in many papers in the semilinear case [1, 11, 14]. Up to our knowledge,
for the Lane-Emden system, only the case when p, q > 1 is available, see [7] whose proof is based
on degree theoretic methods. It is worth mentioning that the change of variables employed in [11],
which eliminates u′ e v′ from the ODE problem, does not work for Pucci’s extremal operators.
Therefore, a completely different approach in this case is required.

In the case of the Lane-Emden system involving the Laplacian operator, since
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W 1,s
rad(Aa,b) ↪→ C(Aa,b) for any s > 1,

its possible to use the standard Mountain Pass theorem to prove existence of a positive radial
solution. Nevertheless, regarding a priori bounds, only partial results are known in the Lipschitz
superlinear case p, q ≥ 1, see [4]. The proof there explores a differentiability notion of the nonlin-
earities besides relying on the variational formulation of the problem. Here we obtain new results in
order to give a full picture for the standard Lane-Emden system. Furthermore, since our approach
is nonvariational, we are able to develop an existence theory for operators with fully nonlinear
structure. We mention that, under no radial symmetry assumptions on the domain, the best known
existence result for systems involving Pucci operators requires bounds from above on the exponents
p and q, see [15].

In the sequel we state our main result.

Theorem 1.1. For any p, q > 0 with pq > 1, and 0 < a < b < +∞, problem (1.1) has a radial
solution pair in the annulus Aa,b. Moreover, there exists a constant C = C(a, b, N, λ,Λ, p, q) > 0
that bounds the L∞-norm of all solutions. In addition, for a fixed a > 0, the two components of any
solution blow up as b→ a.

The proof of Theorem 1.1 consists on a careful study of the ODE problem through the shooting
method, asymptotics, energy and topological arguments, spectral properties, and on a suitable
criteria for critical points produced via the moving planes method that we also prove. We highlight
that degree theory in cones and fully nonlinear operators in the scalar setting were also combined
in [8, 16].

More than that, we prove uniform bounds for the maximum positive inclination of the solutions

C2(a, b, N, λ,Λ, p, q) ≥ u′(a), v′(a) ≥ C1(a, b, N, λ,Λ, p, q) > 0, (1.2)

which ends up characterizing the admissible shooting parameters in the respective ODE problem in
order to produce solutions in the annulus. This is particularly interesting feature since uniqueness
of solutions is a delicate issue when it refers to systems.

We highlight that all arguments in this paper could be performed in order to address Hardy-

Henón type weights |x|a, |x|b with a, b ∈ R. Indeed, the energy estimates are a little bit more
involved, see [12] for a single equation. However, the difficulty in obtaining the a priori
bounds remains the same since one just plug a ≤ |x| ≤ b on the estimates. In addition, we
could also treat more general radial fully nonlinear operators, in light of [9]. We prefer to
skip overload notation to keep the presentation simpler and to concentrate in the difficulties
produced by the nature of the system above all.

The paper is organized as follows. In Section 2 we introduce some basic properties of the
second order ODE problem associated to (1.1). In Section 3 we obtain the crucial a priori
bounds for the solutions in terms of estimates for the corresponding shooting parameters.
Finally, Section 4 is devoted to the existence statement in Theorem 1.1.

2 Auxiliary tools

We start by recalling that the Pucci’s extremal operators M±
λ,Λ, for 0 < λ ≤ Λ,

M+
λ,Λ(X) := supλI≤A≤ΛI tr(AX) , M−

λ,Λ(X) := infλI≤A≤ΛI tr(AX),

where A,X are N ×N symmetric matrices, and I is the identity matrix. Equivalently, if we
denote by {ei}1≤i≤N the eigenvalues of X, we can define the Pucci’s operators as

M+
λ,Λ(X) = Λ

∑
ei>0 ei + λ

∑
ei≤0 ei, M−

λ,Λ(X) = λ
∑

ei>0 ei + Λ
∑

ei≤0 ei. (2.1)
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From now on we will drop writing the parameters λ,Λ in the notations for the Pucci’s
operators.

When u is a radial function, for ease of notation we set u(|x|) = u(r) for r = |x|. If in

addition u is C2, the eigenvalues of the Hessian matrix D2u are given by {u′′, u
′(r)
r
, . . . , u

′(r)
r
}

where u′(r)
r

is repeated N − 1 times.

The system (1.1) for M+ and positive solutions is written in radial coordinates as{
u′′ = M+(−r−1(N − 1)m+(u′)− vp),
v′′ = M+(−r−1(N − 1)m+(v′)− uq), u, v > 0,

(P+)

while for M− one has{
u′′ = M−(−r−1(N − 1)m−(u′)− vp),
v′′ = M−(−r−1(N − 1)m−(v′)− uq), u, v > 0,

(P−)

which are understood in the maximal interval where u, v are both positive.

Let us have in mind the following initial value problem with positive shooting parameters
δ, µ, which produces the radial solutions of (1.1),{

u′′ = M± (−r−1(N − 1)m±(u′)− |v|p−1v) , u(a) = 0, u′(a) = δ, δ > 0,

v′′ = M± (−r−1(N − 1)m±(v′)− |u|q−1u) , v(a) = 0, v′(a) = µ, µ > 0,
(2.2)

where M± and m± are the Lipschitz functions

m+(s) =

{
λs if s ≤ 0

Λs if s > 0
and M+(s) =

{
s/λ if s ≤ 0

s/Λ if s > 0,
(2.3)

m−(s) =

{
Λs if s ≤ 0

λs if s > 0
and M−(s) =

{
s/Λ if s ≤ 0

s/λ if s > 0.
(2.4)

Here we denote such a solution by (uδ,µ, vδ,µ). That is, a radial solution of (1.1) in the annulus
Aa,b satisfies (2.2) for some δ, µ > 0 with u(b) = v(b) = 0. We shall omit the dependence on
the parameters δ, µ whenever it is clear from the context.

Next we look at monotonicity properties for solutions (uδ,µ, vδ,µ) of (2.2) as follows.

Lemma 2.1. For any δ, µ > 0 such that (uδ,µ, vδ,µ) is a positive solution of (1.1) in the
annulus Aa,b, there exist numbers τu = τu(δ, µ), and τv = τv(δ, µ), with τu, τv ∈ (a, b), such
that the solution pair (u, v) of (2.2) satisfies

u′(r) > 0 for r < τu , u′(τu) = 0 , u′(r) < 0 for τu < r < b ,

v′(r) > 0 for r < τv , v′(τv) = 0 , v′(r) < 0 for τv < r < b .

Proof. Since we have a positive solution pair (u, v) in the annulus, and both functions start
positive and increasing, a critical point must exist for both u and v by Rolle’s theorem.

The uniqueness of τu follows from the fact that, since v is positive, any critical point of u
is a strict local maximum; likewise for τv and v.

Notation. Here and onward in the text we write

τ∗ = min{τu, τv} , τ ∗ = max{τu, τv}.
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As a consequence of this monotonicity, the problems (P+) and (P−) can be better specified.
In the interval where u′ ≥ 0 and v′ ≥ 0 we write

for M+ in [a, τ∗] :

{
λu′′ = −Λr−1(N − 1)u′ − vp,
λv′′ = −Λr−1(N − 1)v′ − uq, u, v > 0;

(2.5)

for M− in [a, τ∗] :

{
Λu′′ = −λr−1(N − 1)u′ − vp,
Λv′′ = −λr−1(N − 1)v′ − uq, u, v > 0;

(2.6)

while in the interval where u′ ≤ 0 and v′ ≤ 0 it yields

for M+ in [τ ∗, b] :

{
u′′ = M+(−λr−1(N − 1)u′ − ravp),
v′′ = M+(−λr−1(N − 1) v′ − rbuq), u, v > 0;

(2.7)

for M− in [τ ∗, b] :

{
u′′ = M−(−Λr−1(N − 1)u′ − ravp),
v′′ = M−(−Λr−1(N − 1) v′ − rbuq), u, v > 0.

(2.8)

Moreover, in between, one of the following situations take a place for the operators M±:

for M+ in [τu, τv] :

{
u′′ = M+(−λr−1(N − 1)u′ − vp),
λv′′ = −Λr−1(N − 1)v′ − uq, u, v > 0;

(2.9)

for M− in [τu, τv] :

{
u′′ = M−(−Λr−1(N − 1)u′ − vp),
Λv′′ = −λr−1(N − 1)v′ − uq, u, v > 0;

(2.10)

if τ∗ = τu and τ ∗ = τv; while

for M+ in [τv, τu] :

{
λu′′ = −Λr−1(N − 1)u′ − vp,
v′′ = M+(−λr−1(N − 1) v′ − uq), u, v > 0;

(2.11)

for M− in [τv, τu] :

{
Λu′′ = −λr−1(N − 1)u′ − vp,
v′′ = M−(−Λr−1(N − 1) v′ − uq), u, v > 0.

(2.12)

if τ∗ = τv and τ ∗ = τu.

The next theorem gives us a better precision on the location of the critical points. It says
no critical points exist in the closure of the half annulus A 1

2
(a+b),b .

Theorem 2.2. Let (u, v) be a positive C2 solution pair of (1.1) in the annulus Aa,b, with
u = v = 0 on ∂Aa,b. Then ∂ru < 0 and ∂rv < 0 for all r ∈ [1

2
(a + b), b], where r = |x|.

The proof is accomplished through the moving planes method as in [10, Theorem 2],
properly adapted to the Lane-Emden system in light of [6, 17]. It is worth observing that
a classical Gidas-Ni-Nirenberg type symmetry result does not hold for annular domains in
order to conclude that solutions of (1.1) are radial. However, the moving planes method can
still be applied to obtain strict monotonicity in a half portion of the annulus.

Proof. We revisit the moving planes method as performed in [6] in order to treat the general
range pq > 1. The lack of C1 or even Lipschitz continuity on the nonlinearities is allowed
there, namely when either p < 1 or q < 1. Accordingly to the notation in [6], for the annulus
we have

Λ1 = Λ2 = 1
2
(a + b),

4



see Section 2 in [6] for the corresponding definitions.

For any direction γ > 0 (as positive axis {x1 = 0}) it follows as in [6, Step 1 of the proof
of Proposition 3.1, p.4183] that γ · Du < 0 in the maximal cap ΣΛ1 . The union of these
maximal caps, originated by all directions γ = x

|x| , x 6= 0, produces the half annulus AΛ1,b.
In particular, no critical points exist in the open annulus AΛ1,b.

If we had ∂ru(x0) = 0 or ∂rv(x0) = 0 for some x0 with |x0| = Λ1, then the Hopf lemma
in [6, Lemma 3.3] would give us UΛ1 ≡ 0 or V Λ1 ≡ 0 in ΣΛ1 . Since the system is strongly
coupled, this means UΛ1 = V Λ1 ≡ 0 in ΣΛ1 . So u(xΛ1) = v(xΛ1) = 0 for all x ∈ ΣΛ1∩∂Aa,b due
to the boundary condition on |x| = b, but this is impossible since the solution is positive.

Onward in the text and proofs, to fix the ideas we are going to consider problem (P+)
driven by the operatorM+. However, everything can be repeated for the respective (P−), or
even for a problem involving both M+ and M−, with slight modifications.

The next result concerns the monotonicity of some associated energy functions. We point
out that related monotonicity properties of energy-like functions for fully nonlinear operators
have been already observed for scalar equations in [2, 9].

We recall the dimension-like numbers Ñ− = (N − 1)Λ
λ

+ 1 and Ñ+ = (N − 1) λ
Λ

+ 1.

Proposition 2.3. Let δ, µ > 0 be such that (uδ,µ, vδ,µ) is a positive solution of (1.1) in the
annulus Aa,b. We set

Es(r) = u′v′ + 1
s(p+1)

vp+1 + 1
s(q+1)

uq+1, s > 0.

Then Eλ(r) is monotone decreasing in [a, τ∗]∪ [τ ∗, b), and it is increasing in [τ∗ , τ
∗]. Further,

Eλ
1 (r) = r2(Ñ−−1) Eλ(r) in [a, τ∗]

EΛ
1 (r) = r2(Ñ−−1) EΛ(r) in [τ ∗, b)

are monotone increasing functions.

Proof. We recall that in [a, τ∗] we have u′, v′ ≥ 0, u′′ ≤ 0, and

u′′v′ + vpv′

λ
= − (Ñ−−1)u′v′

r
, v′′u′ + uqu′

λ
= − (Ñ−−1)u′v′

r
.

In [τ ∗, b) we have u′, v′ < 0 and

u′′v′ + vpv′

Λ
≥ u′′v′ + vpv′

σ
= − (N̂−1)u′v′

r
≥ − (Ñ−−1)u′v′

r
,

where (σ, N̂) is either (λ,N) or (Λ, Ñ+), and analogously v′′u′ + uqu′

Λ
≥ − (Ñ−−1)u′v′

r
. Thus,

for κ = 2(Ñ− − 1), we obtain in [τ ∗, b),

(EΛ
1 )′(r) = κrκ−1

{
u′v′ + vp+1

Λ(p+1)
+ uq+1

Λ(q+1)

}
+ rκ

{
u′′v′ + u′v′′ + vpv′

Λ
+ uqu′

Λ

}
≥ 0,

while in (a, τ∗] it yields

(Eλ
1 )′(r) = κrκ−1

{
u′v′ + vp+1

λ(p+1)
+ uq+1

λ(q+1)

}
+ rκ

{
u′′v′ + u′v′′ + vpv′

λ
+ uqu′

λ

}
≥ 0.

On the other hand, in [a, τ∗] one writes

u′′v′ + vpv′

λ
≤ − (Ñ+−1)u′v′

r
, v′′u′ + uqu′

λ
≤ − (Ñ+−1)u′v′

r
,
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while in [τ ∗, b),

u′′v′ + vpv′

λ
≤ u′′v′ + vpv′

σ
≤ − (Ñ+−1)u′v′

r
, v′′u′ + uqu′

λ
≤ − (Ñ+−1)u′v′

r
,

so anyways E ′λ(r) ≤ −
2(Ñ+−1)

r
u′v′ ≤ 0.

Let us now analyze the interval [τ∗ , τ
∗]; to fix the ideas say τ∗ = τv and τ ∗ = τu. Then,

in [τv, τu] we have u′ > 0 and v′ < 0 (recall that τ ∗ ≤ b). Hence

u′′v′ + vpv′

λ
≥ − (Ñ+−1)u′v′

r
, v′′u′ + uqu′

λ
≥ v′′u′ + uqu′

σ
= − (N̂−1)u′v′

r
≥ − (Ñ+−1)u′v′

r
.

Thus, for κ = 2(Ñ+ − 1) we get E ′λ(r) ≥ −κ
r
u′v′ ≥ 0. The reasoning is analogous when

instead τ∗ = τu and τ ∗ = τv.

As a consequence of the energy, we derive some useful shooting estimates.

Lemma 2.4. Let δ, µ > 0 be such that (uδ,µ, vδ,µ) is a positive solution of (1.1) in the annulus
Aa,b. Then, for some C0 = C0(a, b, N, λ,Λ, p, q), the following estimates hold:

τ Ñ−v ≥ C0
µ

1
q+1

δ
q
q+1

, (2.13)

τ Ñ−u ≥ C0
δ

1
p+1

µ
p
p+1

. (2.14)

Proof. By Proposition 2.3 we have Eλ(r) ≤ Eλ(a) for all r ≤ τ∗, that is,

1
p+1

vp+1(r) + 1
q+1

uq+1(r) ≤ λ δµ for all [a, τ∗], (2.15)

since u′v′ ≥ 0 in [a, τ∗]. Observe that (2.15) implies

uq(r) ≤ C(δµ)
q
q+1 for all r ∈ [a, τv], vp(r) ≤ C(δµ)

p
p+1 for all r ∈ [a, τu], (2.16)

since τu (resp. τv) is the maximum point for u (resp. v) in [a, ρu] (resp. in [a, ρv]).

Next we write the equation for v in [a, τv] as (v′rÑ−−1)′ = −uq

λ
rÑ−−1, and so

0 = v′(τv) τ
Ñ−−1
v = µ aÑ−−1 − 1

λ

∫ τv

a

rÑ−−1uq(r) dr. (2.17)

By combining the estimate for u in (2.16) and equality (2.17) we obtain

µ =
1

λaÑ−−1

∫ τv

a

rÑ−−1uq(r) dr ≤ C

Ñ−
(δµ)

q
q+1 τ Ñ−v ,

from which we derive (2.13).

Analogously, in [a, τu] one writes (u′rÑ−−1)′ = −vp

λ
rÑ−−1 and so

0 = u′(τu) τ
Ñ−−1
u = δ aÑ−−1 − 1

λ

∫ τu

a

rÑ−−1vp(r) dr . (2.18)

Thus, using the estimate for v in (2.16) into (2.18) one reaches (2.14) out.
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Note that if the product δµ→ 0, then u(τ∗), v(τ∗)→ 0. Indeed, by (2.15),

1
p+1

vp+1(τ∗) + 1
q+1

uq+1(τ∗) ≤ λ δµ→ 0 whenever δµ→ 0. (2.19)

We show in the next corollary that such a property is never true for solutions of (1.1), by
verifying the lower estimate in (1.2).

Corollary 2.5. Let δ, µ > 0 be such that (uδ,µ, vδ,µ) is a positive solution of (1.1) in the
annulus Aa,b. Then

δ, µ ≥ C(a, b, N, λ,Λ, p, q) > 0. (2.20)

Proof. Set C1 = (bÑ−/C0)q+1 and C2 = (bÑ−/C0)p+1. By (2.13) and (2.14) we derive

µ ≤ C1 δ
q and δ ≤ C2 µ

p.

The combination of these two estimates then implies

δpq−1 ≥ 1

Cp
1C2

, µpq−1 ≥ 1

C1C
q
2

,

which gives us the lower bound (2.20).

3 A priori bounds and blow-up

In the first part of this section we show that there exists C > 0 such that

‖u‖L∞(Aa,b) , ‖v‖L∞(Aa,b) ≤ C

for all positive solution pairs (u, v) of problem (1.1) in the annulus Aa,b.

Our strategy is to combine concavity properties with a uniform bound on the shooting
parameters. On the one hand, from the concavity of u and v in [a, τu] and [a, τv] respectively,
for any solution pair of (1.1) in the annulus Aa,b we have

‖u‖∞ = u(τu) ≤ δ(b− a) , ‖v‖∞ = v(τu) ≤ µ(b− a). (3.1)

Then it only remains to prove the following estimate by above for δ and µ. Combined with
(2.20), this establishes the estimates in (1.2).

Lemma 3.1. Given 0 < a < b < +∞, let δ, µ > 0 be such that (uδ,µ, vδ,µ) is a positive
solution of (1.1) in the annulus Aa,b. Then δ ≤ C and µ ≤ C for some universal C =
C(a, b, λ,Λ, p, q, N).

Proof. We fix the annulus Aa,b with 0 < a < b < +∞. Assume by contradiction that there
exists a sequence of shooting parameters (δk, µk) with respective solutions (uk, vk) of (2.2) in
Aa,b such that at least one of them converges to infinity, that is δk → +∞ or µk → +∞. The
first step is to show that both of them approach infinity in this case.

Step 1) δk → +∞ and µk → +∞.

Assume on the contrary that either δk → ∞ or µk → ∞, and the other one is bounded.
To fix the ideas we suppose δk → +∞ and µk ≤ C for all k. Then, by (2.14) we obtain
b ≥ τu → +∞, which is impossible since the annulus Aa,b is fixed. Analogously, if µk → +∞
and δk ≤ C for all k, one finds the absurdity b ≥ τv → +∞ by (2.13).

We set
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wk(r) := 1
p+1

vp+1
k (r) + 1

q+1
uq+1
k (r).

Step 2) wk(τ
k
∗ )→ +∞ and wk(τ

∗
k )→ +∞.

We already know that the energy Eλ
1 is increasing in [a, τ k∗ ] by Proposition 2.3, and the

annulus is fixed so that a ≤ τ k∗ ≤ b for all k. Thus,

wk(τ
k
∗ ) ≥ C0 δkµk for all k, where C0 = C0(a, b, N, λ,Λ, p, q). (3.2)

On the other hand, wk(τ
∗
k ) ≥ wk(τ

k
∗ ) by Proposition 2.3, since the energy Eλ is increasing

in [τ k∗ , τ
∗
k ]. Now, by Step 1 we have δkµk → +∞. This proves Step 2.

Step 3) ‖uk‖∞ → +∞ and ‖vk‖∞ → +∞.

By Step 2 we know that at least one of the norms sequences satisfies ‖uk‖∞ → +∞ or
‖vk‖∞ → +∞. Without loss we assume ‖uk‖∞ → +∞.

Suppose by contradiction that ‖vk‖L∞(A) ≤ C is bounded in the annulus A = Aa,b. Recall
that uk solves −M±(D2uk) = vpk in A, with uk = 0 on ∂A. Now we are going to use the
Alexandrov-Bakelman-Pucci estimate (ABP), which can be found for instance in [3]. By
ABP we then get uk ≤ C in Aa,b, which is impossible. Thus, ‖vk‖∞ → +∞.

Step 4) limk→∞ τ
∗
k = b.

Otherwise we may write b > (1 + ε)τ ∗k for all k, up to a subsequence, for some ε > 0. In
particular, uk, vk are both positive and decreasing in the interval [τ ∗k , (1 + ε)τ ∗k ].

We consider the annulus Ak = Aτ∗k ,r. Then Uk = tkuk and vk solve

−M±(D2Uk) ≥ tkv
p
k, −M±(D2vk) ≥ uqk ≥ tk U

1/p
k in Ak , Uk, vk > 0 in Ak;

while uk and Vk = skvk satisfy

−M±(D2uk) ≥ vpk ≥ sk V
1/q
k , −M±(D2Vk) ≥ sku

q
k in Ak , uk, Vk > 0 in Ak,

where

tk = minAk u
pq−1
p+1

k = u
pq−1
p+1

k (r), sk = minAk v
pq−1
q+1

k = v
pq−1
q+1

k (r).

Hence, by the definition of first eigenvalue λ+
1 (D) = λ+

1 (M±,M±,D) for the fully nonlinear
Lane-Emden systems in [13], we have

u
pq−1
p+1

k (r), v
pq−1
q+1

k (r) ≤ λ+
1 (Ak) ≤ λ+

1 (Aτ∗k ,ik) ≤
1
a2
λ+

1 (A1,1+ ε
2
) =: C1 , (3.3)

for all r ∈ Ik = [ik, jk], where ik := (1 + ε
2
)τ ∗k and jk := (1 + ε)τ ∗k , since ε > 0 is fixed.

Recall the energy EΛ
1 is increasing in [τ ∗k , b] by Proposition 2.3. Thus, EΛ

1 (τ ∗k ) ≤ EΛ
1 (r)

for all r ∈ Ik. Hence, this, (3.2), and (3.3) give us for r ∈ Ik

(u′kv
′
k)(r) ≥ 1

Λ

(
a
b

)2(Ñ−−1)
wk(τ

∗
k )− 1

Λ
wk(r) ≥ c0 δkµk (3.4)

for large k. Recall that u′k < 0 and v′k < 0 in Ik. In particular, u′k(r) or v′k(r) goes to −∞ as
k →∞, for all r ∈ Ik.

Observe that (u′k)
2(r) + (v′k)

2(r) ≥ 2(u′kv
′
k)(r) ≥ 2c0 δkµk for all r ∈ Ik. Then for each k

we have either

|Ck| = | {r ∈ Ik : (u′k)
2(r) ≥ c0 δkµk} | ≥ 1

2
|Ik|

or
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|Dk| = | {r ∈ Ik : (v′k)
2(r) ≥ c0 δkµk} | ≥ 1

2
|Ik|.

So we can extract a subsequence for which one of the two situations occurs, namely the first
one |Ck| ≥ 1

2
|Ik|.

Next, the Fundamental Theorem of Calculus and the Lebesgue integration for this sub-
sequence imply

uk(ik) ≥ uk(ik)− uk(b) =

∫ b

ik

(−u′k) ≥
∫
Ck

(−u′k)

= |Ck| (c0 δkµk)
1/2 ≥ 1

2
|Ik| (c0 δkµk)

1/2 ≥ ε
4
a (c0 δkµk)

1/2 → +∞

as k → +∞ by using the fact that ε > 0 is fixed fulfilling |Ik| = ε
2
τ ∗k ≥ ε

2
a. Hence we reach a

contradiction with the estimate (3.3). The case when |Dk| ≥ 1
2
|Ik| is analogous.

Step 5) Conclusion

We reach a contradiction by putting together Theorem 2.2 with Step 4, since b > a.

We point out that, in order to obtaining a priori bounds, it is essential to have a fixed
minimum distance between the radii of the annulus, that is b − a ≥ c0, as shows the next
proposition.

Proposition 3.2. If b→ a then u(τu), v(τv)→ +∞.

Proof. Let (u, v) be a solution pair of (2.2) and denote A = Aa,b.

We set U = tu, with t > 0, and write{
−M±(D2U) ≤ t vp

−M±(D2v) ≤ uq−
1
p u

1
p ≤ t−

1
p ‖u‖

pq−1
p
∞ U

1
p = t U

1
p

since pq > 1, as long as we choose t = ‖u‖
pq−1
p+1

L∞(A).

Hence, by applying the ABP estimate in the domain A for each of the scalar PDE in-
equalities above we obtain

sup
A
U ≤ C t sup

A
vp |A|1/N , sup

A
v ≤ C t sup

A
U

1
p |A|1/N .

Then by taking the 1/p power of the inequality above for U , and replacing it into the in-
equality satisfied by v, one finds

sup
A
v ≤ C

p+1
p t

p+1
p sup

A
v+ |A|

p+1
Np ⇒ t ≥ 1

C|A|1/p
→∞ as |A| → 0.

On the other hand, by writing vp = vp−
1
q v

1
q ≤ ‖v‖

pq−1
q
∞ v

1
q and arguing similarly with the

pair (u, sV ), where V = sv for s = ‖v+‖
pq−1
q+1

L∞(A) we get v(τv) = ‖v+‖L∞(A) →∞ as |A| → 0 as
well.

4 Existence result

We are going to prove the existence of a classical solution in the annulus Aa,b so that
u = v = 0 on ∂Aa,b. The tactics is to use a suitable Krasnosel’skii degree theoretical
argument, similar to those employed in [4, 5].
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Proposition 4.1. Let K be a cone in a Banach space X and Φ : K → K a completely
continuous operator such that Φ(0) = 0. For Bs = {w ∈ K : ‖w‖ < s}, assume that there
exist 0 < r < R so that

(i) w 6= θΦ(w) for all θ ∈ [0, 1] and w ∈ K such that ‖w‖ = r;

(ii) there exists a compact map F : BR × [0,∞) → K with F (w, 0) = Φ(w), F (w, t) 6= w
for ‖w‖ = R and 0 ≤ t <∞, while F (w, t) = w has no solution w ∈ BR for t ≥ t0.

Then if U = {w ∈ K : r < ‖w‖ < R}, one has

iK(Φ,BR) = 0, iK(Φ,Br) = 1, iK(Φ,U) = −1,

where iK(Φ,W) is the index of Φ on W. In particular, Φ has a fixed point in U .

Proof of the existence in the annulus via degree theory. We considerX = C(Āa,b)×
C(Āa,b), with the norm ‖(u, v)‖ := max{‖u‖L∞(Aa,b), ‖v‖L∞(Aa,b)}.

Let K = {(u, v) ∈ X : u, v ≥ 0}, and denote Bs = {(u, v) ∈ K : ‖(u, v)‖ < s}.
For any (u, v) ∈ K and t ≥ 0 we define the operator F (t, u, v) = (U, V ), with U = Ut and

V = Vt , as the unique solution of the problem

−M±(D2U) = (v + t)p, −M±(D2V ) = (u+ t)q in Aa,b , U, V = 0 on ∂Aa,b.

In particular, (U, V ) ∈ K by the maximum principle for scalar equations. We denote Φ(·) =
F (0, ·). Our goal is to show that Φ has a positive fixed point (u, v).

Let us verify the hypotheses in Proposition 4.1.

(i) We take (u, v) ∈ K such that ‖(u, v)‖ = r, for some r > 0 to be chosen, and (u, v) =
θΦ(u, v), θ ∈ (0, 1]. In particular, ‖u‖∞ , ‖v‖∞ ≤ r. As before, we set ũ = κu and write{

−M±(D2ũ) = θκvp ≤ κvp

−M±(D2v) = θuq−
1
p u

1
p ≤ κ−

1
p ‖u‖

pq−1
p
∞ (ũ)

1
p = κ(ũ)

1
p

since pq > 1, as long as κ := ‖u‖
pq−1
p+1

L∞(Aa,b) ≤ r
pq−1
p+1 . Then we choose r > 0 small enough such

that r
pq−1
p+1 < λ+

1 (M±,M±, Aa,b). Since u, v = 0 on ∂Aa,b, then by the maximum principle for
the Lane-Emden system for fully nonlinear operators with weights in [13] we get u, v ≤ 0 in
Aa,b. Since (u, v) ∈ K then u, v ≡ 0 in Aa,b, but this contradicts the fact that ‖(u, v)‖ = r > 0.

(ii) Case 1: t ≥ t0
If Ft has a fixed point (ut, vt) then ũt = κut and vt solve{

−M±(D2ũt) = κ(vt + t)p ≥ κvpt

−M±(D2vt) = (ut + t)q−
1
p (ut + t)

1
p ≥ t

pq−1
p

0 κ−
1
p (ũt)

1
p = κ(ũt)

1
p

with ũt , vt > 0 in Aa,b , where

κ = t
pq−1
p+1

0 .

Now, the definition of first eigenvalue λ+
1 (Aa,b) = λ+

1 (M±,M±, Aa,b) for the fully nonlinear
weighted Lane-Emden system in [13] yields

κ ≤ λ+
1 (Aa,b).
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Thus we choose t0 large enough such that κ = 2λ+
1 (Aa,b) in order to derive a contradiction.

Case 2: t ≤ t0
In this case we infer that Lemma 3.1 immediately produces a priori bounds for the fixed

points of F (t, ·) in bounded intervals of t, that is, for each fixed t0 > 0 it will give ‖(ut, vt)‖ ≤
C(t0) for all solutions u = ut, v = vt of F (t, u, v) = (u, v) with t ∈ [0, t0]. Indeed, we define
the function

wt(r) := 1
p+1
|vt + t|p+1(r) + 1

q+1
|ut + t|q+1(r) for t ≥ 0.

Then Step 1, Step 2 hold for t > 0 exactly as in the case t = 0. Moreover, the symmetry
result in Theorem 2.2 applies as well (and so Step 5) since we maintain the zero boundary
condition ut = vt = 0 on ∂Aa,b. On the other hand, a positive solution (ut, vt) of

−M±(D2ut) = (vt + t)p, −M±(D2vt) = (ut + t)q in Aa,b , ut , vt = 0 on ∂Aa,b

produces a positive solution (ũt, ṽt), with ũt = ut + t and ṽt = vt + t, of

−M±(D2ũt) = ṽpt , −M±(D2ṽt) = ũqt in Aa,b , ũt , ṽt = t on ∂Aa,b.

Thus, the proof of Step 4 in Lemma 3.1 is unchangeable for (ũt , ṽt) in place of (u, v), since
we only used in such a proof that the solution is nonnegative at b.

Therefore, it is enough to choose R = 2C(t0) in order to conclude that Ft does not have
fixed points satisfying ‖(ut, vt)‖ = R whenever t ≤ t0. The complementary case ‖(ut, vt)‖ = R
with t ≥ t0 is automatically fulfilled by Case 1.
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