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Abstract

In this paper, we have analyzed the elastic scattering data of the α + 12C system at 13, 18, 54.1 and 
60 MeV incident energies within the framework of the double folding model. We have modified the shape 
of the real and imaginary parts of the optical potential simultaneously, in the surface region, in order to take 
into account the effects of the dynamical polarization. With this, we have been able to obtain an improved 
agreement of the theoretical cross sections with the experimental data. We have also calculated α-cluster 
states in 16O using the same potential. We have shown that the inclusion of the dynamical polarization 
potential (DPP) in the bare folding potential provides an improvement also in producing the 16O rotational 
bands and corresponding excitation energies. Thus, DPP effect is important in explaining the reaction ob-
servables of α + 12C system as well as the structure of the 16O at low energies
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Reactions induced by α particle take enormous interest since they play a major role in stellar 
nucleosynthesis. The elastic and inelastic scattering of 4He on light nuclei have been studied in 
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a wide energy range during several decades [1–7], and cross section data have been measured to 
understand the reaction mechanism of alpha-nucleus systems. Alpha-particle scattering is also 
important to study the alpha cluster structure of light nuclei [8,9]. Many experiments have been 
conducted to explore the structure and to survey the cluster models. As parallel to the experi-
mental studies, many theoretical analysis have been made within several approaches to interpret 
the behavior of the data, as well as the phenomenons observed in α-nucleus systems such as the 
anomalous large-angle scattering (ALAS) [1–7]. One of these systems is 4He+12C, which has 
been extensively studied for both low and high energy regions. While standard reaction models 
such as the Optical Model (OM) could explain the high energy data very well, the experimental 
elastic scattering cross sections at low energies could not be properly described using these mod-
els without taking into account the effects of couplings [10,11]. Recent paper by Chamon et al. 
[12] discussed the significance of the couplings to excited states for the elastic scattering of this 
system at low energies (ELab � 10.5 MeV). They analyzed the integrated inelastic cross section 
for the 2+ 12C state, the capture process 4He + 12C → p + 15N, and phase-shifts that describe 
the experimental elastic scattering cross sections. They have shown that the effect of couplings to 
inelastic states are important for the elastic scattering and capture reaction processes at low ener-
gies. They also showed that the corresponding polarization potential presents a quite complicate 
behavior as a function of angular momentum and energy.

Recently, many studies have also been performed in order to search for an alpha-cluster struc-
ture of the 16O [13–20]. The nuclear properties of 16O have been investigated using the binary 
cluster model, in which it is considered as an α + 12C cluster-core system [21]. The energies and 
widths for the states of two 16O rotational bands have been obtained through the potential model 
[22]. Katsuma has investigated the unknown 8+ and 9− states for rotational bands of 16O, by 
using an OM potential of α + 12C elastic scattering data in Ec.m.= 21.15 to 26.625 MeV [23,24]. 
In this study, he showed that the 0+ state has the total quantum number N = 8 of the α+ 12C rota-
tional bands [23,24]. The elastic and inelastic α + 12C scattering and the states with the α + 12C 
cluster have been analyzed using the double folding model in the coupled channel method, by 
taking into account the excited states of the 12C nucleus [25].

In the present paper, we are motivated to analyze some low and intermediate energy data 
which have not been studied in detail, and to understand the behavior of the dynamical polariza-
tion potential (DPP), which takes into account the non-elastic channels for the 4He+12C system. 
With this purpose, we have chosen four different incident energies of the α-particle, 13.0, 18.0, 
54.1 and 60.0 MeV. We have analyzed the elastic scattering cross sections within the framework 
of the double folding model. We also use the model to study properties of the α + 12C cluster 
structure of the 16O nucleus. The next section describes the model used in the calculations. The 
results and discussions are found in the following sections.

2. Model

Fig. 1 shows the experimental elastic scattering angular distributions (ratio to Rutherford) for 
α + 12C that we analyze in the present work. The data were obtained in [4]. Before proceeding 
with the data fits, we first compare the data set with standard results obtained with the São Paulo 
potential (SPP). The SPP is a model for the real part of the optical potential (OP) that involves 
an extensive systematics for the nuclear densities [26]. It has been adopted in many data ana-
lyzes for elastic scattering and fusion of several heavy-ion systems. In [27], a phenomenological 
extension of the model to the imaginary part of the OP was proposed. The imaginary part was 
found to be proportional to the real one, with a factor of normalization about 0.8. With this, the 
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Fig. 1. Experimental elastic scattering angular distributions for α + 12C obtained from [4]. The dashed lines represent 
results obtained with the SPP, while the solid lines correspond to the OM data fits obtained in the context of the bare 
folding potential.

model does not contain any adjustable parameter and has accounted for the description of many 
elastic scattering data sets for several systems (see e.g. [27]). The dashed blue lines in Fig. 1
represent the results obtained with the SPP in the cases considered in the present work. Clearly, 
the data present a behavior quite different in comparison with the standard theoretical predictions 
obtained with the parameter-free SPP.

From now on, we assume the real and imaginary parts of the OP as:

U(R) = NR VDF (R) + i
W0

1 + exp [(R − RW)/aW ]
, (1)

where VDF (R) is determined within the framework of the double folding model. The poten-
tial is evaluated by folding the nuclear matter distributions with the effective nucleon-nucleon 
interaction (νnn):

VDF (R) =
∫

d�r1

∫
d�r2 ρp(�r1) ρt (�r2) νNN(�r12), (2)

where ρP (�r1) and ρT (�r2) are the nuclear matter densities of the projectile and target nuclei, 
�r12 = �R − �r1 + �r2 and NR is the normalization factor.

The nuclear matter density distribution for 12C has been assumed as a two-parameter Fermi 
function:

ρT (r1) = ρ0

1 + exp( r1−a )
, (3)
c
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Table 1
Values of the parameters of the real and imaginary parts of the OP of the standard double 
folding calculations and the volume integrals of the potentials.

ELab NV W0 rW aW JV JW

MeV MeV fm fm MeV fm3 MeV fm3

13.0 0.88 2.5 1.1 0.9 367 23
18.0 0.93 3.0 0.8 0.94 386 14
54.1 1.0 18.0 0.8 0.94 402 86
60.0 0.55 17.0 0.8 0.94 220 81

where the parameters ρ0, a and c have been chosen to reproduce the rms matter radius of 12C 
[28]. For the alpha particle, the density distribution has been taken from [29].

We have chosen the M3Y realistic interaction for the effective nucleon-nucleon interaction:

νNN(r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
+ J00(E) δ(�r), (4)

where J00(E) represents the exchange term, since nucleon exchange is possible between projec-
tile and target. J00(E) has a linear energy-dependence and is expressed as

J00(E) = 276 [1 − 0.005 E/AP ] (MeV). (5)

While the real part of the OM has been obtained by using the above-described model, the 
imaginary potential has been taken in Woods-Saxon form, according to Equation (1), where 
RW = rW (A

1/3
P +A

1/3
T ), AP and AT are the mass numbers of projectile and target nuclei. In our 

calculations, the value of the diffuseness parameter aW has been taken around to 0.9 fm, in order 
to reduce the number of free parameters. The depth W0 and radius of the imaginary potential, 
as well as the normalization factor NR of the real part of the OP, have been adjusted to fit the 
experimental data. The parameter values obtained in these calculations are presented in Table 1. 
In this table we present also the volume integrals of the real and imaginary potentials calculated 
by using the following formula:

JV,W (E) = −4π

AP + AT

∫
V,W(r,E) r2 dr. (6)

The OP presents an energy dependence in scattering of strongly bound nuclei. When the bom-
barding energy approaches the Coulomb barrier, the strength of the imaginary potential decreases 
because the reaction channels close down at energies below the Coulomb barrier. On the other 
hand, the real part of the OP varies sharply. This behavior is named as threshold anomaly, and it 
is due to the effects of the coupling to the non-elastic channels. The couplings produce the dis-
persion relation which connects the real and imaginary parts of the OP. The dispersion relation 
is a general concept in physics and is a consequence of the causality principle. It is given by:

ReU(E,R,R′) = V0(R) +
∑
n

An(R,R′)
E − En

+ P

π

∞∫

εn

ImU(E′,R,R′)
E′ − E

dE′

= V0(R) + �V (E,R) (7)

where P denotes the principal value [30,31]. The term �V (E,R) is called Dynamic Polarization 
Potential (DPP). It is necessary to take account the DPP in the OP since the coupling effects 
are not included in the bare potential [30]. One way to include the DPP in the one-body volume 
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Table 2
Values of the parameters of the real and imaginary parts of the Dynamical Polarization Potential.

ELab V0 rV aV W0 rW aW JV JW

MeV MeV fm fm MeV fm fm MeV fm3 MeV fm3

13.0 -7.9 0.8 0.94 -1. 0.8 0.94 -90 -11
18.0 9.0 1.35 0.99 1.0 0.8 0.94 201 11
54.1 13.0 0.8 0.69 1.0 0.8 0.94 104 11
60.0 20.0 0.95 0.65 1.0 0.8 0.94 202 11

potential is to add a surface potential with the shape of a Woods-Saxon derivative, as done in 
Refs. [32] and [33]. In the present work, we have used the same methodology and modified the 
shape of the real and imaginary parts of the folding potential by adding two small potentials to 
these parts at the surface region to take into account of the coupling effects at low energies. We 
show the DPP parameter values as well as the volume integrals in Table 2.

3. Results and discussion

We have analyzed the elastic scattering angular distributions of 4He +12C at four energies 
through the OM. Since phenomenological potentials are not adequate to explain the elastic scat-
tering cross sections at low energies, we have assumed the double folding potential, which is a 
more realistic model for the real part of the OP, with the Woods-Saxon shaped imaginary poten-
tial to examine the data. We kept the radius and diffuseness parameters of the imaginary part as 
constant values for 18.0, 54.1 and 60.0 MeV (see Table 1). For 13 MeV, these parameter values 
have been changed to 1.1 and 0.9, to obtain a better agreement of the theoretical cross sections 
with the data. As shown in Table 1, although NR and W0 have been varied depending on the 
energy, the double folding potential could not produce a good agreement of the theoretical cross 
sections (solid black lines in Fig. 1) with the experimental data at low and intermediate energies. 
The failure of the standard double folding potential and of the SPP in accounting for the data 
shows that the inclusion of the coupling to non-elastic channels is necessary at these energies, 
as has also been observed at lower energies [12]. These effects are not included in the bare OP, 
has been taken into account with an additional potential to include DPP effect. The modified 
folding model provides an improvement in explaining the low and intermediate energy data, as 
shown in Fig. 2. We assumed the adjusted parameter values of the imaginary part of the DPP 
as identical for all energies, while the parameters of the real part were varied depending on en-
ergy to obtain the best data fit. We point out that similar procedure of modification of the SPP 
by additional DPP potentials in the surface region could not provide a good agreement between 
data and theoretical cross sections. Since the SPP involves a different effective nucleon-nucleon 
interaction instead of the M3Y interaction, which has been used in the standard folding model, a 
different methodology could be required instead of the phenomenological DPP assumed in this 
work. On the other hand, we verified that the agreement between the theoretical calculations and 
data can be improved in the context of the SPP if an internal and very deep imaginary potential 
is assumed for the OP, instead of the standard imaginary part proportional to the real one (with 
factor of normalization of 0.8).

Usually, the DPP is an attractive potential. However, it has been observed that DPP is repulsive 
in interactions involving weakly-bound nuclei [34]. In our calculations for 4He + 12C, we have 
also observed that the character of DPP changes depending on the energy. As shown in Fig. 3, 
we have studied the effect of DPP when it is repulsive and attractive. For this purpose, we have 
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Fig. 2. Elastic scattering angular distributions at 13, 18, 54.1 and 60.0 MeV. The solid lines represent OM results obtained 
with the folding potential with the DPP effect (see text for details).

searched for a potential that produces the best fit for the two cases: the attractive and repulsive 
DPP separately. As shown in Fig. 3, the repulsive DPP produces better agreement at 13 MeV, 
while the attractive DPP produces better agreement at 18 MeV. To avoid confusion, in Table 2
we have shown only the potential sets that provide the best data fits. As seen from this table, DPP 
must be repulsive at 13 MeV while it must be attractive at 18, 54.1 and 60 MeV 3.

We have also shown volume integrals and dispersion relation (DR) between real and imagi-
nary parts of the modified potential in Fig. 4. The imaginary part of the OP volume integral (of 
the four energies) follows the usual behavior of the threshold anomaly, as illustrated by solid 
lines in Fig. 4. The corresponding real part of the DR has been calculated by

JV (E) = VR − W

π
[εa ln | εa | −εb ln | εb |]. (8)

Here εi = (E − Ei)/(Eb − Ea) with i as a and b respectively [30,31]. The parameters are Ea =
5 MeV, Eb = 50.0 MeV, VR = 500 MeV and W = 100 MeV. As seen in the figure, the real part 
of the modified potential is in reasonable agreement at 18, 54.1 and 60 MeV, except in the case 
of the lowest energy at 13 MeV because of the positive sign of DPP at this energy. This behavior 
might be related to some resonance near this energy, maybe related to a term like An(R,R′)

E−En
in 

Equation (7).
We have also used the same modified folding potential, bare plus DPP, to obtain the energies of 

resonant states of 16O with the Gamow code [35]. Gamow code is used to calculate the resonant 
state solution of the radial Schrödinger equation for an arbitrary optical potential. In this study, 
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Fig. 3. The effect of repulsive and attractive DPP at 13 and 18 MeV.

it was used to calculate excitation energies of cluster states of 16O with the corresponding global 
quantum number G. When one considers α + 12C for 16O, the problem is converted to two-body 
and then the cluster states of 16O can be calculated by using global quantum number. The global 
quantum number G comes from the Wildermuth rule [36], which represents the effect of the 
Pauli principle by allowing cluster nucleons to occupy low-lying orbital. It is given by G =
2n + L =

nc∑
j=1

2nj + lj , where nc is the number of cluster nucleons, nj and lj are the single 

particle quantum numbers. The minimum value of G, allowed by the Pauli principle, can be 
obtained in the spherical shell model. In this prescription, G = 8 and 9 are used for 16O.

To make a comparison, the calculations have been performed considering two cases: assum-
ing only the bare double folding approach (DF) and with bare plus DPP potentials. The same 
potential that reproduced the experimental elastic scattering angular distributions was used to 
obtain the cluster states in 16O using the GAMOW code. However, given the nature of the po-
tential, naturally this procedure does not reproduce exactly the experimental excitation energies 
of the states. Hence, as a further step, we found out the normalization parameter NR values of 
the potential that provide the known experimental excitation energy of the 4+ state to constrain 
the potential. Therefore, this was fixed in the calculations. In fact this changed only the depth 
of the interaction potential. Experimental excitation energies and decay widths values are taken 
from Refs. [37] and [38]. Correspondingly, we have used the following NR values: 0.937 for DF 
potential, 0.810 for DF+DPP potential at 13 MeV, 0.942 for DF potential at 18 MeV, 0.806 for 
DF+DPP potential at 54 MeV, 0.657 for DF+DPP potential at 60 MeV.
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Fig. 4. Volume integrals of the real and imaginary parts of the modified folding potential. Here squares show the real 
potential and circles show the imaginary potentials. Dispersion relation of the potentials has been calculated by Equation 
(8).

Table 3
Resonant state energies for 16O calculated with DF and DF+DPP potentials that were obtained from elastic scattering 
data fits at ELab = 13 and 18 MeV. Experimental values are taken from Refs. [37] and [38]. − means that experimental 
values do not exist for these energies, while − −− means that a reasonable value could not be obtained for the particular 
states.

Ex − i	/2

St. G Ex [MeV] 	
exp
α [keV] 13 MeV (DF) 13 MeV (DF+DPP) 18 MeV (DF)

0+ 8 − − 5.341-0.000 5.789-0.000 5.344-0.000
2+ 8 − − − − − 7.022-0.000 − − −
4+ 8 10.35 27 ± 4 10.350-0.154 10.350-0.336 10.349-0.157
6+ 8 16.27 392 ± 20 15.993-0.177 15.306-0.280 12.384-0.973
8+ 8 − − 14.803-1.016 18.462-1.780 14.794-0.998

1− 9 9.63 400 ± 10 − − − − − − − − −
3− 9 11.6 800 ± 100 − − − − − − − − −
5− 9 14.66 632 ± 20 10.248-0.310 17.360-1.051 − − −
7− 9 20.86 540 ± 100 − − − − − − 10.248-0.312
9− 9 − − − − − 30.802 -0.564 − − −

In Tables 3 and 4, we present excitation energy results obtained with the DF and DF + DPP 
potentials. In these Tables, Ex = E + Ethr., with Ethr. = 7.162 MeV. In Figs. 5 and 6, we plot 
the 16O excitation energies as a function of J (J + 1) for G = 8, positive parity states, using the 
potentials that fit the data at 13 MeV and 60 MeV, respectively. It should be noted that the bare 
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Table 4
The same as Table 3, but with potentials obtained with potentials from the elastic scattering data fits for ELab = 54.1
and 60 MeV.

Ex − i	/2

St. G Ex [MeV] 	
exp
α [keV] 54 MeV (DF) 54 MeV (DF+DPP) 60 MeV (DF+DPP)

0+ 8 − − 5.323-0.000 − − − 7.394-0.000
2+ 8 − − − − − 7.448-0.000 8.273-0.003
4+ 8 10.35 27 ± 4 10.350-0.303 10.350-0.567 10.350-0.564
6+ 8 16.27 392 ± 20 12.339-0.628 15.056-0.176 − − −
8+ 8 − − 14.965-0.765 15.242-0.921 18.407-0.177

1− 9 9.63 400 ± 10 − − − − − − 12.700-1.037
3− 9 11.6 800 ± 100 − − − − − − 13.682-1.259
5− 9 14.66 632 ± 20 10.305-0.435 17.452-0.696 17.972-0.893
7− 9 20.86 540 ± 100 − − − 13.921-0.772 21.039-0.672
9− 9 − − 16.368-0.948 16.595-1.131 16.783-1.211

Fig. 5. Excitation energies for 16O versus J (J + 1) for G=8, positive parity states for the DF and DF+DPP potentials at 
13 MeV.

DF potential does not produce the energies of resonant states of 16O at 60 MeV. As seen in these 
figures, the DPP has significant effect also in producing the cluster states of 16O.

4. Summary

In this paper, we have analyzed α + 12C elastic scattering data in the framework of the OM, 
using a realistic double folding potential for the real part of the OP and the Woods-Saxon shape 
for the imaginary part. Since this folding potential was not adequate to explain the experimental 
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Fig. 6. Excitation energies for 16O versus J (J + 1) for G=8, positive parity states for DF+DPP potentials at 60 MeV. 
Bare DF potential does not produce resonant energies at 60 MeV.

angular distributions and also the rotational bands of 16O, we have modified the bare folding 
potential to include the DPP effect. DPP has provided a better agreement of theoretical results 
with the experimental data of cross sections and rotational bands simultaneously at low and 
intermediate energies. We have shown the role of DPP in describing the reaction observables 
and structure properties at the same time. We have also shown that the character of DPP changes 
depending on energy for the α + 12C system.
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