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ABSTRACT
The inverse generalized gamma (IGG) distribution can be particularly useful for
modeling reliability (survival) data with an upside-down bathtub hazard rate func-
tion. The mathematical properties and estimation methods are not known in the
literature. In this paper, we provide Bayesian inferences for the IGG distribution pa-
rameters using non-informative priors, namely, the Jeffreys prior and the reference
prior. Extensive numerical simulations are conducted to investigate the performance
of the proposed estimation method when compared with the classical inference. Fi-
nally, the potentiality of the IGG model is analyzed by employing real environmental
data.
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1. Introduction

In recent years, several new probability distributions have been proposed in the litera-
ture for describing real problems in many applied sciences. In this context, the inverse
distributions, also called inverted or reciprocal distributions, have been widely used
to a broad range of situations [5, 30, 44, 47, 56, 64]. Often, some inverse distributions
appear in Bayesian applications as prior or posterior distributions [20, 27]. Louzada et
al. [44] argued that the study of inverse distributions has provided a better compre-
hension of standard distributions and contributed to adding more flexibility for fitting
data.

In particular, the inverse generalized gamma (IGG) distribution was presented by
Hoq and Ali [28] in a life testing context and can be seen as the inverse of the gener-
alized gamma (GG) distribution introduced by Stacy [69]. However, its mathematical
properties and inferential procedures have not received attention so far. The IGG dis-
tribution includes several submodels as particular cases, such as the inverse exponen-
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tial, inverse log-normal, inverse Weibull, inverse gamma, inverse half-normal, inverse
Nakagami-m, inverse Rayleigh, inverse Maxwell-Boltzmann and inverse chi-squared
distributions. Generalizations of the IGG distribution were also proposed by Kalla et
al. [34] and, more recently, by Mead [47].

In this paper, we consider a Bayesian approach to obtain the parameter estimates
of the IGG model. Although a common approach is to consider proper priors with
high variance, Bernardo [9] argued that using simple proper priors, presumed to be
non-informative, often hides unwarranted critical assumptions, which may easily dom-
inate, or even invalidate the analysis. To overcome this problem, we consider objective
priors, where the data provide the dominant information. These objective priors are
obtained by formal rules and are usually improper [35], which may lead to improper
posteriors. Here, we consider two classes of objective priors, the Jeffreys prior [31] and
the reference priors [6]. For the Jeffreys prior, we show that the obtained posterior is
improper. Further, four different reference priors are obtained and we show that only
one returned a proper posterior density. The obtained reference posterior distribution
has essential properties, such as one-to-one invariance, consistent marginalization, and
consistent sampling properties. An extensive numerical simulation study is carried out
to investigate and compare the proposed estimation methods’ performance. The IGG
distribution can be particularly useful for modeling reliability (survival) data with an
upside-down bathtub hazard rate function. Additionally, we also present several math-
ematical properties of the IGG distribution, such as the r-th moment, r-th central
moment, mean residual life function, harmonic mean, Shannon and Rényi entropies,
among others. To illustrate the potentiality of the IGG distribution, we apply our pro-
posed methodology to describe the average flows of water (in cubic meters per second,
m3/s) from July till November (1972-2014) in the Piracicaba River, Brazil.

The remainder of this paper is organized as follows. Section 2 revises the IGG
distribution and some of its basic properties, including the behavior of the density and
hazard rate functions. Section 3 derive several other important properties of the IGG
distribution. Section 4 outlines some special cases (submodels) of the IGG distribution.
Section 5 presents the inferential procedures based on MLEs and Bayes estimators
considering objective priors for the IGG distribution parameters. Section 6 discusses
the results of a simulation study aimed at investigating and comparing the performance
of the proposed estimators. Section 7 illustrates the usefulness of the IGG distribution,
as well as the relevance of our proposed methodology, through a real environmental
data set. Finally, Section 8 presents some concluding remarks.

2. The IGG distribution

A positive random variable T has an IGG distribution, denoted by IGG(φ, λ, α), if its
probability density function (PDF) is given by

f(t|φ, λ, α) =
α

Γ(φ)
λαφt−αφ−1 exp

{
−
(
λ

t

)α}
, t > 0, (1)

where Γ(φ) =
∫∞

0 e−ttφ−1dt is the gamma function, φ > 0 and α > 0 are the shape
parameters, and λ > 0 is the scale parameter.

The proposition below relates to the IGG distribution with the GG distribution.

Proposition 2.1. Let T ∼ IGG(φ, λ, α), then X = 1/T ∼ GG(φ, λ, α).

2



Proof. Define the transformation X = g(T ) =
1

T
, then the resulting PDF is

fX(x) = fT
(
g−1(x)

) ∣∣∣∣ ddxg−1(x)

∣∣∣∣ =
α

Γ(φ)
λαφxαφ+1 exp {−λαxα} 1

x2

=
α

Γ(φ)
λαφxαφ−1 exp {−(λx)α} .

It is worth mentioning that the GG distribution includes as special cases several
well-known distributions, such as the exponential (α = φ = 1), gamma (α = 1),

Weibull (φ = 1), Nakagami-m (α = 2 and λ =
√
φ/Ω), half-normal (α = 2, φ = 1/2

and λ = 1/
√

2σ2), Rayleigh (α = 2, φ = 1 and λ = 1/
√

2σ2), Maxwell-Boltzmann
(α = 2, φ = 3/2) and chi-squared (α = 1, φ = ν/2 and λ = 1/2) distributions. The log-
normal distribution is also obtained as a limiting distribution when φ→∞. Different
estimation procedures for the GG distribution and its related models, considering both
classical and Bayesian approaches, can be found in [25, 55, 57, 59, 68].

Figure 1 gives examples of the PDF shapes of the IGG distribution (1) for different
values of φ, λ and α.
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Figure 1. The PDF shapes of the IGG distribution considering different values of φ, λ and α.

We observe a unimodal behavior for the PDF as well as a positive asymmetry. The
cumulative distribution function (CDF) of the IGG distribution is given by

F (t|φ, λ, α) =
1

Γ(φ)
Γ

(
φ,

(
λ

t

)α)
,

where Γ(a, b) =
∫∞
b ya−1e−ydy is the upper incomplete gamma function.
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The corresponding survival (or reliability) function, which represents the probability
of an observation not failing until time t, is

S(t|φ, λ, α) = 1− F (t|φ, λ, α) =
1

Γ(φ)
γ

(
φ,

(
λ

t

)α)
,

where γ(a, b) =
∫ b

0 y
a−1e−ydy is the lower incomplete gamma function.

The hazard rate function plays an essential role in reliability theory. It is quite
useful for describing the lifetime distribution of engineered systems or components. It
describes how the instantaneous failure rate changes over time.

The hazard rate function of the IGG distribution is given by

h(t|φ, λ, α) =
f(t|φ, λ, α)

S(t|φ, λ, α)
=

αλαφ

γ
(
φ,
(
λ
t

)α) t−αφ−1 exp

{
−
(
λ

t

)α}
.

Figure 3 shows different shapes for the hazard rate function of the IGG distribution
considering distinct values of φ, λ and α. It can be noted that the hazard rate function
has unimodal shapes regardless of the parameter values.
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Figure 2. The hazard rate function shapes of the IGG distribution considering different values of φ, λ and
α.

3. Some properties of the IGG distribution

In this section, we present some mathematical properties of the IGG distribution.
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3.1. Quantile function

The quantile function plays an essential role in statistical analysis. Generally, a prob-
ability distribution can be specified either in terms of the distribution function or by
the quantile function [51].

For a random variable with IGG distribution, the p-th quantile, tp, is given by the
solution of

Γ
(
φ,
(
λ
tp

)α)
Γ(φ)

= p, for p ∈ (0, 1). (2)

Although the quantile function does not have a closed mathematical expression,
we can use the uniroot function of the R software to find the desired quantiles; see
[11, 71].

3.2. Moments

Many essential features and properties of a distribution can be obtained through its
moments, such as mean, variance, kurtosis, and skewness. In this subsection, essen-
tial moment functions, such as the characteristic function, r-th moment, r-th central
moment, are presented.

Theorem 3.1. If T ∼ IGG(φ, λ, α), then the r-th power, logarithmic and negative
moments are given, respectively, by

E [T r] =
λr

Γ(φ)
Γ
(
φ− r

α

)
, for

r

α
< φ, (3)

E [log(T r)] = r

(
log(λ)− ψ(φ)

α

)
, and (4)

E
[
T−r

]
=

Γ
(
φ+ r

α

)
λrΓ(φ)

, (5)

where ψ(k) =
∂

∂k
log (Γ(k)) is the digamma function.

Proof. We have

E [T r] =

∫ ∞
0

trf(t|φ, λ, α)dt =
α

Γ(φ)

∫ ∞
0

tr
(
λ

t

)αφ 1

t
exp

{
−
(
λ

t

)α}
dt.

=
λr

Γ(φ)

∫ ∞
0

z(φ−r/α)−1 exp{−z}dz =
λr

Γ(φ)
Γ
(
φ− r

α

)
, for

r

α
< φ.

Similarly, we can prove (4) and (5).

Corollary 3.2. If T ∼ IGG(φ, λ, α), then the mean and variance are given, respec-
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tively, by

µ = E [T ] =
λ

Γ(φ)
Γ

(
φ− 1

α

)
, for

1

α
< φ, (6)

σ2 = V ar [T ] =
λ2

Γ(φ)

Γ

(
φ− 2

α

)
−

Γ2

(
φ− 1

α

)
Γ(φ)

 , for
2

α
< φ. (7)

Corollary 3.3. For the random variable T with IGG distribution, the r-th central
moment is given by

Mr = E [(T − µ)r] =

r∑
i=0

(
r

i

)[
− λ

Γ(φ)
Γ

(
φ− 1

α

)]r−i λi

Γ(φ)
Γ

(
φ− i

α

)
,

for r
α < φ, where µ is the mean given in (6).

From Corollary 3.3, we can obtain the skewness and kurtosis measures of the IGG

distribution by computing, respectively, γ1 =
M3

(σ2)3/2
and κ =

M4

(σ2)2
, where σ2 is the

variance given in (7).

Proposition 3.4. The characteristic function (CF) ΨT (s) of the IGG distribution is
given by

ΨT (s) = E
[
eisT

]
=

1

Γ(φ)

∞∑
r=0

(isλ)rΓ
(
φ− r

α

)
r!

, for
r

α
< φ and s ∈ R.

As can be seen in the proposition above, the CF of the IGG distribution cannot
be computed analytically. However, it is important to emphasize that the CF always
exists since the random variable eisT = cos(sT ) + i sin(sT ) is limited, for all s ∈ R;
see [10].

3.3. Mean residual life function

The mean residual life (MRL) function has been widely used in survival and reliability
analysis, and represents the expected additional lifetime given that a component has
survived or not failed until time t. The MRL function is computed by

r(t|θ) =
1

S(t|θ)

∫ ∞
t

yf(y|θ)dy − t,

where θ denotes the parameter vector and S(.) is the survival (or reliability) function.

Proposition 3.5. The MRL function of the random variable T with IGG distribution
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is given by

r(t|φ, λ, α) =
λγ
(
φ− 1

α ,
(
λ
t

)α)
γ
(
φ,
(
λ
t

)α) − t,

where γ(a, b) is the lower incomplete gamma function.

Figure 3 presents examples of the shapes of the MRL function for different parameter
values. Since the hazard rate function has unimodal shapes, the MRL function has
bathtub shapes [24].
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Figure 3. The MRL function shapes for the IGG distribution considering different values of φ, λ and α.

3.4. Entropy

Entropy plays a significant role in information theory as a measure of the uncertainty
associated with a random variable. Shannon’s entropy [63] is one of the most important
and widely used metrics in information theory. For a PDF f defined on the real line,
it is given by

HS(f) = −
∫ ∞
−∞

log (f(t)) f(t)dt = E [− log(f(T ))] .

Proposition 3.6. Let T ∼ IGG(φ, λ, α), then the Shannon’s entropy is given by

HS(f) = log(Γ(φ)) + log(λ)− log(α)− (αφ+ 1)
ψ(φ)

α
+ φ.
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Proof. In fact,

HS(f) = −
∫ ∞

0
log

(
α

Γ(φ)
λαφt−αφ−1 exp

{
−
(
λ

t

)α})
f(t|φ, λ, α)dt

= − log

(
αλαφ

Γ(φ)

)
+ (αφ+ 1)E [log(T )] + λαE

[
T−α

]
= log(Γ(φ)) + log(λ)− log(α)− (αφ+ 1)

ψ(φ)

α
+ φ.

A popular generalization of the Shannon’s entropy is the Rényi’s entropy [60]. If T
has PDF f , the Rényi’s entropy of order ρ, where ρ ≥ 0 and ρ 6= 1, is defined as

HR(ρ) =
1

1− ρ
log

{∫ ∞
−∞

[f(t)]ρ dt

}
.

Some applications of the the Rényi’s entropy can be seen in [4, 61, 70]. The Shan-
non’s entropy appears as a special case of the Rényi’s entropy by taking the limit of
it as ρ→ 1.

Proposition 3.7. A random variable T with IGG(φ, λ, α) distribution has the Rényi’s
entropy given by

HR(ρ) =
(ρ− 1)

[
log(α)− log(λ)− log(ρ)

α

]
+ log

(
Γ
(
ρφ+ ρ−1

α

))
− ρ [log (Γ(φ)) + φ log(ρ)]

1− ρ
.

Proof. Note that

HR(ρ) =
1

1− ρ
log

{(
α

Γ(φ)

)ρ ∫ ∞
0

λαφρt−ρ(αφ+1) exp

{
−ρ
(
λ

t

)α}
dt

}
.

Now, using the transformation z = ρ

(
λ

t

)α
, we have dz = −αρ

t

(
λ

t

)α
dt. Thus,

HR(ρ) =
1

1− ρ
log

{
αρ−1

[Γ(φ)]ρ λρ−1ρρφ+ ρ−1

α

∫ ∞
0

zρφ+ ρ−1

α
−1e−zdz

}

=
1

1− ρ
log

(αλ)ρ−1 Γ
(
ρφ+ ρ−1

α

)
[Γ(φ)]ρ ρρφ+ ρ−1

α

 ,

and with some algebraic manipulations, we get the result.

3.5. Harmonic mean

The harmonic mean is a measure of central tendency, and in many applications, it can
be a natural choice for describing real problems. Some recent applications can be seen
in [26, 40, 53].
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The harmonic mean of a random variable T is defined as the reciprocal of the
expected value of the reciprocal of the random variable T , i.e.,

Hm =

(
E

[
1

T

])−1

=

(∫ ∞
−∞

1

t
f(t)dt

)−1

.

Proposition 3.8. The harmonic mean of the random variable T with IGG distribu-
tion is given by

Hm =
λΓ(φ)

Γ
(
φ+ 1

α

) .
4. Particular cases

In this section, we present several inverse models that arise as particular cases of the
IGG distribution. These models have been studied and applied in various contexts.

4.1. Inverse exponential

Keller et al. [38] introduced the inverse exponential (IE) distribution as an alternative
to the exponential distribution for modeling real phenomena with constant failure
rate assumption, and memory loss property is not adequate. The IE distribution has
an inverted bathtub (unimodal) hazard rate function, and it has been discussed as a
lifetime model by Lin et al. [41].

The IE distribution is obtained from the IGG distribution (1) when α = φ = 1 and
its PDF is given by

f(t|λ) =
λ

t2
exp

{
−λ
t

}
,

for all t > 0, where λ > 0 is the scale parameter.
The IE distribution has no finite moments, and its inability to correctly model

datasets that are highly skewed or have fat tails have been noticed in Abouammoh
and Alshingiti [2], where the generalized inverted exponential distribution was intro-
duced. The inference for the parameters was conducted under classical and Bayesian
viewpoints. In the classical approach, Lin et al. [41] derived the MLE and showed that
it is unbiased for λ. Moreover, they estimated and built 100(1 − ϑ)% confidence in-
terval for the reliability function. Under a Bayesian perspective, Prakash [52] studied
the properties of Bayes estimators of the parameter, reliability function, and hazard
rate function, using symmetric and asymmetric loss functions. Singh et al. [66] pro-
posed Bayes estimators of the reliability function and parameter of the IE distribution
using informative and non-informative priors under general entropy loss function for
complete, type I and type II censored samples.

4.2. Inverse gamma

The inverse gamma (IG) distribution, also called the inverted gamma distribution, is
the reciprocal of a random variable distributed according to the gamma distribution.
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In the Bayesian context, it arises as to the marginal posterior distribution for the un-
known variance of the normal distribution when a non-informative prior is used. This
distribution also appears as an analytically tractable conjugate prior when an informa-
tive prior is required [27]. Besides, it is a conjugate prior for an exponential likelihood
function [13]. As well as the gamma distribution, the IG distribution belongs to the
exponential family, and it has positive support, becoming useful to model several real
problems [23, 29, 41, 62]. Some advantages between the gamma and IG distributions
can be found in [42].

The IG distribution is obtained from the IGG distribution when α = 1, which leads
to the PDF given by

f(t|φ, λ) =
λφ

Γ(φ)
t−φ−1 exp

{
−λ
t

}
,

for all t > 0, where λ > 0 and φ > 0.
The IG distribution has finite m-th moments for φ > m. In particular, if φ > 2 it

has mean and variance [13]. In survival analysis context, Glen [23] studied the prop-
erties of the IG distribution and showed that it always has an upside-down bathtub
shaped hazard rate function. Hence, the IG distribution can be used to model transis-
tors, metals subjected to alternating stress levels, insulation degradation, mechanical
devices subjected to wear, and bearings [36].

Different methods to estimate the IG distribution parameters can be found in the
literature. For example, Llera and Beckmann [42] introduced five different inferen-
tial procedures based on the method of moments (MM), maximum likelihood (ML),
and Bayesian estimation. Abid and Al-Hassany [1] studied and compared the ML,
MM, percentile, least squares (LS), and weighted LS estimators. Iranmanesh et al.
[29] obtained the MLE and the approximate MLE of the reliability function. They
also discussed the Bayes estimator of the reliability function under the assumption of
independent gamma prior, squared error loss, and Linex error loss functions.

4.3. Inverse Weibull

The inverse Weibull (IW) distribution plays an important role in statistical analysis
because of its versatility in modeling various real-life phenomena [12, 15, 55]. The IW
distribution appears as a particular case of the IGG distribution when φ = 1. Its PDF
is given by

f(t|α, λ) = αλαt−α−1 exp

{
−
(
λ

t

)α}
, (8)

for all t > 0, and the quantities α > 0 and λ > 0 are the shape and scale parameters,
respectively. The PDF (8) can be unimodal or decreasing, depending on the choice
of the shape parameter; while the hazard rate function is always unimodal. In this
respect, the behavior of the IW and log-normal distributions is quite similar. Erto
[17] argued that the most distinctive applicative feature of the IW model is its heavy
right-tail, as well as the upside-down bathtub shaped hazard rate function.

The IW distribution is widely known and referred to by different names, like com-
plementary Weibull [15], reciprocal Weibull [45, 49], and Fréchet-type distribution
[33, 39]. It was firstly derived for describing the degradation phenomena of mechan-
ical components. Keller et al. [37] used the IW distribution for reliability analysis of
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commercial vehicle engines. Erto [16] showed that several generative mechanisms lead
to the IW distribution, such as deterioration, stress-strength, and shocks mechanisms.
Ramos et al. [55] revisited many different estimation methods under both classical
and Bayesian approaches and outlined that the reference posteriors should be used to
perform inference on the parameters of this distribution.

4.4. Inverse Nakagami-m

The inverse Nakagami-m (INK) distribution was proposed by Louzada et al. [44] and

can be obtained as a particular case of the IGG distribution when α = 2 and λ =
√

φ
Ω .

Its PDF is given by

f(t|φ,Ω) =
2

Γ(φ)

(
φ

Ω

)φ
t−2φ−1 exp

{
− φ

Ωt2

}
,

for all t > 0, where φ > 0 and Ω > 0 are the shape and scale parameters, respectively.
Louzada et al. [44] showed that the hazard rate function of the INK distribution has

a unimodal shape for all φ > 0 and Ω > 0. Thus, it can be quite useful, for example,
for describing devices that are subjected to high stress, providing a high failure rate
after a short repair time.

4.5. Inverse Rayleigh

The inverse Rayleigh (IR) distribution is a one-parameter continuous probability dis-
tribution on the positive real line. It was introduced by Trayer [72] in the context
of reliability theory. After that, in this same context, Voda [73] studied its statistical
properties, in particular, the ML estimation, confidence intervals, and hypothesis tests.
The author mentioned that an IR distribution could approximate the distribution of
lifetimes of several types of experimental units.

The IR distribution appears as a particular case of the IGG distribution when φ = 1
and α = 2, and its PDF is given by

f(t|λ) =
2λ2

t3
exp

{
−
(
λ

t

)2
}
,

for all t > 0, where λ > 0 is the scale parameter. The variance and higher order
moments do not exist for this distribution. Gharraph [22] provided closed-form ex-
pressions for the mean, harmonic mean, geometric mean, mode and median of this
distribution. Mukherjee and Saran [50] showed that the hazard rate function of a
single-parameter IR distribution is increasing for t < 1.0694543

√
λ and decreasing for

t > 1.0694543
√
λ.

Different inferential procedures for estimating the parameter of the IR distribu-
tion have been proposed in the literature. Gharraph [22] obtained estimators of the
unknown parameter using different methods of estimation. A comparison of these
estimators was discussed numerically in terms of their bias and root mean square er-
ror. Soliman et al. [67] discussed the problems of classical and Bayesian estimation
based on lower record values. In the classical approach, they derived an MLE, and, in
the Bayesian approach, the Bayes estimator was found using informative prior under
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squared error and zero-one loss functions. Furthermore, they obtained and discussed
the Bayesian prediction interval of future record values. Recently, Dey [14] found
Bayes estimators of the reliability function under symmetric (squared error loss) and
asymmetric linear exponential loss functions using a non-informative prior from Bayes-
Laplace (or vague prior).

4.6. Inverse Maxwell-Boltzmann

The inverse Maxwell-Boltzmann (IMB) distribution is a one-parameter continuous
probability distribution of the reciprocal of a random variable distributed according
to the Maxwell-Boltzmann distribution. Singh and Srivastava [65] introduced it, and
it has applications in reliability and life testing.

The IMB distribution is a particular case of the IGG distribution when α = 2 and
φ = 3/2, with PDF

f(t|λ) =
4λ3

√
π
t−4 exp

{
−
(
λ

t

)2
}
,

for all t > 0 and scale parameter λ > 0. Here, we use Γ(3/2) =
√
π/2. Singh and

Srivastava [65] obtained the mean, variance, harmonic mean, and mode of the IMB
distribution. They also showed that the hazard rate function is unimodal, therefore,
the IMB distribution has the potential to model items with a higher chance of failing
as they age for some time, but after survival to a specific age, the probability of failure
decreases as time increases.

The estimation of parameter λ has been discussed under classical and Bayesian
approaches. Singh and Srivastava [65] obtained estimators of the unknown parame-
ter using the methods of moments and the ML-based on uncensored data and type
II censored data. Loganathan et al. [43] derived the Bayes estimator using Jeffreys
non-informative prior to the weighted quadratic loss function. Since the risk function
is constant, the Bayes estimator is also a minimax estimator. Moreover, simulation
studies showed that the Bayes estimator had performed better than the MLE.

4.7. Inverse chi-squared

The inverse chi-squared (ICS) distribution, also called the inverted chi-square distri-
bution, is defined as the reciprocal of a random variable distributed according to the
chi-squared distribution. In Bayesian inference, it is the conjugate prior distribution
for a normal distribution with unknown variance [20, 27]. The ICS distribution is de-
rived from the IGG distribution when α = 1, φ = ν/2 and λ = 1/2. Its PDF is given
by

f(t|ν) =
1

Γ(ν/2)2ν/2
t−ν/2−1 exp

{
− 1

2t

}
, (9)

for all t > 0 and degrees of freedom parameter ν > 0. The PDF (9) is unimodal, posi-
tively skewed and has a long right-tail. The power moments, mean, variance, skewness
and kurtosis of the ICS distribution can be found in [3].

12



4.8. Inverse half-normal

The inverse half-normal (IHN) distribution is another particular case of the IGG dis-

tribution when α = 2, φ = 1/2 and λ = 1/
√

2σ2. Its PDF is given by

f(t|σ2) =

√
2√
πσ2

t−2 exp

{
− 1

2σ2t2

}
,

for all t > 0 and scale parameter σ > 0. Unfortunately, the IHN distribution has
not received attention so far. Its mathematical properties, estimation procedures and
applications need still be discussed.

5. Inferential procedures

In this section, we discuss the classical (via MLEs) and Bayesian (considering objective
priors) estimation procedures for the IGG distribution parameters.

5.1. Maximum likelihood estimation

Let T1, T2, . . . , Tn be a random sample of size n from an IGG(φ, λ, α) population. Then,
the likelihood function of (1) is given by

L(φ, λ, α|t) =
αn

[Γ(φ)]n
λnαφ

(
n∏
i=1

t−αφ−1
i

)
exp

{
−λα

n∑
i=1

t−αi

}
. (10)

The natural logarithm of the likelihood function (10), the so-called log-likelihood func-
tion, is given by

`(φ, λ, α|t) = n log(α)− n log (Γ(φ)) + nαφ log(λ)− (αφ+ 1)

n∑
i=1

log (ti)− λα
n∑
i=1

t−αi .

From the partial derivatives:
∂

∂φ
`(φ, λ, α|t) = 0,

∂

∂λ
`(φ, λ, α|t) = 0 and

∂

∂α
`(φ, λ, α|t) = 0, one gets the following nonlinear equations, respectively:

nα̂ log(λ̂)− α̂
n∑
i=1

log(ti) = nψ(φ̂), (11)

nφ̂ = λ̂α̂
n∑
i=1

ti
−α̂ and (12)

n

α̂
+ nφ̂ log(λ̂)− φ̂

n∑
i=1

log(ti) = λ̂α̂
n∑
i=1

ti
−α̂ log

(
λ̂

ti

)
. (13)
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The solution of the equations (11)-(13) yields the MLEs. After some algebraic ma-
nipulations, we have

λ̂ =

(
nφ̂∑n
i=1 t

−α̂
i

) 1
α̂

, (14)

φ̂ =

∑n
i=1 t

−α̂
i

n
∑n

i=1 t
−α̂
i log(t−α̂i )−

∑n
i=1 t

−α̂
i

∑n
i=1 log(t−α̂i )

and the MLE of α is obtained by solving the nonlinear equation

h(α̂) = n log
(
nφ̂
)
− n log

(
n∑
i=1

t−α̂i

)
− α̂

n∑
i=1

log(ti)− nψ(φ̂) = 0.

Although only one nonlinear equation has to be solved, usually there are different
local maxima, which lead to different estimates than expected. On the other hand,
under mild conditions, the MLEs are asymptotically normally distributed with a joint
trivariate normal distribution given by

(φ̂, λ̂, α̂) ∼ N3

(
(φ, λ, α), I−1(φ, λ, α)

)
for n→∞,

where I(φ, λ, α) is the Fisher information matrix (see Hager and Bain [25] for a detailed
discussion) given by

I(φ, λ, α) = n


ψ
′
(φ)

α

λ
−ψ(φ)

α
α

λ

φα2

λ2
−1 + φψ(φ)

λ

−ψ(φ)

α
−1 + φψ(φ)

λ

1 + 2ψ(φ) + φψ
′
(φ) + φ[ψ(φ)]2

α2

 (15)

and ψ′(k) = ∂
∂kψ(k) is the trigamma function.

Let θ = (θ1, θ2, θ3) = (φ, λ, α) be the IGG distribution parameter vector. When
the sample size is large, one can construct approximate confidence intervals for the
individual parameters, with 100(1− ϑ)% confidence coefficient, through the marginal
distributions

θ̂w ∼ N
(
θw, I

−1
ww(θ)

)
for n→∞, w = 1, 2, 3,

where Iww(θ) denotes the (w,w)-th element of the Fisher information matrix (15).

5.2. Bayesian approach

In this subsection, we discuss the use of objective priors to obtain the posterior den-
sities. The primary motivation lies in the fact that objective Bayesian analysis allows
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us to make inferences without expert opinion. In this way, the dominant information
in the posterior distribution is provided by the data.

The first prior considered here is the Jeffreys [32] prior. For the IGG distribution,
the Jeffreys prior is obtained by taking the square root from the determinant of the
Fisher information matrix (15), i.e.,

πJ (φ, λ, α) ∝

√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

λ
. (16)

The joint posterior distribution for φ, λ and α, using the Jeffreys prior (16), is

πJ(φ, λ, α|t) =
αn
√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

c1(t) [Γ(φ)]n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα

n∑
i=1

t−αi

}
,

(17)
where

c1(t) =

∫
A

αn
√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

[Γ(φ)]n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα

n∑
i=1

t−αi

}
dθ

and A = {(0,∞)× (0,∞)× (0,∞)} is the parameter space for θ. Hereafter, we assume
the same definition given above for A.

Notice that, since the prior (16) is improper, the derived posterior distribution (17)
may be improper. The following proposition shows that the posterior distribution
obtained using the Jeffreys prior is improper and should not be used.

Proposition 5.1. The posterior distribution (17) is not a proper PDF, i.e., c(t) =∞.

Proof. See Appendix 9.1.

Another essential objective prior, the so-called reference prior, was introduced by
Bernardo [8], with further developments by [6, 7, 9]. The reference prior has essen-
tial properties, such as invariance under one-to-one transformation and consistency
under marginalization. There are different approaches to obtain reference priors. The
following proposition will be used to obtain them.

Proposition 5.2. [Bernardo [9], page 40, Theorem 14]. Consider the vector of ordered
parameters of interest θ = (θ1, . . . , θd)

′, and let t = (t1, . . . , tn)′ be a random sample
of size n from a statistical model f(·|θ). Also, let P be the class of all continuous
priors with support A. If the posterior distribution of θ is asymptotically normal with
dispersion matrix V (θ̂n)/n, where θ̂n is a consistent estimator of θ, then H(θ) =
V −1(θ), Vj is the upper j × j submatrix of V , Hj = Vj and hj,j(θ) is the lower right
element of Hj, for j = 1, . . . , d. Finally, if the parameter space of θj does not depend
on θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd)

′ and hj,j(θ), for j = 1, . . . , d, are factorized in
the form

h
1

2

j,j(θ) = fj(θj)gj(θ−j),
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then the reference prior for the ordered parameter vector θ is given by

πR(θ) = πR(θ|P) = π(θj |θ1, . . . , θj−1)× · · · × π(θ2|θ1)π(θ1),

where π(θj |θ1, . . . , θj−1) = fj(θj), and there is no need for compact approximations,
even if the conditional priors are improper. That is to say, the θ-reference prior is
obtained from πR(θ) =

∏d
j=1 fj(θj).

Theorem 5.3. Let θ = (φ, λ, α) be the vector of ordered parameters. Then, the θ-
reference prior is given by

πR1(φ, λ, α) ∝ 1

αλ

√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

φ+ φ2ψ′(φ)− 1
. (18)

Proof. See Appendix 9.2.

The joint posterior distribution for φ, λ and α, using the reference prior distribution
(18), is given by

πR1(φ, λ, α|t) =
π(φ)

d(t)

αn−1

[Γ(φ)]n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα

n∑
i=1

t−αi

}
, (19)

where

d(t) =

∫
A

αn−1π(φ)

[Γ(φ)]n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα

n∑
i=1

t−αi

}
dθ,

with π(φ) =
√

φ2[ψ′(φ)]2−ψ′(φ)−1
φ+φ2ψ′(φ)−1 .

Theorem 5.4. The posterior distribution (19) is a proper PDF, i.e., b(t) <∞.

Proof. See Appendix 9.3.

It is worth mentioning that the (φ, λ, α)-reference prior is the same as the (φ, α, λ)-
reference prior. Additionally, different order for the parameters can lead to different
reference priors. Here, we have only presented the prior that led to a proper posterior,
but in Appendix 9.4 we present other reference priors and the proof that they lead to
improper posteriors.

The marginal reference posterior distribution for φ and α is given by

πR1(φ, α|t) ∝ αn−2π(φ)Γ(nφ)

[Γ(φ)]n

 n

√∏n
i=1 t

−α
i∑n

i=1 t
−α
i

nφ

.

The conditional reference posterior distributions for φ, λ and α are given, respec-
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tively, by

πR1(φ|α, t) ∝ π(φ)Γ(nφ)

[Γ(φ)]n

 n

√∏n
i=1 t

−α
i∑n

i=1 t
−α
i

nφ

, (20)

πR1(λ|φ, α, t) ∼ GG

nφ,( n∑
i=1

t−αi

) 1

α

, α

 and (21)

πR1(α|φ, t) ∝ αn−2

 n

√∏n
i=1 t

−α
i∑n

i=1 t
−α
i

nφ

. (22)

The conditional posterior distributions (20)-(22) are useful during the use of the
Markov chain Monte Carlo (MCMC) methods (see Gamerman and Lopes [19]). Par-
ticularly, the Metropolis-Hastings (MH) algorithm can be applied, since the conditional
distributions (20) and (22) do not have closed-form expressions. From the MH algo-
rithm, we will obtain MCMC samples from the marginal reference posterior densities
used to compute the posterior median and the 95% highest posterior density intervals
(HPDIs).

6. Simulation study

We performed a Monte Carlo (MC) simulation study to evaluate and compare the
performance of the classical and Bayesian approaches for estimating the parameters
of the IGG distribution. To that end, we used two criteria: the mean relative estimate
(MRE) and mean square error (MSE), which are defined, respectively, as follows:

MRE
(
θ̂w

)
=

1

N

N∑
j=1

θ̂w,j
θw

and MSE
(
θ̂w

)
=

1

N

N∑
j=1

(θ̂w,j − θw)2,

for w = 1, 2, 3, where N = 1, 000 is the number of MC realizations. The coverage
probabilities (CPs) of the asymptotic normal 95% confidence intervals and Bayesian
95% HPDIs, were also computed. By this procedure, the best estimators will provide
both MRE closer to one and MSE closer to zero. Besides, the relative frequencies of
intervals containing the true parameter values should be close to 0.95.

In order to obtain the ML estimates, the Newton-Raphson iteration method was
applied. In this case, the starting values chosen to initialize the algorithm were the
same values used to generate the samples. All calculations and simulations were done
using the R software [71].

The normalizing constants for the marginal reference posterior densities require
two-dimensional integration. Hence, the MCMC methods were used to obtain the
posterior median estimates. Since the conditional reference posterior distributions of
φ and α are not easily identified, the MH algorithm was applied to sample from the
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Figure 4. MREs, MSEs and CPs related to the ML and Bayesian estimates of φ = 0.5, λ = 1.0 and α = 3,
for N = 1, 000 simulated samples and n = {40, 60, . . . , 300}.

marginals distributions and used to compute the posterior quantities of interest. For
each simulated data set, 15, 500 iterations were performed using MCMC methods. The
initial 1, 000 iterations were discarded as burn-in, and a thin of 30 was used to reduce
the autocorrelation of successive realizations. The Geweke’s diagnostic criterion [21]
was applied to assess convergence of the obtained chains under a 95% confidence level.
These samples were used to calculate the posterior median estimates of φ, λ and α,
and the 95% HPDIs.

The parameter values selected to perform the simulations were: θ = (0.5, 1.0, 3),
with n = {40, 60, . . . , 300}. The seed used to generate the pseudo-random samples in
the R software was 2019.

Figure 4 presents the MRE, MSE, and CP of the estimates obtained through the
MLEs and Bayes estimators, for 1, 000 simulated samples under different values of n.
As can be seen from this figure, the Bayes estimators returned better estimates than the
corresponding MLEs in terms of MSE values for all parameters, mainly for small and
moderate sample sizes. In terms of MRE, the MLEs returned better results for φ and
similar results for λ, while the Bayes approach was superior for obtaining estimates for
α. On the other hand, Figure 4 shows that the asymptotic normal confidence intervals
did not have desired coverage rates, while the HPDIs provided good CPs that are close
to the nominal level (95%), even for small sample sizes. For these reasons, the Bayes
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estimators (posterior medians) should be considered for improved estimation of the
IGG distribution parameters.

7. Application

In this section, we apply the IGG distribution to five real data sets related to the
average flows of water (in m3/s), from July to November, in the Piracicaba River,
Brazil. The data sets (see Appendix 9.5) were obtained from the Department of Water
Resources and Power agency manager of water resources of the State of São Paulo,
including a period from 1972 to 2014. The control of the water flow is often essential
for safety reasons. Water flow rates either above or below the desired limit can affect
both the population and the ecosystems. Thus, estimating well, the flow of water is
essential for the definition of environmental planning and public policies.

Table 1 shows the Bayes estimates (posterior median) and 95% HPDIs for the
parameters φ, λ and α of the IGG distribution.

Table 1. Bayes estimates and 95% HPDIs for φ, λ and α, considering the data sets related to the average
flows of water (in m3/s) during July-November 1972-2014 in the Piracicaba river, Brazil.

Month Parameter Estimate 95% HPDI

July
φ 0.8622 (0.0825 ; 4.6452)
λ 9.3877 (6.6941 ; 17.0599)
α 3.7612 (0.5957 ; 7.9839)

August
φ 1.3637 (0.2112 ; 7.5886)
λ 9.7080 (6.8989 ; 14.7985)
α 3.6240 (0.8358 ; 6.9295)

September
φ 0.4741 (0.0550 ; 1.7201)
λ 7.1545 (5.7549 ; 9.7028)
α 5.3741 (0.9313 ; 13.7751)

October
φ 1.3505 (0.1960 ; 10.0741)
λ 11.9997 (7.2400 ; 23.2962)
α 2.3073 (0.3250 ; 4.5499)

November
φ 1.2023 (0.0984 ; 8.1300)
λ 16.0169 (7.6476 ; 27.5436)
α 1.9791 (0.4592 ; 5.9490)

The results obtained using the IGG distribution are compared to the corresponding
ones achieved with the use of the GG [69], exponentiated Weibull (EW) [48], Marshall-
Olkin Weibull (MOW) [46], and extended Poisson-Weibull (EPW) [54] distributions.
We consider the most common model selection/discrimination criteria, namely the
BIC (Bayesian or Schwarz Information Criteria), AIC (Akaike Information Criteria)

and AICc (Corrected AIC), which are calculated, respectively, by BIC = −2`(θ̂|t) +

d log(n), AIC = −2`(θ̂|t) + 2d and AICc = AIC + 2 d (d+ 1)/(n− d− 1), where d

is the number of model parameters and θ̂ is the Bayes estimate of θ. Given a set of
candidate models for the data at hand, the preferred model is the one that provides
the minimum values of these criteria.

Table 2 presents the BIC, AIC, and AICc values for different probability distribu-
tions. The goodness-of-fit can also be checked through the over a plot of the survival
functions adjusted by the proposed theoretical models onto the empirical survival func-
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tion (Kaplan-Meier estimate), as shown in Figure 5. Comparing the empirical survival
function with the adjusted distributions, we observe that the IGG distribution better
fits these data than its competitor models. These results are confirmed by the BIC,
AIC, and AICc values since the IGG distribution has the minimum values for all
proposed data sets.

Table 2. The AIC, AICc and BIC values for different probability distributions, considering the data sets
related to the average flows of water (in m3/s) during July-November 1972-2014 in the Piracicaba river, Brazil.

Month Criterion IGG GG EW MOW EPW

July
AIC 221.134 236.692 232.009 252.830 246.044
AICc 221.819 237.378 232.695 253.516 246.730
BIC 226.124 241.683 237.000 257.821 251.035

August
AIC 195.969 206.131 200.925 220.267 222.772
AICc 196.617 206.779 201.574 220.916 223.420
BIC 201.109 211.272 206.066 225.408 227.912

September
AIC 219.681 243.388 235.706 256.432 254.323
AICc 220.367 244.074 236.392 257.118 254.323
BIC 224.672 248.379 240.697 261.423 258.628

October
AIC 249.894 257.992 255.494 269.773 262.800
AICc 250.560 258.659 256.161 270.439 263.467
BIC 254.960 263.059 260.561 274.839 267.867

November
AIC 276.520 280.949 278.278 287.283 282.818
AICc 277.225 281.655 278.984 287.989 283.524
BIC 281.432 285.861 283.190 292.196 287.731

Therefore, our proposed methodology can be applied successfully to analyze the
average flows of water during July-November in the Piracicaba river, using the IGG
distribution with the Bayesian approach.

8. Concluding remarks

In this paper, we derived and discussed many important mathematical properties of the
IGG distribution, which allows its application in a wide range of practical problems.
Further, we revised several inverted models that arise as particular cases of this critical
distribution.

The inferential methods for the parameters were discussed, considering both clas-
sical and Bayesian approaches. In the classical approach, we obtained the estima-
tors for two parameters in closed-form expressions, while the estimate of α can be
achieved using unidimensional optimization methods. The Fisher information matrix
was presented, which allows us to construct asymptotic confidence intervals. Under the
Bayesian approach, we considered an objective Bayesian analysis where the dominant
information is provided by the data. We derived five objective priors, the Jeffreys prior
and four reference priors. Since the obtained priors are improper, we proved that only
one reference prior leads to a proper posterior density. The obtained reference pos-
terior distribution has essential properties, such as one-to-one invariance, consistent
marginalization, and consistent sampling properties.

An extensive Monte Carlo simulation study showed that the Bayes estimators, using
the absolute loss function (posterior median), performed better than the correspond-
ing MLEs and, therefore, should be considered to obtain improved estimates for the
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Figure 5. Fitted survival functions superimposed to the empirical survival function (Kaplan-Meier estimate),

considering the data sets related to the average flows of water (in m3/s) during July-November 1972-2014 in

the Piracicaba river, Brazil.

parameters of the IGG distribution. Moreover, we observed that the HPDIs returned
more accurate intervals for the parameters of interest. Finally, our proposed method-
ology was used in an application considering five real data sets related to the average
flows of water in the Piracicaba river, Brazil, from July to November. The results
showed that the IGG distribution returned a better fit in comparison with other crit-
ical three-parameter distributions.

There is a large number of possible extensions of this current work. For example,
the presence of covariates and long-term survivals is widespread in practice. Moreover,
a regression model for censored and uncensored data could be useful. Hence, our
approach should be investigated further in these contexts. The IGG distribution is
also promising to be used in studies involving degradation and accelerated life test
data.
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tropy of luttinger liquids, Physical Review B 84 (2011), p. 195128.

[71] R.C. Team, A language and environment for statistical computing. vienna, austria: R

24



foundation for statistical computing; 2012, URL: https://www.R-project.org (2019).
[72] V.N. Trayer, Doklady Acad, Nauk, Belorus, USSR (1964).
[73] V.G. Voda, On the inverse rayleigh distributed random variable, Reports of Statistical

Application Research 19 (1972), pp. 13–21.

9. Appendix

9.1. Proof of Proposition 5.1

Since αn
√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1 [Γ(φ)]−nλnαφ−1

∏n
i=1 t

−αφ−1
i exp

{
−λα

∑n
i=1 t

−α
i

}
≥

0, by Tonelli’s theorem (see Folland [18]) and from the asymptotic relations proved in
[58] we have

c1(t) =

∫
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αn

√
φ2 [ψ′(φ)]

2 − ψ′(φ)− 1

Γ(φ)n

{
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−λα

n∑
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=
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∞∫
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=
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2 − ψ′(φ)− 1
Γ(nφ)

[Γ(φ)]
n

(
∏n
i=1 ti)

−αφ−1(∑n
i=1 t

−α
i

)nφ dφ dα
≥
∞∫
0

1∫
0

αn−1
√
φ2 [ψ′(φ)]

2 − ψ′(φ)− 1
Γ(nφ)

[Γ(φ)]
n

(
∏n
i=1 ti)

−αφ−1(∑n
i=1 t

−α
i

)nφ dφ dα
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 n

√∏n
i=1 t

−α
i∑n

i=1 t
−α
i

nφ
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φn−1e−n q(α)φ dφ dα

=
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αn−1
γ(n, n q(α))

(n q(α))n
dα ∝
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α−1 dα =∞,

where q(α) = log
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i=1 t

−α
i

n

√∏n
i=1 t

−α
i

.

9.2. Proof of Theorem 5.3

Considering some algebraic manipulations in (15), we have that

h
1

2

1,1(θ) =

√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

φ+ φ2ψ′(φ)− 1
= f1(φ)g1(λ)g1(α),
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where f1(φ) =
√

φ2[ψ′(φ)]2−ψ′(φ)−1
φ+φ2ψ′(φ)−1 , g1(λ) = 1 and g1(α) = 1;

h
1

2

2,2(θ) =
α

λ

√
φ+ φ2ψ(φ)− 1

1 + 2ψ(φ) + φψ′(φ) + φ [ψ(φ)]2
= g2(α)f2(λ)g2(φ),

where g2(α) = α, f2(λ) = 1
λ and g2(φ) =

√
φ+φ2ψ(φ)−1

1+2ψ(φ)+φψ′(φ)+φ[ψ(φ)]2
; and finally,

h
1
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3,3(θ) =
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1 + 2ψ(φ) + φψ′(φ) + φ [ψ(φ)]2

α
= f3(α)g3(λ)g3(φ),

where g3(φ) =
√

1 + 2ψ(φ) + φψ′(φ) + φ [ψ(φ)]2, g3(λ) = 1 and f3(α) = 1
α .

Using Proposition 5.2 and assuming the ordered parameters (φ, λ, α), the conditional
reference priors are

π(α|λ, φ) ∝ f3(α) =
1

α
, π(λ|φ) ∝ f2(λ) =

1

λ
, π(φ) ∝ f1(φ) =

√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1

φ+ φ2ψ′(φ)− 1
.

Hence, the reference prior is

πR1(φ, λ, α) ∝ π(α|λ, φ)π(λ|φ)π(φ) =
1

αλ

√
φ2 [ψ′(φ)]2 − ψ′(φ)− 1
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.

9.3. Proof of Theorem 5.4

Again, αn−1π(φ)[Γ(φ)]−nλnαφ−1
∏n
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Tonelli’s theorem and the asymptotic relations proved in [58] we have
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27



9.4. Reference priors

Here, we present other reference priors considering different ordered parameters. The
derivations are similar to the ones shown in Appendix 9.2.

Firstly, let us consider that the ordered parameters are given by (α, φ, λ). Then, the
(α, φ, λ)-reference prior is

πR2(φ, λ, α) ∝ 1

α

√
φψ′(φ)− 1

φ
· (23)

The joint posterior distribution for φ, λ and α, using the reference prior distribution
(23), is given by
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by Tonelli’s theorem and the asymptotic relations proved in [58] we have
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Hence, the posterior distribution (24) is improper.
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Now, the (α, λ, φ)-reference prior, as well as the (λ, α, φ)-reference prior, have the
same form and are given by

πR3(φ, λ, α) ∝
√
ψ′(φ)

α
. (25)

The joint posterior distribution for φ, λ and α, using the reference prior distribution
(25), is given by
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rem and from the asymptotic relations proved in [58], we have, just as in the case of
c1(t), that

c3(t) =

∫
A

αn−1
√
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Γ(φ)n
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n∏
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t−αφ−1i

}
λnαφ−1 exp
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t−αi

}
dθ

=

∞∫
0

∞∫
0

∞∫
0

αn−1
√
ψ′(φ)

Γ(φ)n
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n∏
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}
dλ dφ dα

≥
∞∫
0

1∫
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√
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n

(
∏n
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)nφ dφ dα
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nφ

dφ dα =∞.

Therefore, the posterior distribution (26) is improper.

Finally, the last reference prior has the ordered parameters given by (λ, φ, α). Then,
the (λ, φ, α)-reference prior is

πR4(φ, λ, α) ∝

√
ψ′(φ)− ψ(φ)2

2ψ(φ) + φψ′(φ) + φψ(φ2) + 1
= π4(φ)· (27)

The joint posterior distribution for φ, λ and α, using the reference prior distribution
(27), is given by

πR4(φ, λ, α|t) =
1

c4(t)
αn

π4(φ)

Γ(φ)n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα

n∑
i=1

t−αi

}
, (28)
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where

c4(t) =

∫
A

αn
π4(φ)

Γ(φ)n
λnαφ−1

{
n∏
i=1

t−αφ−1
i

}
exp

{
−λα
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i=1

t−αi

}
dθ.

Since αnπ4(φ) Γ(φ)−nλnαφ−1
∏n
i=1 t

−αφ−1
i exp

{
−λα

∑n
i=1 t

−α
i

}
≥ 0, by Tonelli’s

theorem and from the asymptotic relations proved in [58] we have, just as in the
case of c1(t), that

c4(t) =

∫
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αn
π4(φ)

Γ(φ)n

{
n∏
i=1

t−αφ−1i

}
λnαφ−1 exp
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}
dθ

=
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∞∫
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}
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{
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n∑
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}
dλ dφ dα

≥
∞∫
0

1∫
0

αn−1π4(φ)
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[Γ(φ)]
n

(
∏n
i=1 ti)

−αφ−1(∑n
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)nφ dφ dα
∝
∞∫
0

1∫
0

αn−1 × φ−1 × φn−1
 n

√∏n
i=1 t

−α
i∑n
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−α
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1∫
0
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 n

√∏n
i=1 t

−α
i∑n

i=1 t
−α
i

nφ

dφ dα =∞.

Thus, the posterior distribution (28) is improper.
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9.5. Data sets

July
10.78 12.03 10.03 38.61 9.16 11.88 10.52 12.03 8.96 16.47 33.66
8.40 10.46 8.74 11.66 11.29 12.59 8.04 14.10 13.29 9.86 8.34
15.33 10.83 12.77 10.83 11.29 7.21 8.45 6.58 15.05 9.60 7.19
25.24 9.58 11.88 11.10 17.69 6.56 - - - - -

August
10.03 8.92 8.50 22.25 7.91 7.85 8.86 9.43 7.61 16.08 20.30
9.88 9.13 14.86 9.70 8.21 9.74 7.66 11.17 8.59 9.34 6.73
10.05 9.62 9.67 9.75 9.57 7.42 11.02 6.55 8.73 7.22 6.82
10.89 11.50 12.72 8.09 12.25 10.39 10.56 5.78 - - -

September
10.40 7.77 6.91 27.34 12.48 8.80 13.33 10.77 6.32 7.94 60.30
9.36 9.00 9.04 11.74 6.52 9.42 11.49 11.32 18.90 5.96 8.73
20.39 10.46 10.95 15.14 16.52 9.62 9.17 6.36 6.36 7.35 7.24
8.15 8.45 15.27 8.83 11.34 9.53 - - - - -

October
12.41 10.11 10.31 27.50 8.93 7.56 15.70 11.94 19.20 44.23 31.36
8.26 7.44 8.11 13.24 22.88 6.96 7.47 15.87 10.69 17.10 13.31
12.98 20.85 9.20 16.94 10.47 10.20 13.57 8.11 8.18 12.93 8.03
11.06 10.94 12.21 9.19 19.84 16.63 5.47 - - - -

November
27.01 19.69 8.34 23.79 23.08 18.30 23.80 20.16 10.84 37.00 19.39
31.95 17.39 11.28 12.11 18.33 25.82 9.92 10.36 37.51 10.39 35.30
14.96 22.18 69.24 9.03 8.76 24.90 8.90 15.37 18.21 11.15 9.14
16.75 20.71 10.25 20.80 7.95 - - - - - -
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