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We discuss the possibility of observing a loosely bound molecular state in a three-body hadronic B

decay. In particular, we use the QCD sum rule approach to study a �0 � � molecular current. We consider

an isovector-scalar IGJPC ¼ 1�0þþ molecular current, and we use two- and three-point functions to study

the mass and decay width of such a state. We consider the contributions of condensates up to dimension

six, and we work at leading order in �s. We obtain a mass around 1.1 GeV, consistent with a loosely bound

state, and a �0 � � ! KþK� decay width around 10 MeV.
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I. INTRODUCTION

One of the outstanding open questions in hadron physics
is as follows: are there meson-meson bound states? The
same mechanism of meson exchange that binds the deu-
teron could also, in principle, bind two mesons. The inter-
est in this subject was renewed by the discovery of the new
charmonium states. Since their first appearance, some of
them were considered to be meson molecules. These states
have already been discussed in some reviews [1–3].

In this paper we discuss how to look for molecules
at the LHCb, taking advantage of the unprecedented high
statistics.

We can look for meson molecules in three-body had-
ronic B decays. Because the phase space is large, we can
even try to directly use the Dalitz diagram, which extends
up to large values of the variables s12 and s23. All the
known normal quark-antiquark intermediate resonant
states leave an imprint in the Dalitz plot, which is directly
related to the quantum numbers of the states and lead to the
identification of the state. Examples are the following:
a continuous straight line, in the case of scalar states; a
line with a hole, in the case of vector states; or a line with
two holes, in the case of tensor states.

A sketch of a Dalitz plot for a three-body meson decay is
shown in Fig. 1, where for each invariant parameter s12 or
s23; we show the relative momentum of each one of the two

particles 1, 2 or 2, 3. Let us consider the case that particles
1 and 2 are pions coming from the � meson decay. Of
course, this decay should produce a line parallel to the s23
axis at the point s12 ¼ m2

�. However, since the pions

coming from the � meson decay must have one unit of
angular momentum, they cannot both go in the same
direction. Therefore, no pions could be seen in the region
where the relative momentum between them is small. From
Fig. 1, one can see that this region is just in the middle of
the line parallel to the s23 axis. Therefore, a line character-
izing a vector resonance state must have a hole in the

middle, as mentioned above. Now imagine that the reso-
nant state is a loosely bound molecular state of the particles
1, 2. A loosely bound molecular state can only exist when
the relative momentum between the two mesons in the
molecule is small. In this case, one has exactly the opposite
situation of the one discussed before: there will be no
signal in the Dalitz plot unless the two mesons in the
molecular state go in the same direction. In other words,
one can expect a small line parallel to the s23 axis in the
middle of the Dalitz plot, approximately in the region
where there is a hole in the line characterizing a vector
resonance.
The final particles observed in three-body B decays are

pions and kaons. Therefore, to observe a molecular state in
the Dalitz plot for a three-body B decay, this molecular
state must decay into pions and/or kaons. Let us consider a
�0 � � loosely bound molecule with the quark content
�uu�ss. This resonant state, hereafter called R, is especially
interesting because its mass mR should be approximately
given by

mR �m�0 þm� ¼ 958 MeVþ 138 MeV ¼ 1096 MeV

(1)

and, therefore, it is quite visible in the B decay Dalitz plot.
Since for an S wave this molecule has IGJPC ¼ 1�0þþ, it
cannot decay into �þ��, but it will decay into KþK�. In
particular, there are already data for B� ! KþK�K�,
B� ! KþK���, B� ! �þ����, and B� ! �þ��K�
[4]. The decay could go through the resonant state R only
in the first two of these cases, as illustrated in Figs. 2 and 3.
For these cases, a small line with

ffiffiffiffiffiffi
s12

p � 1:1 GeV parallel

to the s23 axis should be seen in the Dalitz plot in the region
where the two particles �0 and � have a small relative
momentum. This signal should be very different from all
other established resonant states decaying into KþK�,
like the a0 for instance, and should only be seen in the
channels B� ! KþK�K� and B� ! KþK���. Of
course, the figure is very qualitative, and it is not possible
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to say how large the line segment around the indicated
position is. However, the observation of this structure in the
Dalitz plot of the two mentioned B decays, and not in the
others, would provide strong evidence for the formation of
this molecular state. The observation of a line that only
appears in a certain part of the s23 axis with a fixed value

of s12, and only for the decays B� ! KþK�K� and
B� ! KþK���, could be interpreted as the existence of
a weakly bound molecular state.

II. THE �0 � � SCALAR MOLECULE

A. Mass

In a previous work we have investigated the possibility
[5] that the light scalar states could be interpreted as
tetraquark states. Here, we perform a complementary in-
vestigation to understand a possible �0� meson molecular
state in the QCD sum rule (QCDSR) framework [6–8].
The QCDSR approach is based on the correlator of

hadronic currents. A generic two-point correlation function
is given by

�ðqÞ ¼ i
Z

d4xeiq:xh0jT½jðxÞjyð0Þ�j0i; (2)

where the local current jðxÞ contains all the information
about the hadron of interest, like quantum numbers, quark
content, and so on. A molecular current can be constructed
from the mesonic currents that describes the two mesons in
the molecule. In the case of the scalar �0 � � state, a
possible current is

j ¼
�
�ui�5ui � �di�5diffiffiffi

2
p

��
sin�

�
�uj�5uj þ �dj�5djffiffiffi

2
p

�

þ cos�ð�sj�5sjÞ
�
; (3)

where i, j are color indices, u, d, s are the up down and
strange quark fields, respectively, and the mixing angle
� in the �0 current is �� 40� [9–11]. In this work, we
use � ¼ 40�.
In general, there is no one-to-one correspondence

between the current and the state since a molecular current
can be rewritten in terms of a sum over tetraquark-type
currents through a Fierz transformation. However, as
shown in [2], if the physical state is a molecular state, it
would be better to choose a molecular type of current so
that it has a large overlap with the physical state. In any
case, it is very important to notice that since the current in
Eq. (2) is local, it does not represent an extended object
with two mesons separated in space, but rather a very
compact object with two singlet quark-antiquark pairs.
The coupling of the scalar resonance R to the scalar

current j can be parametrized in terms of a parameter � as

h0jjjRi ¼ �: (4)

In the QCD evaluation of the correlator function in
Eq. (2), we work at leading order and consider condensates
up to dimension six. We deal with the strange quark as a
light one and consider the diagrams up to order ms. We
neglect the terms proportional to mu and md. On the
phenomenological side, we consider the usual pole plus
continuum contribution. Therefore, we introduce the

FIG. 3. The two relevant diagrams for B� ! KþK��� decay,
through the resonance R.

FIG. 1 (color online). Dalitz plot of a three-body B decay. The
small drawings illustrate the different kinematical configurations.

FIG. 2. The two relevant diagrams for B� ! KþK�K� decay,
through the resonance R.
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continuum threshold parameter s0 [12]. In the SUð2Þ limit,
the quarks u and d are degenerate, and we consider the
u-quark condensate equal to the d-quark condensate,
which we call h �qqi. After performing a Borel transform
on both sides of the calculation, the sum rule is given by

�2e�m2
R=M

2 ¼ 3
M10E4

2135�6
ð12þ sin2�Þ �msh �ssiM6E2

27�4
cos2�

þ hg2G2iM6E2

213�6
ð4� sin2�Þ �msh�sg�:Gsi

27�4

�M4E1cos
2�ð3:5� 3 lnðM2=�2

QCDÞÞ

þM4E1

26�2
ðh �qqi2ð1þ 3cos2�Þ þ 2h �ssi2sin2�Þ;

(5)

where M is the Borel mass and

En � 1� e�s0=M
2
Xn
k¼0

�
s0
M2

�
k 1

k!
(6)

accounts for the continuum contribution.
In the numerical analysis of the sum rules, the values

used for the quark masses and condensates are [13,14]
ms ¼ 0:13 GeV, h �qqi ¼ �ð0:23Þ3 GeV3, h �ssi ¼ 0:8h �qqi,
h �qg�:Gqi ¼ m2

0h �qqi with [8] m2
0 ¼ 0:8 GeV2 and

hg2G2i ¼ 0:88 GeV4.
In Fig. 4, we show the operator product expansion (OPE)

convergence of the sum rule in Eq. (5). From this figure, we
see that the convergence is reasonable for M2 > 1:2 GeV2

and very good forM2 > 1:5 GeV2. However, as in the case
of the light scalars [14], there is no pole dominance for
these values of M2. This result could be interpreted in two

different ways: (i) it could indicate that this state does not
exist, or (ii) it could indicate that this state is not clearly
separated from the continuum. The second interpretation
can be applied to very broad states, such as the light scalars
� and 	, because their widths are as large as the difference
between their masses and the continuum threshold. In what
follows we adhere to the second interpretation.
In order to extract the mass mR without knowing the

value of the constant �, we take the derivative of Eq. (5)
with respect to 1=M2 and divide the result by Eq. (5). In
Fig. 5, we show the resonance mass as a function ofM2 for
different values of

ffiffiffiffiffi
s0

p
. We limit ourselves to the region

M2 > 1:2 GeV2 where the curves are more stable and the
OPE convergence is better. Averaging the mass over this
entire region we find

mR ¼ ð1:15� 0:10Þ GeV; (7)

which is compatible with the experimental threshold in
Eq. (1). Knowing the mass, we can also evaluate the value
of the parameter � that gives the coupling between the state
and the current. We obtain

� ¼ ð1:39� 0:27Þ � 10�3 GeV5: (8)

B. Decay width

In order to study the RKþK� vertex associated with the
R ! KþK� decay, we consider the three-point function

T
�ðp; p0; qÞ
¼

Z
d4xd4yei:p

0:xeiq:yh0jTfjKþ
5
 ðxÞjK�

5� ðyÞjyð0Þgj0i; (9)

where p ¼ p0 þ q, j is given in Eq. (3), and we use the
axial currents for the kaons:

FIG. 4 (color online). The OPE convergence in the region
1:0 � M2 � 2:0 GeV2 for

ffiffiffiffiffi
s0

p ¼ 1:5 GeV. The dotted line,

dashed line, long-dashed line, dash-dotted line, solid line with
circles, and solid line with squares give the perturbative, quark
condensate, gluon condensate, mixed condensate, four-quark
condensate, and total contributions, respectively.

FIG. 5 (color online). The resonance mass as a function of the
sum rule parameter (M2) for different values of the continuum
threshold:

ffiffiffiffiffi
s0

p ¼ 1:4 GeV (dotted line),
ffiffiffiffiffi
s0

p ¼ 1:5 GeV (solid

line), and
ffiffiffiffiffi
s0

p ¼ 1:6 GeV (dash-dotted line).
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jK
þ

5
 ¼ �sa�
�5ua; jK
�

5
 ¼ �ua�
�5sa: (10)

To evaluate the phenomenological side, we insert inter-
mediate states for Kþ, K�, and R, and we use the defini-
tions in Eqs. (4) and (11) below:

h0jjK5
jKðpÞi ¼ ip
FK: (11)

We obtain the following relation,

T
phen

� ðp;p0;qÞ¼ F2

K�

ðM2
R�p2Þðm2

K�p02Þðm2
K�q2ÞgRKKp

0

q�

þhigher resonances; (12)

where the coupling constant gRKK is defined by the matrix
element:

hKðp0ÞKðqÞjRðpÞi ¼ gRKK: (13)

Here, we follow Refs. [5,15] and work at the kaon pole
as suggested in [7] for the nucleon-pion coupling constant.
This method was also applied to nucleon-kaon-hyperon
coupling [16,17], D	 �D� � coupling [18,19], and to
the J=c � � cross section [20]. It consists in neglecting
the kaon mass in the denominator of Eq. (12) in the term
1=ðm2

K � q2Þ, and working at q2 ¼ 0. On the QCD side,
one singles out the leading terms in the operator product
expansion of Eq. (9) that match the 1=q2 term. Up to
dimension six only the diagrams proportional to the
quark condensate times ms and the four-quark condensate
contribute. Making a single Borel transform to both
�p2 ¼ �p02 ! M2 we get

gRKþK�
�F2

K

m2
R �m2

K

ðe�m2
K=M

2 � e�m2
R=M

2Þ

¼
ffiffiffi
2

p
cos�

8

�ðh �qqi þ h �ssiÞ2
3

þ ms

8�2
ðh �qqi � h�ssi

3

�

�M2ð1� e�sK
0
=M2Þ

�
; (14)

where sK0 ¼ ð1:0� 0:1Þ GeV2 is the continuum threshold

for the kaon.
As discussed in Ref. [21] the problem of performing

a single Borel transformation in a three-point function
sum rule is the fact that terms associated with the pole-
continuum transitions are not suppressed. However, as
shown in [21], the pole-continuum transition termhas a differ-
ent behavior as a functionof theBorelmass comparedwith the
double pole contribution: it grows with M2. Therefore, the
pole-continuum contribution can be taken into account
through the introduction of a parameter A on the phenome-
nological side of the sum rule in Eq. (14) by making the
substitution gRKþK� ! gRKþK� þ AM2 [5,17,18,20].

Using FK¼160MeV, mK¼490MeV, mR ¼ 1:15 GeV,
and the parameter � given by the sum rule in Eq. (5), we
show in Fig. 6 the QCDSR results for the vertex coupling
constant for different values of s0 and sK0 in the interval

given above. We see that in the Borel range used for the
two-point function, the QCDSR results do have a linear
form as a function of the Borel mass. Fitting the QCDSR
results by a linear form, gRKþK� þ AM2 (which is also
shown in Fig. 6), the coupling can be obtained by extrap-
olating the fit to M2 ¼ 0. In the limits of the continuum
thresholds mentioned above and taking into account the
uncertainties in mR given in Eq. (7) we obtain

gRKþK� ¼ ð0:63� 0:06Þ GeV: (15)

The decay width of R ! KþK� is given in terms of the
hadronic coupling gRKþK� as

�ðR ! KþK�Þ ¼ 1

16�m3
R

g2
RKþK�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðm2

R;m
2
K;m

2
KÞ

q
;

(16)

where �ðm2
R;m

2
K;m

2
KÞ ¼ m4

R þm4
K þm4

K � 2m2
Rm

2
K �

2m2
Rm

2
K � 2m2

Km
2
K ¼ m2

Rðm2
R � 4m2

KÞ. Therefore, we get
�ðR ! KþK�Þ ¼ ð11:4� 2:2Þ MeV: (17)

Of course, this is not the total width of the �0� molecule
because it can also decay into �� � with a much bigger
phase space. However, in the B decays discussed here, only
the channel R ! KþK� can be observed.
The errors quoted above come directly from the uncer-

tainty in the determination of the continuum threshold
parameter, s0. According to our previous experience, they
are the main source of uncertainty in the method. For a
detailed analysis of the uncertainty associated with other

FIG. 6 (color online). The QCDSR result for the coupling
constant gRKþK� as a function of the sum rule parameter M2

for different values of s0 and sK0 (circles, triangles, and squares

for
ffiffiffiffiffi
s0

p ¼ 1:5 GeV, sK0 ¼ 1:0 GeV2;
ffiffiffiffiffi
s0

p ¼ 1:6 GeV, sK0 ¼
1:1 GeV2; and

ffiffiffiffiffi
s0

p ¼ 1:4 GeV, sK0 ¼ 0:9 GeV2, respectively).

The solid, dotted, and dashed lines give linear fits to the QCDSR
results.
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parameters used in QCDSR we refer the reader to
Refs. [2,19].

III. CONCLUSION

We have proposed that a loosely bound molecular state
should leave a particular signal in the Dalitz plot. Such
a state, of the particles 1, 2, can only exist when the
relative momentum between these two particles is small.
Therefore, we expect to observe a short line parallel to the
s23 axis in the middle of the Dalitz plot, approximately in
the region where there is a hole in the line, characterizing a
vector resonance (see Fig. 1). This signal is different from
any signal characterizing the normal quark-antiquark
mesons and could be used to identify the existence of
loosely bound molecular states.

In the case of three-body B decays, the final particles
observed are pions and kaons. Therefore, to observe a
molecular state in the Dalitz plot for a three-body B decay,
this molecular state must decay into pions and/or kaons.
We have considered a �0 � � molecular state. If this state
exists as a loosely bound state, its mass should be close
to the �0 � � threshold, �1:1 GeV, which is quite visible
in the B decay Dalitz plot. Because for an S wave
this molecule has IGJPC ¼ 1�0þþ, it cannot decay into
�þ��, but it will decay into KþK�. Therefore, the
observation of a small line with

ffiffiffiffiffiffi
s12

p � 1:1 GeV parallel

to the s23 axis in the Dalitz plot for the B� ! KþK�K�
and B� ! KþK��� decays, with negative observation in
the Dalitz plot for theB�!�þ��K� andB�!�þ����
decays, would definitively indicate the existence of the
�0 � � molecular state.
We have used QCD sum rules to study the mass and

the decay width of a �0 � � molecular current using
two- and three-point functions, respectively. We consid-
ered diagrams up to dimension six in both cases. We found
a mass slightly larger than the �0 � � threshold, indicating
the possibility of a loosely bound molecular state. We
obtained a small width for the �0 � � ! KþK� decay
around 10 MeV. With this information, it should be
possible to experimentally identify this state in the B� !
KþK�K� and B� ! KþK��� Dalitz plots if it exists.
The method for identifying resonances (or bound states)

discussed here could be applied to other cases. A straight-
forward extension of our work could be performed for
�0 � � with quantum numbers JPC ¼ 1�þ. The CLEO
[22] and COMPASS [23] collaborations have recently
searched for this exotic state.
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