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a b s t r a c t

Self-sustained activity in the brain is observed in the absence of external stimuli
and contributes to signal propagation, neural coding, and dynamic stability. It also
plays an important role in cognitive processes. In this work, by means of studying
intracellular recordings from CA1 neurons in rats and results from numerical simulations,
we demonstrate that self-sustained activity presents high variability of patterns, such
as low neural firing rates and activity in the form of small-bursts in distinct neurons.
In our numerical simulations, we consider random networks composed of coupled,
adaptive exponential integrate-and-fire neurons. The neural dynamics in the random
networks simulates regular spiking (excitatory) and fast spiking (inhibitory) neurons. We
show that both the connection probability and network size are fundamental properties
that give rise to self-sustained activity in qualitative agreement with our experimental
results. Finally, we provide a more detailed description of self-sustained activity in terms
of lifetime distributions, synaptic conductances, and synaptic currents.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Self-sustained activity (SSA), where neurons display persistent activity even in the absence of external stimuli [1,2],
is observed in diverse situations such as in in vitro cortical cultures and in slice preparations [3–5], in in vivo cortical
preparations [6], in slow-wave sleep [7], in anesthesia [8], and in the resting state [9,10]. Electrophysiological recordings
of SSA states show irregular neural spiking, typically with low average frequencies of a few Hertz, obeying long-tailed
distributions [11–13].
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Many works have modelled neural networks with SSA by using random networks composed of excitatory and
inhibitory leaky, integrate-and-fire (LIF) neurons with external background input [14–19]. Other studies have considered
networks with non-random architectures, composed of LIF neurons [20–24] or nonlinear, two-dimensional integrate-
and-fire neuron models [25–30]. Both the architecture and neuron types that comprise the network play an important
role in SSA states. Such states are generated and maintained by recurrent interactions within networks of excitatory
and inhibitory neurons. A stable SSA state is related to strong recurrent excitation within the neural network, which is
restrained by inhibition to prevent runaway excitation. The balance between excitation and inhibition in neural networks
is considered critical to maintain a SSA state [5,14,31–34]. Kumar et al. [17] studied the effects of network size on SSA
states. Barak and Tsodyks [35] shown that combinations of synaptic depression and facilitation result in different network
dynamics. Triplett et al. [36] analysed spontaneous activity in developing neural networks and shown that networks of
binary threshold neurons can form structured patterns of neural activity.

In this work, we verify the existence of SSA in a random network composed of neurons with different intrinsic
firing patterns (the so-called electrophysiological classes [37]). We consider the adaptive, exponential integrate-and-fire
(AdEx) [38] model with cortical neurons modelled as regular spiking (RS) cells with spike frequency adaptation and fast-
spiking (FS) cells with a negligible level of adaptation. In such networks, depending on the excitatory synaptic strength,
neurons can exhibit a transition from spiking to bursting synchronisation [39,40] and bistable firing patterns [41]. We
find conditions in which unstructured, sparsely connected random networks of AdEx neurons can display low frequency,
self-sustained activity.

In particular, we show that not only the balance between excitation and inhibition but also the connection density and
network size are both important factors for low frequency SSA. In balanced networks, high mean node-degree connectivity
is necessary to give rise to low mean neural firing rates, and for such high values, large networks are necessary to
support SSA states. In our computer simulations, we obtain qualitatively similar results to the ones we observed in our
experimental recordings, where we use CA1 neurons whole-cell recordings in rats to demonstrate the possible variability
of firing rate patterns observed in the brain. Our intracellular recordings show high variability of spontaneous activity
patterns including low and irregular neural firing rates of approximately 1 Hz and spike-train power spectra with slow
fluctuations [23], and small-bursts activity in distinct recorded neurons. Interestingly, we show that these results can be
reproduced qualitatively by our model with cortical neurons modelled as regular spiking (RS) cells with spike frequency
adaptation and fast-spiking (FS) cells with a negligible level of adaptation.

The paper is organised as follows: in Section 2, we introduce the neural network model and in Section 3, the various
quantities used to study self-sustained activity in our numerical simulations and the details of our electrophysiological
experiments. In Section 4, we present our results on self-sustained activity in the numerical simulations and experimental
data, and in the last section we discuss them and draw our conclusions.

2. Neural network model

We start by building a random neural network of N AdEx neurons by connecting them with probability p, where
p is the probability that any two neurons in the network are connected, excluding autapses (i.e. neurons connected to
themselves, thus self-loops are not allowed). The N neurons are split into excitatory and inhibitory neurons according to
the ratio 4:1 (meaning that 80% are excitatory and 20% are inhibitory), following [42]. The connection probability p and
the mean connection degree K are associated by means of the relation

p =
K

N − 1
. (1)

The dynamics of each AdEx neuron i = 1, . . . ,N in the network is given by the system of coupled equations [27]

C
dVi

dt
= −gL(Vi − EL) + gL∆T exp

(
Vi − VT

∆T

)
−

1
S

⎛⎝wi +

N∑
j=1

gij(Vi − Ej) + Γi

⎞⎠ , (2)

τw
dwi

dt
= a(Vi − EL) − wi, (3)

where Vi and wi are, respectively, the membrane potential and adaptation current of neuron i, gij the synaptic conductance
of the synapse from neuron j to neuron i, and Γi the external perturbation applied to neuron i. The synaptic conductance
gij has exponential decay with synaptic time-constant τs. The parameter values in Eqs. (2) and (3) are given in Table 1.
These values have been chosen so that the system can reproduce the spiking characteristics of RS (excitatory) and FS
(inhibitory) neurons observed in experiments with real neurons [27].

When the membrane potential of neuron i is above a threshold potential (Vi(t) > Vthres = −30 mV), the neuron is
assumed to generate a spike and the following update conditions are applied

Vi → Vr = −60mV, (4)
wi → wi + b, (5)
gji → gji + gs, (6)
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Table 1
Parameter values used in Eqs. (2) and (3). The ranges, where applicable, are indicated
by square brackets. These values have been chosen so that the system of Eqs. (2) and
(3) reproduces the spiking characteristics of RS (excitatory) and FS (inhibitory) neurons
observed in experiments with real neurons [27].
Parameter Symbol Value

Membrane capacitance C 1 µF/cm2

Resting leak conductance gL 0.05 mS/cm2

Resting potential EL −60 mV
Slope factor ∆T 2.5 mV
Spike threshold VT −50 mV
Membrane area S 20,000 µm2

Refractory time period tr 2.5 ms
Adaptation intensity a 0.001 µS
Adaptation time constant τw 600 ms
Integration time step h 0.01 ms
Time t [0,10] s
Reversal potential Ej 0 mVa

−80 mVb

Synaptic time constant τs 5 msa

10 msb
Synaptic conductance gs = gex [0,12] nSa

gs = gin [0,240] nSb
Synaptic delay d 1.5 msa

0.8 msb

aIndicates values for excitatory neurons.
bIndicates values for inhibitory neurons.

where Vr is the reset potential. Parameters b and gs have different values depending on whether the neuron is excitatory
or inhibitory: For excitatory neurons, b = 0.01 nA and gs = gex, and for inhibitory neurons, b = 0 and gs = gin. Updates
have synaptic delays of 1.5 ms and 0.8 ms for excitatory and inhibitory synapses, respectively. After the update, gji decays
exponentially with a fixed time-constant τs (5 ms for excitatory and 10 ms for inhibitory synapses [22]). We define the
relative inhibitory conductance g by

g = gin/gex (7)

as the parameter we will use in the investigation of network dynamics. In each simulation, we apply external stimuli Γ
to 5% of the N neurons (randomly chosen) for 50 ms to initiate network activity, and then stop the external stimuli to
observe the activity triggered, which can be persistent (SSA) or transient. For each neuron i, the external stimulus Γi has
the same characteristics: it consists of excitatory current pulses with synaptic conductances that rise instantaneously to
0.01 µS and decay exponentially afterwards with a decay time of 5 ms, generated by a homogeneous Poisson process
with rate 400 Hz.

All numerical simulations were implemented in C and the ordinary differential equations were integrated using the
fourth order Runge–Kutta method with a fixed time step of h = 0.01 ms.

3. Quantities for the study of self-sustained activity in numerical simulations and details of electrophysiological
experiments

In this work, we use the following mathematical quantities to study SSA based either on time intervals or specific spike
timings.

3.1. Coefficient of variation

The coefficient of variation is defined based on time intervals and exploits the interspike interval (ISI) where the
mth interval is defined as the difference between two consecutive spike-timings tmi and tm+1

i of neuron i, namely
ISIi = tm+1

i − tmi > 0. The coefficient of variation of the ith neuron is then given by

CVi =
σISIi

ISIi
, (8)

where σISIi is the standard deviation of the interspike intervals of neuron i.
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3.2. Time-varying and mean network firing rates

We define the spike-train of neuron i as the sum of delta functions [43]

xi(t) =

∑
[tmi ]

δ(t − tmi ), (9)

where [tmi ] is the set of all spike-timings of neuron i for t ∈ [0, T ] and T the final integration time. Based on Eq. (9), we
calculate the mean firing rate of neuron i over the time interval [0, T ] as

F̄i =
1
T

∫ T

0
xi(t)dt. (10)

For all neurons in the network, we define the time-varying network firing rate (in Hz) in intervals of ψ = 1 ms as

F (t) =
1
ψN

N∑
i=1

(∫ t+ψ

t
δ(t − tmi )dt

)
, (11)

and the mean network firing rate over the time interval [0, T ] as

F̄ =
1

⟨ISI⟩
, (12)

where ⟨ISI⟩ is the mean ISI of the network given by

⟨ISI⟩ =
1
N

N∑
i=1

⟨ISIi⟩. (13)

3.3. Power spectrum, Fano factors and mean firing rate

Based on the definition of spike-trains xi(t) in Eq. (9), we define the power spectrum of neuron i as

Sxxi (f ) =
⟨x̃i(f )x̃∗

i (f )⟩
T

, (14)

where ⟨·⟩ indicates ensemble average, T is the final integration time, x̃i(f ) is the Fourier transform of neuron i, given by

x̃i(f ) =

∫ T

0
e2π iftxi(t)dt, (15)

and x̃∗

i (f ) is the complex conjugate of x̃i(f ). The power spectrum of a set of M (M ≤ N) neurons, S̄xx(f ) is then defined as
the average power spectrum of the M neurons

S̄xx(f ) =
1
M

M∑
i=1

Sxxi (f ). (16)

To obtain consistent results over different simulations (see Fig. 5), we have chosen M = 5× 104, independently of N and
K . In this work, we will use two quantities related to S̄xx to describe spike-train characteristics [44–47].

The first quantity is the Fano factor FF = ⟨(n − ⟨n⟩)2⟩/⟨n⟩ = ⟨(∆n)2⟩/⟨n⟩, which is defined as the ratio of the variance
of n to the mean of the averaged spike count of the M neurons over the time window [0, T ], namely

n =
1
M

M∑
i=1

∫ T

0
xi(t)dt. (17)

Its relation to S̄xx is meaningful in the vanishing frequency limit of S̄xx(f ), i.e. limf→0 S̄xx(f ) = F̄ · FF . The Fano factor, FF , is
a standard measure of neural variability (FF = 1 corresponds to a Poisson process) and is related to the CV of the ISIs of
the M neurons [48] by limf→0 S̄xx(f ) = F̄ · CV2 (

1 + 2
∑

∞

k=1 rk
)
, where rk is the serial correlation coefficient between ISIs

that are lagged by k.
The second quantity is the mean firing rate of the M neurons, F̄M (defined as in Eq. (12) but dividing by M), which is

related to S̄xx(f ) by

F̄M = lim
f→∞

S̄xx(f ). (18)
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3.4. Synaptic input

The instantaneous synaptic conductance of neuron i due to all excitatory and inhibitory synapses arriving to it, is
denoted by

Gi(t) =

∑
j∈E

gij(t) +

∑
j∈I

gij(t) = Gex,i(t) + Gin,i(t), (19)

where E and I are the sets of all excitatory and inhibitory neurons in the network, respectively.
The instantaneous synaptic input to neuron i is then defined by

Isyn,i(t) =

∑
j∈E

gij(Ej − Vi) +

∑
j∈I

gij(Ej − Vi)

= IEsyn,i(t) + I Isyn,i(t), (20)

and the mean synaptic input Īsyn over all neurons in the network and over the simulation time in [0, T ] by

Īsyn =
1
N

N∑
i=1

1
T

∫ T

t=0

(
IEsyn,i(t) + I Isyn,i(t)

)
dt. (21)

3.5. Mean network decay-time

Finally, for a given neuron i, we define the time of its last spike as the maximum time in its spike train,

t lasti = max {tmi }. (22)

The network decay-time (DT) is then defined by the maximum of the last spikes of all neurons in the network during
the simulation time, i.e. the maximum t lasti of all neurons in the network,

DT = max {t lasti , i = 1, . . . ,N}. (23)

Finally, we define the mean network decay-time DT as the mean DT over 103 simulations with different random initial
conditions.

3.6. Details of electrophysiological experiments

3.6.1. Animals
Electrophysiological experiments were conducted using male Wistar rats with 20–25 postnatal days. All animals were

kept in an animal facility in a 12:12 h light–dark cycle at a temperature of 23 ◦C ± 2◦ with free access to food and
water. All procedures were approved by the Institutional Animal Care Committee of the Institute of Biomedical Sciences,
University of São Paulo (CEUA ICB/USP n. 090, fls. 1◦).

3.6.2. Preparation of brain slices
After animals were deeply anesthetised through isoflurane inhalation (AErrane; Baxter Pharmaceuticals), they were

decapitated and the brain was quickly removed and submerged in cooled (0 ◦C) oxygenated (5% CO2–95% O2) cutting
solution (in mM): 206 sucrose, 25 NaHCO3, 2.5 KCl, 10 MgSO4, 1.25 NaH2PO4, 0.5 CaCl2, and 11 D-glucose. After removing
the cerebellum, brain hemispheres were separated by a single sagittal cut. Both brain hemispheres were trimmed up and
glued in a metal platform and sectioned using a vibratome (Leica - VT1200). 350–400 µm brain slices were obtained by
advancing the vibratome blade from anterior–posterior orientation. Slices were rapidly transferred to a holding chamber
containing artificial cerebrospinal fluid (ACSF; in mM): 125 NaCl, 25 NaHCO3, 3 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, and
25 D-glucose. Slices were kept oxygenated at room temperature (20–25◦) for at least one hour before proceeding with
electrophysiological recordings.

3.6.3. Electrophysiological recordings
Brain slices containing the hippocampal formation were placed in a submersion-type recording chamber upon a

modified microscope stage and maintained at 30 ◦C with constant perfusion of oxygenated ACSF (5% CO2–95% O2). Whole-
cell recordings were made from neurons located in the pyramidal layer of CA1. Recording pipettes were fabricated from
borosilicate glass (Garner Glass) with input resistances of about 4–6 M� and were filled with intracellular solution (in
mM): 135 K-gluconate, 7 NaCl, 10 HEPES, 2 Na2ATP, 0.3 Na3GTP, 2 MgCl2; at a pH of 7.3 obtained with KOH and osmolality
of 290 mOsm. All experiments were performed using a visualised slice setup under a differential interference contrast-
equipped Nikon Eclipse E600FN microscope. Recordings were made using a Multiclamp 700B amplifier and pClamp
software (Axon Instruments). Only recordings from cells that presented spontaneous activity with membrane potentials
lower than −60 mV, access resistance lower than 20 M�, and input resistance higher than 100 M� and lower than 1000
M�, were included in our data. We injected depolarising currents to identify regular, tonic, or bursting spike patterns
and neural spontaneous activity was assessed by 10 min of continuous recordings in current clamp mode.
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Fig. 1. Results from electrophysiological experimental data. (a) Raster plot of 150 traces. (b) Twenty seconds of recordings are shown (horizontal
black bar denotes 1 s and vertical black bar denotes 50 mV). (c) Mean firing rate and (d) interspike interval (ISI) distributions. Note that the vertical
axes in (c) and (d) are in logarithmic scale and that the label f represents the fraction of values in the bins in the horizontal axes.

4. Self-sustained activity

4.1. Self-sustained activity in electrophysiological experiments

SSA assessed by electrophysiological recordings in physiological brain states is characterised by irregular neural spiking,
normally with low average frequency where rates follow a long-tailed distribution across neurons [23]. Interestingly, some
brain regions are able to produce spontaneous network activity after a slicing procedure, including hippocampal sharp
waves [49–51]. Once hippocampal slices present SSA manifested by spontaneous activity, we use CA1 neurons whole-cell
recordings to demonstrate the possible variability of firing rate patterns observed in the brain. Our intracellular recordings
show a high variability of spontaneous activity patterns including low neural firing rates and small-bursts activity in
distinct recorded neurons.

Fig. 1 shows a representation of traces obtained by whole-cell patch clamp from CA1 neurons during a period of 20
s. The raster plot of the 150 traces is shown in Fig. 1(a), and five traces of membrane potential are shown in Fig. 1(b)
for the same time window. The mean firing rate and interspike interval (ISI) distributions are plotted in Fig. 1(c) and (d),
respectively. Recorded neurons present distinct firing patterns, including very low firing rate and small bursts of spikes, as
shown in Fig. 1(b). In the whole record, the mean firing rate over all neurons is approximately equal to 1.172 Hz. Similar
firing patterns, with high variability and low neural firing rates, are found in different recordings in the hippocampus and
other cortices of the rat brain during slow-wave sleep [52], as well as in recordings from human middle temporal gyrus
during sleep [53].

4.2. Self-sustained activity in numerical simulations

Here, we use the results from numerical simulations of a random network model of N adaptive exponential integrate-
and-fire neurons [54] (Eqs. (2) and (3)). We focus on reproducing three aspects of the previous subsection (electrophysi-
ological experimental data): (i) mean firing rates around 1 Hz, (ii) small-bursts activity in distinct neurons (Fig. 1(b)) and
(iii) data with variability in firing rates where most of the neurons have frequencies between 0 and 1 Hz (Fig. 1(c)).

The random network model of N adaptive, exponential integrate-and-fire neurons [54] we use here is composed of 80%
excitatory and 20% inhibitory neurons (i.e. a ratio of 4:1) following [42]. The synaptic conductance shows an exponential
decay with synaptic delays of 1.5 ms and 0.8 ms for excitatory and inhibitory synapses, respectively. In each simulation,
we apply external stimuli Γ to 5% of the N neurons (randomly chosen) for 50 ms to initiate network activity. Then, we
stop the external stimulation to observe the activity triggered, which can be persistent (i.e. SSA) or transient.

To reproduce SSA firing patterns with low neural firing rates, we analyse the parameter space gex × g for a neural,
random, network of N = 104 AdEx neurons with connection probability p = 0.02. We focus on an area of the parameter
space where there is a balanced regime of excitation and inhibition. In this area, we do not observe SSA for gex < 0.004 µS,
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Fig. 2. Results from the numerically simulated data. Time-dependent network firing rate (F ) in two distinct regimes: (a) non-SSA and (b) SSA. Each
case corresponds to a different simulation. The two neural network models use the same set of parameters except that the excitatory conductance is
gex = 0.0035 µS in (a) and gex = 0.008 µS in (b). The insets show the probability distribution of the mean synaptic inputs (Īsyn) over 103 simulations
and decay-times (DT) in each case. (c) Mean network firing rate (F̄ ), (d) mean synaptic input (Īsyn) and (e) Mean decay-time (DT) as a function of
excitatory (gex) and relative inhibitory synaptic coupling (g). The neural network has N = 104 neurons and the connection probability is p = 0.02.
In (a) and (b), we fixed g = 16. The turquoise squares correspond to the parameters in (a) and the green circles to those in (b). Note that the label
f in the insets in (a) and (b) represents the fraction of values in the bins in the horizontal axes.

i.e. in the weak coupling region. Examples of time-dependent network firing rates in this region are shown in Fig. 2(a), for
gex = 0.0035 µS and g = 16. The initial stimulus applied in the first 50 ms, generates short-lived activity in the network.
The mean synaptic input, Īsyn, is negative (left-hand inset in Fig. 2(a)) and the network decay-time DT is always less than
3 s (right-hand inset in Fig. 2(a)). Examples of time-dependent network firing rates in the region of SSA are shown in
Fig. 2(b), corresponding to gex = 0.008 µS and g = 16. The mean synaptic input is approximately balanced (Īsyn ≈ 0) and
the decay-time is higher than the maximum time used in our simulations (i.e. DT ≥ 5 s).

For N = 104 neurons, the lowest mean network firing rates are approximately 2 Hz. The region where these rates
occur is shown in purple in Fig. 2(c). A particular case for gex < 0.0035 µS is indicated by a turquoise square, where the
activity is not self-sustained. For the random network and parameter space considered, the region with SSA is roughly
determined by gex > 0.004 µS (indicated in yellow in Fig. 2(e)). The lowest mean network firing rate of an SSA state
is around 4 Hz (red region in Fig. 2(c)). Within this region, one can identify the region of excitation/inhibition balance
by considering the region with Isyn ≈ 0 (see Eq. (21)). This is shown in red in Fig. 2(d). The black and yellow regions in
Fig. 2(d) correspond to slightly predominant inhibitory and excitatory mean synaptic input, respectively. An SSA case with
F̄ ≈ 4 Hz and excitation/inhibition balance is indicated by the green circle in Fig. 2(c)–(e) and corresponds to gex = 0.008
µS and g = 16.

To study the effect of the size of the network on SSA, we considered two networks of different sizes with the same
mean degree. The first has N = 104 and p = 0.04 and the second N = 2 × 104 and p = 0.02, both having K = 400.
The parameters (gex = 0.005 µS and g = 8) are the same for the two networks, and put them close to the balanced
state. In Fig. 3(a), we show the firing rate evolution of the two networks. For N = 104 (turquoise line), the activity decays
before 2 s, and for N = 2 × 104 (green line) SSA is observed. The distributions of Īsyn for the two cases (see the insets
in Fig. 3(a)) have similar (positive) average values but the one for N = 104 is broader and left-skewed. The decay-time
distribution (Fig. 3(b), (c)) clearly shows that the networks with N = 2 × 104 have SSA, while the ones with N = 104

are predominantly short-lived. A comparison of networks with the two sizes in the gex × g parameter space is shown
in Fig. 3(d)–(i). The mean network firing rate and mean synaptic input display similar behaviour in the parameter space
for the two network sizes (Fig. 3(d)–(g)). However, this similarity is not seen in the diagram for DT (Fig. 3(h)–(i)). The
region corresponding to SSA (yellow) is larger for N = 2 × 104 than for N = 104. Moreover, the shape of this region for
N = 2× 104 discloses almost absent sensitivity of SSA duration to the relative inhibitory synaptic conductance g . On the
other hand, for N = 104, the SSA lifetime is sensitive to g for 0.006 µS ≲ gex ≲ 0.008 µS, and only for strong coupling
(gex ≳ 0.008 µS), it becomes insensitive to g . In Fig. 3, we observe large decay time DT for high frequencies.

Next, we investigate the influence of N , p and K (see Eq. (1)) on the network firing rate of SSA states. We fix gex = 0.008
µS and g = 16 to keep the dynamics around an excitatory/inhibitory balance. Fig. 4 shows the mean network firing rate
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Fig. 3. Results from the numerically simulated data. (a) Time-dependent network firing rate (F ) for N = 104 (turquoise line) and N = 2 × 104

(green line). The insets show the probability distribution of the mean synaptic input (Īsyn) over 103 simulations, for each case. (b) and (c) show
the decay-time (DT) distribution (also for 103 simulations) for N = 104 and N = 2 × 104 , respectively (colours follow the same convention as in
(a)). We considered the excitatory conductance gex = 0.005 µS, mean node-degree K = 400, and relative inhibitory synaptic coupling g = 8. The
mean network firing rates (d) and (e), mean synaptic inputs (f) and (g), and mean decay-times (h) and (i) are shown as a function of gex and g for
N = 104 (left) and N = 2×104 (right), respectively. The turquoise squares correspond to N = 104 and p = 0.04 and the green circles to N = 2×104

and p = 0.02. Note that the label f in the insets in (a) and (b) represents the fraction of values in the bins in the horizontal axes.

of SSA states (colour scale) in the parameter space N × p. The white area in the parameter space corresponds to non-SSA
states. We can see that the mean network firing rate of SSA states depends on both N and p. In particular, low firing
rate SSA states appear when the network size N increases. The black solid line in Fig. 4 represents networks with mean
node-degree K = 1500, in which case there are SSA states for N ≥ 1.5 × 105 neurons. The inset in Fig. 4(a) shows the
dependence of the mean network firing rate F̄ of SSA states on the mean connection node-degree K for constant N . We
can observe that lower rates are obtained for increased K . However, very low firing rates (≈ 1 Hz) are present only for
very large network sizes. In the inset in Fig. 4(b), we can observe that the network size does not alter the mean network
firing rate when K is fixed. Therefore, large K plays an important role in the occurrence of low network firing rates, and
for such low firing rates, large-size networks are necessary to support SSA states.

Fig. 5 shows results for three cases of network sizes and mean node-degrees K , namely for N = 105 and K = 1300, for
N = 3× 105 and K = 1500 and for N = 5× 105 and K = 1700. The time-varying network firing rate is non-periodic and
its mean value decreases as both N and K increase (Fig. 5(a)). In Fig. 5(c)–(e), we observe that most ISIs are distributed in
the interval [0, 2] s. These results agree with the experimental results in Fig. 1(d), where more than 60% of ISIs are in a
similar interval. In the three cases, the spiking variability, characterised by the ISI distribution, is very well described by
a Poisson distribution (Fig. 5(c)–(e)). This is characteristic of irregular neural firing [19,55–57]. Moreover, the CV of the
ISIs slowly converges to the one of a Poisson process (= 1) as both N and K increase.

As discussed in Section 3, the power spectrum of a set of M neurons is related to different quantities that characterise
network firing. In our numerical simulations, we can observe these relations by taking the limits of the power spectrum
as f → ∞ or f → 0. The mean firing rate F̄M is associated with the infinity frequency limit, namely limf→∞ S̄xx(f ) = F̄M
(see also Eq. (18)). In Fig. 5(b), one can see that these mean firing rates are very low (1 Hz ≲ F̄M ≲ 1.5 Hz) and that the
smaller rates occur for larger N and K . On the other hand, irregularity is associated with vanishing frequency, namely
limf→0 S̄xx(f ) = F̄ .FF , where FF is the Fano factor (see Section 3.3). Assuming approximately the same F̄ for the three
networks in Fig. 5(b), say F̄ ≈ 1.3, the f → 0 limit of S̄xx(f ) shows that FF > 1 for all of them. This suggests a process
more irregular than the Poisson process [58], e.g. bursting [56]. Moreover, as the network size N increases, FF decreases,
indicating tendency to converge to a Poisson process and is linked to a standard irregularity measure and CV. We see that
in the limit of very small frequencies, the value of the power spectra decreases as both K and N increases, confirming the
behaviour observed by CV, i.e. the spiking times are becoming more regular. The power spectra display slow fluctuations,
which can be explained by the low neural firing rates and bursting spiking patterns (as discussed below). Slow power
spectrum fluctuations are also features of spontaneous activity in cortical networks [10,46,59].

In Fig. 6, we show characteristics of the SSA firing patterns with low rate exhibited by the network (a particular
case with N = 5 × 105 and K = 1700 is shown as a representative example). The patterns are characterised by
sparse and non-synchronous activity (Fig. 6(a)), akin to what has been termed the heterogeneous variant [19] of the
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Fig. 4. Results from the numerically simulated data. Each point in the coloured part of the plot gives F̄ calculated for a simulation with the
corresponding parameter values of N and p. The white area corresponds to non-SSA states. The black line represents networks with mean node-
degree K = 1500 (according to Eq. (1)). Upper inset: mean network firing rate F̄ as a function of K , keeping N fixed, where the red squares and black
circles represent N = 105 and N = 3×105 neurons, respectively. Lower inset: mean network firing rate F̄ as a function of N , showing independence
of F̄ on N for constant connection degree K . The curves represent two selected K values: K = 500 (red squares) and K = 1500 (black circles). Note
that we have used gex = 0.008 µS and g = 16 for all simulations in this figure.

Fig. 5. Results from the numerically simulated data. (a) From top to bottom, we show F as N and K increase (for the N and K values, see legend
in (b)). (b) Power spectra averaged over 5 × 104 neurons in the network and 10 s of simulation. Note that the horizontal axis is logarithmic and
the vertical linear. (c)–(e) ISI distributions for the same three networks with the vertical axes in logarithmic and horizontal in linear scales. The
values of the corresponding CVs are shown in the plots. In the three cases, the parameter values used are gex = 0.008 µS and g = 16. Note that
the vertical axes in (c), (d) and (e) are in logarithmic scale and that the label f represents the fraction of values in the bins in the horizontal axes.

asynchronous irregular (AI) regime [14,60]. In the homogeneous AI regime, all neurons fire with the same mean rate, but
in the heterogeneous AI regime, the mean firing rates fluctuate in time and across neurons. In some cases, neurons can
even exhibit bursting periods (as can be seen in Fig. 6(b)). Neurons have low firing rates, with a right-skewed distribution
that peaks around 1 Hz (Fig. 6(d)). Irregularity is confirmed by the CV of ISIs and power spectra analysis (Fig. 5). The
similarity between the firing regime observed in our simulations and the heterogeneous AI state can be further verified by
a comparison of the respective spike-train power spectra. Spectra for networks in heterogeneous AI have been calculated
elsewhere [47] and display slow fluctuations as shown here (Fig. 5(b)).
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Fig. 6. Results from the numerically simulated data. All plots refer to a single simulation of a network with N = 5× 105 , K = 1700, gex = 0.008 µS
and g = 16. (a) Raster plot of 2 s of simulation time (only 500 randomly chosen neurons from the network are shown). (b) membrane potential of
three randomly chosen neurons from the network (the horizontal black bar denotes 0.2 s and the vertical black bar denotes 50 mV). (c) Time-varying
synaptic conductances (Gex,i(t) in green and Gin,i(t) in cyan) of neurons represented by the blue line in (b). (d) distribution of mean firing rates F̄i
(Eq. (10)) of all neurons in the network. Distribution of excitatory (Gex,i) (e) and inhibitory (Gin,i) (f) synaptic conductances of all neurons at the end
of the simulation. Distribution of excitatory (IEsyn,i) (g) and inhibitory (I Isyn,i) (h) synaptic inputs of all network neurons at the end of the simulation.
Note that the vertical axis in (d) is in logarithmic scale and that the label f in (d), (e), (g), (f) and (h) represents the fraction of values in the bins
in the horizontal axes.

The distributions of the excitatory (Gex) and inhibitory (Gin) synaptic conductances over neurons (panels (e) and (f)
in Fig. 6) have nearly symmetric shapes, with the Gin distribution slightly right skewed, in agreement with experimental
evidence [61], even though the conductance values per se are higher than in the experimental recordings. The distributions
of excitatory (IEsyn) and inhibitory (I Isyn) synaptic inputs are nearly identical and vary over nearly the same range of absolute
values, though the upper end of the range is slightly higher for the inhibitory synaptic inputs (see panels (g) and (h) in
Fig. 6). This is a hallmark of a balanced state, and the neural spikes occur due to the large synaptic conductance variability,
which allows for the necessary conditions that can support the appearance of SSA.

Finally, it is worthwhile the fact that in Fig. 6(a) (raster plot) and 6(b) (membrane potential), there are several striking
similarities, namely: non-synchronous activity and, the coexistence of spike and bursting neural activity. More impor-
tantly though, qualitatively similar activities and behaviours are present in the data obtained from hippocampal slices
(electrophysiological experiments) as demonstrated in Fig. 1(a)–(b) and in the results from the numerical simulations
data. In both experimental and numerically simulated data, we observe high variability in neural firing rates where most
of the neurons fire with frequencies in the interval [0, 1] Hz, with similar distribution of mean firing rates in the interval
[1, 5] Hz (compare Figs. 1(c) and 6(d)).

5. Conclusions and discussion

In this paper, motivated by self-sustained activity observed in the brain in the absence of external stimuli, we sought
to study necessary conditions for which irregular and low-frequency self-sustained dynamics emerge in models of neural
networks with random connectivity. We build neural network models of 80% excitatory and 20% inhibitory neurons
randomly connected and mathematically described by the adaptive, exponential integrate-and-fire model. This model
mimics the behaviour of biological neurons, exhibiting spiking and bursting patterns of activity. We studied network
features by varying: (i) the balance between excitation and inhibition in the system and (ii) the topological characteristics
of the random network by means of varying the mean node-degree. Results were obtained by running a large number
of numerical simulations to compute firing rates and related quantities, and compared them with results from our
electrophysiological experiments using whole-cell patch clamp from CA1 rat neurons.

Our numerical results allowed us to observe neural activity with slow fluctuations in the absence of external
perturbation. We found that the patterns of low firing-rate self-sustained activity is asynchronous and irregular as depicted
in raster plots. We shown that the irregular spikes with low firing rate depend on the mean node degrees of the neurons,
and that low-rate self-sustained activity occurs for a tight balance between inhibition/excitation and large network sizes.
We found that for fixed mean connection degree, the mean network firing rate does not change with the network size.
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In an excitation/inhibition balanced random network, if the network size is fixed, the mean network firing rate decreases
when the mean node-degree increases. However, there is a maximum mean node-degree value for which it is possible to
maintain self-sustained activity states, and this value is proportional to the network size. Therefore, large networks are
necessary to give rise to self-sustained activity states when the mean node-degree is large. Moreover, the occurrence of
spikes is due to the synaptic-conductance variability and the inhibitory synaptic input is slightly higher than the excitatory.

More importantly, we found that our results from the numerical simulations resemble those obtained from our
experimental recordings and analysis, such as irregular firing with firing rates of about 1 Hz. In addition, we have
demonstrated that our model is able to reproduce the coexistence of spike and bursting neurons and the distribution
of mean firing rates between 0 and 5 Hz obtained by our electrophysiological experiments using whole-cell patch clamp
from CA1 rat neurons.

Concluding, we have been able to demonstrate the existence of low neural firing rate self-sustained activity in
excitation/inhibition balanced random networks of adaptive, exponential integrate-and-fire neurons. This phenomenon
is characterised by irregular neural oscillations and shows that low frequency self-sustained activity can be found in
large balanced random networks, a result that is qualitatively similar to those obtained from our electrophysiological
experiments using whole-cell patch clamp from CA1 rat neurons.
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