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Rate of convergence for reaction—diffusion equations with nonlinear
Neumann boundary conditions and C' variation of the domain

MARCONE C. PEREIRA({ AND LEONARDO PIRES

Abstract. 1In this paper, we propose the compact convergence approach to deal with the continuity of attrac-
tors of some reaction—diffusion equations under smooth perturbations of the domain subject to nonlinear
Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics
of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth
perturbations will be estimated by a rate of convergence given by the domain variation in a C 1 topology.

1. Introduction

The nonlinear dynamics of reaction—diffusion equations under perturbations of
the domain have been studied by several authors concerned with different types of
domains. From pioneering to recent works, we can mention [4,5,21,29,30,32] and
[18,23] where parabolic and elliptic equations have been considered, and theories to
understand a huge class of perturbed problems are introduced. In this context, two
interesting examples were extensively studied in [11,21], the so-called localized large
diffusion and thin domain. For these problems, the works [1] and [8] have presented
a rate of convergence to estimate the continuity of attractors as a positive parameter
e — 0.

Indeed, a convergence rate theory for attractors has been developed (for instance
in [1,12-15]), which enables us to estimate all convergences that appear when a
fixed domain is smoothly perturbed and nonlinear Neumann boundary condition is
considered. For example, it is possible to find a positive function 7 (¢) that goes to zero
as the parameter ¢ — 0, to estimate the convergence of the resolvent operators and
linear semigroup, the permanence of hyperbolic equilibrium points, the convergence of
the nonlinear semigroup, the C° convergence of unstable manifolds and the continuity
of attractors.

The seminal paper [4] addresses many types of domain perturbations and their
relations with the spectral behavior of the Laplace operator subject to homogeneous
Neumann boundary conditions. The main difficulty to find arate of convergence for this
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approach is due to the extended phase space HY (Q.NQp)dH! (2:\R0) ®H! (20\2¢)
that does not allow to obtain estimates in the same space. The authors in [9, 10,28,29]
overcome this problem using the pull-back technique proposed by [23] in which,
the perturbed nonlinear equation, is transferred to a fixed phase space. There they
deal with nonlinear boundary conditions showing the continuity of the attractors but
without estimates of convergence.

In this paper, we use the compact convergence approach introduced by Carvalho
and Piscarev in [17], in a proper way, to estimate the convergence of the dynamics
set by a reaction—diffusion equation under smooth perturbations of the domain. Our
perspective allows us to advance and refine some existing results on the continuity of
attractors for parabolic problems when a fixed domain undergoes smooth perturbation.
Besides that, we show precisely how to estimate all convergence from the perturbed to
the limiting problem when the perturbation parameter varies. In this way, we improve
the results of the previous works [9,10,28,29] and [4] since we deal with nonlinear
Neumann boundary conditions.

Let @ ¢ RN, N > 2, be a smooth C' bounded domain and % : Q@ — R be a
diffeomorphism onto its image 25, := h(£2). Consider

ur — Au = f(u), inQp,
L = fw), on 9K,

any,

(1.1

where A = ZINZ 1 82%/9 yl.2 is the Laplacian differential operatorin £, 71, is the outward
unitary normal vector for the boundary 92 and f, f are smooth real functions defined
in R. It is well known that, under standard growth and dissipative conditions on f and
f , problem (1.1) is globally well-posed in H'(£2;,). Also, the associated semigroup
is gradient and possesses a global attractor .4;, uniformly bonded in L™ (see, for
instance, [6,13,20,27]).

We are interested here in finding estimates for the dynamics set by (1.1) as & ap-
proaches the inclusion Iy : & — RY in the C' topology. In fact, it is known by
[9,29] that the perturbed problem (1.1) varies continuously concerning / under the
condition that all the equilibria are hyperbolic. Thus, if we denote 7 (h) = dc1(h, Iy),
then 7(h) — 0 as h — Iy and the limiting problem of (1.1) is given by

{u, — Au= f(u), in<, 12

u = f), on 9%,

where 71 is the outward unitary normal vector for the boundary 9. The main result
of this paper states that there exist constants C > 0 and 0 < 8 < 1 independent of &
and a linear invertible operator E;, : H'() — H'(€2;) such that the continuity of
attractors can be estimated by

dp(An, EpA) < Ct(h)? (1.3)

where d denotes the Hausdorff distance between closed sets in H' ().
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In addition to the well-posedness of (1.2) and (1.1), we can assume that f, f e C? (R)
are bounded with derivatives up to second order bounded. We also suppose all the
equilibrium points of the limiting problem (1.2) are hyperbolic, and then, they compose
a finite set £ = {ul'*, oo uPy

In the process to obtain (1.3), we prove the following results. Let > > 1 and A, be
the linear operator A — A in 2;, with homogeneous Neumann boundary conditions.
There are positive constants C, L,a, 0 < 6 < % and % < 5 < 1 independent of &
such that:

(i) The rate of convergence of eigenvalues, spectral projections, and resolvent op-
erators of Ay as h — Iy is given by 7(h). In particular,

1AL En — En AL | 2o 1 @y < CT(). (14)

(ii) If u* is an equilibrium point of (1.2), then there exists an equilibrium point u};
of (1.1) such that

(iii) If =44’ is the linear semigroup generated by Aj and Tj(-) is the nonlinear
semigroups generated by the solutions of (1.1) and (1.2) then

—A —A —a(l— (L
||e htEh - Ehe INIH C(H—S(Q),H\(Qp)) <Ce a(l 29)lz(h)29t (2 9), t>0

and
I Th(t) Epu — EpTry (Dull g1 g,y < Ce'tm*, ue HY(Q), t > 1. (1.6)

(iv) The unstable manifolds of each equilibrium point are exponentially attracting,
and the C°-convergence can be estimated by Ct(h)%’.

(v) The quantity n = Ct(h)? measures how much the attractors .4;, and A are not
isometric.

Itis worth noticing that the optimality of the estimates obtained in items (iii), (iv), (v),
and (1.3) is an open question for a problem whose dynamics act in infinite-dimensional
spaces. The optimal rate should be with 8 = 1 which is the rate of equilibria. We
already know that for semiflows in finite-dimensional phase space, the estimates are
sharp. Another class where the estimates are sharp is reaction—diffusion problems with
large diffusion [14,31]. In this case, the limiting phase space is finite-dimensional. The
paper [15] considers large diffusion only in a piece of the domain, but it is not enough
to obtain the optimal rates once the dynamics act in infinite-dimensional phase space.
It is still worth mentioning that the work [8] improves the estimates from [21] (but
does not obtain the optimality) for a class of singular parabolic problems arising in
thin domain problems.

The paper is organized as follows: In Sect. 2, we present the compact convergence
approach together with the functional framework needed to get (1.3). As we can see in
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[4], the spectral behavior of the linear part of (1.1) and (1.2) is essential to determine its
nonlinear behavior. In Sect. 3 and 4, we developed the linear part of our problem, using
the viewpoint of [17], aiming reaction—diffusion equations with nonlinear boundary
conditions. We introduce the notions of E-convergence and admissibility for domains
and operators for problems concerning domain perturbations. We prove several results
related to the continuity of the resolvent operators and their perturbations by potentials
getting precise estimates concerning 7 (%), one of these results is (1.4). In Sect. 5, we
show the permanence of equilibrium points. The key argument is to obtain estimates
in nonlinear terms. We need to explore Sobolev immersion and trace theorems. The
estimate (1.3) is proved in Sect. 6 where we also prove (1.5), (1.6) and the exponential
attraction of the local unstable manifolds. Our results are used in Sect. 7 to show that
the quantity n = Ct(h)? measures how much the attractors are not isometric. In
Sect. 8, we present a classical example to show that our technique works.

2. Functional setting

In this section, we establish the functional setting to deal with (1.1) and (1.2). Since
2 and €2;, are smooth bounded domains, the appropriated phase space is the Sobolev
spaces H*(€2) and H*(2;), s > 0, that can be defined as the fractional power space
through the Laplace operator with homogeneous Newmann boundary conditions (see,
for instance, [22,33]). In fact, we have from [33, Theorem 1.35 and Corollary 2.4]
that H*(Q,) = D((—A, + In)*/?),0 < s < 1 where Ay, is the Laplacian operator
with Neumann homogeneous boundary condition Ay, : D(Ap) C L2(Q) — LE2(2)
with

2 du .
D(Ap) = {u € H () : P =0on 8Qh} and Aju = Au in Q.
In the case h = Iy, we may justuse A = Ay,,. The dual space of H*(£2) and H*(£2;,)
are denoted by H ¥ (2) and H ~*(£2j,), and then, we also extend the scale for negative
fractional exponent.

Lemma 2.1 gives us a way to consider the set of diffeomorphisms of €2 close to
the inclusion as an appropriate set of parameters. We will define the operator Ej, to
compare the dynamics of (1.1) and (1.2) transferring the main concepts of [17] for our
context.

Recall that we are denoting Iy the inclusion of €2 in RY and t(h) = dei(h, Iyn),
where

dei(h, Iy) = sup{h(x) — x} + sup {h'(x)v — v}
xeQ |U|=Ql
xe

+ sup {h'(x) = x} + sup {(W) " (x)v — v).
xey lv|=1
xeQ
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We consider 0 < € < 1 and define the following set of diffeomorphisms e-close to
the inclusion

Diff. (2) ={h € Cl(ﬁ, RN) : h is a diffeomorphism onto its image h(€2) =
satisfying dq1(h, Iy) < €}.

The parameter € measures how close 4 and Iy are. Eventually, we take € sufficiently
small to mean that £ is sufficiently close to inclusion /Iy .

Lemma 2.1. Let h € Diff.(Q2). If we denote t(h) = dci1(h, Iy), then it is valid the
following estimates for x € Q

N-—1 N
det(h' () < 1+ Y (k>r(h)N_k and

=0
1

= =

det((W) " )] < 1+ (Z)r(h)N—k.

k=0

Moreover, let ®; : Uj ¢ RN=1 — RN be a family of C' local parametrizations
to 982 such that 92 C U®D;(U;). Then, if D;; is the (N — 1)-dimensional matrix
obtaining by deleting the jth line of the matrix D; = h'®! defined in U, there is a
positive constant C;, depending only on the parametrization ®;, such that it is valid
the following estimate on 92

=N
|det(Djj)| = C; (1 + kZ=(:) ( ' )f(h)N—l—k>
N2

and |det(D;l)| < Ci (l + Z <Nk_ l).[(h)N—l—k) ,

k=0

where Di;l denotes the (N — 1)-dimensional matrix obtaining by deleting the jth line
of the matrix Dl._l = (h/CIDQ)_1 defined in U;.

Proof. The Hadamard’s inequality says that for a matrix A = [vjv2...v,], where
v; = N-vector, it is valid [det(A)| < []7_; llvi|lgn, for the proof see [25]. Applying
this inequality to Jacobian matrix of (x), x € €2, we obtain

oy Sdar(h, 0N

et = [ | (G g2 5|
i=1

axi’ 8x,~" v ax,-

IA

(e (h, Igy) +der (Igv, )Y = (z(h) + DY

N—1
=1+ Z (IZ)r(h)N_k,
k=0



5 Page 6 of 41 M. C. PEREIRA AND L. PIRES J. Evol. Equ.

where

dci(h,0) = sup h(x) + sup &' (x)v + sup h~'(x) + sup (W)~ (x)v.

xef2 lv|=1 xeQy lv|=1

In the same way, we get the estimate for (k')
If x € 9Q2, we have x € ®;(U;) for some i, and

N-—1 ~
oh oh; oh
|det(D;;)| < C; 1_[ H <_1 . Lo, _N> ‘
i=1

e —L < Cidpi(h, )N 1
8)61‘ 8x,‘ 8)61' ! Cl( )

RN-1 —

< Ci(dei(h, Ign) +dei (Igv, )NV ™! = Ci(z(h) + DV !

N-=-2 N
= (1 +) <k)r(h)N—k—1> ,
k=0

where C; = dc1(®;, 0).
In the same way, we get the estimate for Dl.;l. 0

Remark 2.2. Notice that if we define
N—-1
N
z(h) = h)N—k
z(h) ,; ( k)r( )

then 7(h) — Oash — Iy and T(h)/t(h) — (lel) as h — Iy. Hence, 7(h) and
7 (h) have the same order of convergence to zero as i converges to /y. More precisely,
we can find a constant C uniform in 4 such that 7(h)/t(h) < C, for h sufficiently
close to Iy.

By Lemma 2.1, T(h) + 1 is an upper bound for |det(h’(x))| and |det((h)~' (x))|
forall x € QU IQ. If x € 92, C; depends only on the fixed parametrization of the
boundary. More precisely, since 2 is a C! bounded domain its boundary 92 is locally
the graph of a C! function. Therefore, if ®; is the parametrization of 32 (as we have
used in Lemma 2.1), then there is a C! function @i : U — R, such that

(i) @;(x) = (', 9i(x"), x" € U;.

(i) e U)NQ={x e ®(U):xy > g(x)}, x = xy) e RV,

(i) [IVgillLew;) =< Ci.
We can define a new parametrization ¢; ( CL,-X/ ) in order to obtain [|V®;||fe ;) < 1.
Thus, we can take C; = 1 in Lemma 2.1.

We have {H'! ()}, eDiff, (o) 1s afamily of Banach spaces indexed in the topological
space Diff, (€2) endowed with the C! topology. It is worth noting that Iy € Diff, ()
and the parameter € is a upper bound to t (%) independent of 2. When we want to take
h sufficiently close to Iy, we take € sufficiently small.

We define the following family of linear operators

Ep: L*(Q) — L*(Qp), Ewu=uoh™, ueL*Q).
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We have E, (H1(Q)) = HY(Q),). It follows from the change of variables theorem that
E}, is a continuous operator. Moreover, by Lemma 2.1, we have

By g,y = [ 19~ P ax + [l P ds
Qp Qp

= / IV (u(x))[*|det(h'(x))| dx + f (u(x))|?|det (R (x))| dx
Q Q

< Ml qy + Nl gy TR
Hence,
limsup [|Epull g1(q,) < lullgiq)- 2.1)
h—1Iy

In the same way, we obtain lim sup;,_, ;. | Enutll12(q,) < llullL2q)-

By the uniform boundedness principle, there is a constant K > 0, independent of
h, such that, if we take € sufficiently small, then the following uniform estimates are
valid

”Eh”,C(HI(Q),Hl(Qh))’ ||Eh||[,(L2(Q),L2(Q/1)) E K, fOI' all ]’l S lefe(Q) (22)

Thus,

10y = [ 1V @R ax+ [ 1P ax
Q

Q
= / IV (uh ™" (x))?|det((h") ™" (x))] dx + [ |(wh ™" ()| det ()" (x))| dx
Qp Q2
< Enulyyiq,, + 1 Enully g, T
Hence,
lull gy < lim iInf IEnullg1(g,)- (2.3)
—IN

In the same way, we obtain |[ul|2(q) < liminfy— 1y [|Equllp2(g),)-
The inequalities (2.1) and (2.3) imply

IEnull 2, — lull2@) as h— Iy, ueL*(Q), and  (24)
IEnull i, = lullgiqy as h— Iy, ue H(Q). (2.5)

In order to connect the phase spaces, we also need to consider the inverse operator
of E},. It is defined as follows:

My, - L*() — L*(), Muup =upoh, up € L*().
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We have that M), also acts in H 1(Qh). Similarly to Ej, we can prove that My, is a
continuous linear operator.

We are dealing with nonlinear boundary conditions; then, we need to extend Ej, to
an operator Ej acting in H*(£2). We have the following result.

Proposition 2.3. Suppose s € (0, 1) and h € Diff.(Q) for € € [0, 1]. Then, E} :
H*(Q) > H*() given by (Eju)(y) = (uo h=Y(y) is well defined and satisfies

I Ejullgs @y < Cllullas )

for some positive constant C independent of h. Moreover, Ej is an isomorphism with
(E;;)_1 = M} where M}, : H*(2,) — H*(RQ) is given by Mjv = v o h with

IMuvllas @) < Cllvllas@y,)

for some C > 0 independent of h.

Proof. Let Bg C RY be a ball of radius R such that Q, C By for all & € Diff, ()
and € € [0, 1]. From [23, Chapter 1], for any h € Diff, (2) with € € [0, 1], there exists
a diffeomorphism H : R" — RY of class C! such that its restriction to € is equal to
h, |det(H ! (x))‘ is strictly positive and uniformly bounded in R and Diff, (2). Now,
from [33, Section 11.4], u € H*(L2), if and only if, there exists U € H* (RN) with
Ul|q = u satisfying

/ / JOTIE( + (62U (x)dxdg € L2 RY).

RN RN

Hence, as U o H_llgzh = u o h~!, we obtain Eyu € H*(2,) whenever U o H'e
H*(RN). That is, whenever

/ / SOTVE + |57 PU (T () dxdg
RN RN
= / /e“y—H(X”'f(l+|§|2)5/2U(x) |det(H'(x))| dxdg e L*RM).
RN RN

(2.6)

Since |det(H ! (x))| uniformly bounded in RV, we get that E; is a well-defined op-
erator from H*(2) into H*(2;) with |Ejullpys@,) < Cllullpse) for some C > 0
independent of i € Diff, (£2). Notice that, a similar argument can be done to prove that
M;, is also well defined with | M} v| gs (@) < Cllvl|lgs(g,) forsome C > 0independent
of . Thus, in order to finish our proof, we just need to show that Ej is injective, but
this follows from 4 being a diffeomorphisms, and (u o =Y (y) = (v o h=1)(y), for
y € Qp, if and only if, u(x) = v(x) for x € Q. O
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Remark 2.4. We also can obtain the uniform boundedness of E;l and M ,i from [22,
Theorem 1.4.4 and Exercise 5*] or from [33, Inequality 2.117]. From there, there is a
positive constant Cy, independent of /, such that

|Ejul ey < CslEnull it I Enttllyzq,, Yu€ H'(R) and

o 1_,
IMvlls@) < Coll Ml Myl

Q2.7)

g YV E H' ().

Notice that here we are using the fact that H* (2j,) = D((—Ap+1Iy)**) for0 <s < 1.

As we have mentioned, we denote H *(£2;), s > 0, the dual space of H*(£2;,). We
define E,* : H™*(Q) — H™*(;,) by

(Ep*u,v) = (u, Mjv), forall ue H™(Q), ve H Q). 2.8)

To obtain some properties of the operators E; ¥, we need to impose s € (0, 1). With
this restriction, we use an interpolation inequality to obtain the following result.

Corollary 2.5. Fors € (0, 1), the linear operators E} and E;* are uniformly bounded
in h and

IEjull s, — lullas@) as h— In, u € H'(Q), (2.9
||E;Sv||H—x(Qh) —> ||v||H—S(Q) as h — IN, DS H_S(Q) (210)

Proof. The uniform boundedness follows from Proposition 2.3 and (2.8). Now, let us
check (2.9). From [33, Section 11.4], for any § > 0, we have

Bl—

IEpull s = I1Enull L2, + dxdy

/ / l(uoh™")(x) — (woh ()
|x_y|N+2s
QhXQh

=

lu(x) —u(y)I? ,
= 1 Enull 2, + /Q/Q 700 — o) V5 |det(h(x))| dxdy

u(x) —u(y)?
= | Enull12q,) + / / |h|(x) —h(y))|)N|+25 |det(h'(x))| dxdy
(@xQ)\D;

=

lu(x) — u(y)? /
det(h dxd
" /f he) — iy Vs |4t (e dudy
Ds
with Dy = UycqBs(x) where Bs(x) = {(z, w) €  x 2 : |(z, w) — (x, x)| < 8}.
Since €2 is bounded, § > 0 is arbitrary, and # — Iy in Diff (£2), we obtain (2.9) from
Proposition 2.3. Finally, since €2 is regular and bounded, we obtain (2.10) from (2.7)
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and
1E, “ullg-s@n = sup [, Mjv)| —  sup | (u,v)| = llullg-sg
ve HY(Qp) v e HS(Q)
”UHHS(Qh)=| vl s (@)=1
ash — Iy. [l

In what follows, we omit —s in E,*. We will denote Ej, : H, *(Q2) — H*(Qp),
and the context will avoid confusion.

The boundedness and convergence properties of Ej; and M), enable us to use the
functional framework proposed by [17] (see also [16,29]) taking H ~*(£2;,) as the base
space for a fixed s. More precisely, we are interested here in the abstract results from
Section 3 of [17]. We will combine them with the techniques developed in [23] in order
to show our results. In what follows, in this section, we adapt the main concepts and
results from [17] for our context. We also recommend [2,7] to the interested reader.

Let s € (0, 1) be a fixed value and Y;, € {L2(2), H (1), H*(Q), H ™ (2)}.
Then {Y}, }hepifr, (@) 1s a family of Banach spaces indexed in Diff, (€2). When i = Iy
we just write Y.

Definition 2.6. We say that a family {gs}sepifr. (), With g5 € Yj, E-converge to
geYash — Iyif|gn— Englly, = 0ash — Iy.In this case we denote g, i) g.

Definition 2.7. We say that a sequence {g, }keN, With g5, € Y}, , isrelatively compact
if for each subsequence {ghkl }ien there is a subsequence {8hk,_ }jen and an element
J

g € Y such that 8hy,. i) g. The family {gp}nepitr. (@), With g, € Y}, is relatively
J

compact if any subsequence {gy, }xen is relatively compact.
Definition 2.8. We say that a family {B, : H*(2;,) — H I(Qh)}heDiffe(Q) of
bounded linear operators converges compactly to an operator B : H*(Q) — H'(Q)
as h — Iy, which we denote B, E) B, if the following conditions are satisfied:

(i) Bj and B are compact operators.

.. E E

(i) gn — & = Bnrgn — Bg.
(iii) Each family of the form {Bpngn}nepitt. (), With lgnllg1(q,) = 1, for all

h € Diff.(2), is relatively compact.

As before we can extend M), to H () with M,(H' () = H'(Q) and
My, (H™5(25)) = H*(2). In what follows we use the same notation M}, for its re-
striction to H'(£2;,) and its extension to H ~*(£2;,). With the above similar arguments
for Ej,, we see that M, are bounded uniformly in .. Moreover, if {Bj, : H™*(Q2) —
H! (21) }nepitr, () 1s a family of operators such that

||B]1 — EhBMh”ﬁ(H’S(Qh),HI(Qh)) —0 as h— IN (211)
then

||BhEh - EhB”L‘,(H’S(Q),Hl(Qh)) —0 as h— IN. (212)
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3. Rate of convergence for compact convergence of resolvent operators

In this section, we estimate the convergence of the resolvent operators (© — A)~!
in ;. We use variational methods of elliptic equations to show that the function
h — dci(h, Iy) is a natural rate of convergence for the solutions of the elliptic parts
of (1.1) and (1.2).

Our technique differs a little from that used in [1]. Here the boundary condition
forces us to work in the Sobolev dual space H 5(2), s > 0. First, we will consider
particular elements of H*(£2) having boundary traces, and then, we will consider
more general functionals.

Let0 < € < 1. Foreach h € Diff.(2), we recall that A;, denotes the Laplacian op-
erator with homogeneous Neumann boundary condition: Ay, : D(Ap) C L*(2) —
L2(S2,) with

2 du .
D(Ay) = {u € H (Q2) : P =0on th} and Aju = Au in Q.
We omit the parameter I when considering the limiting problem 7 = I . In fact, we
must say that A, = A — Ay, A > 1 is an operator of H' () onto H~*($2),) whose
realization in L2(€2;,) coincides with A — Ay, that is,

(i) 11 = [ Yoy 2 [ ov.
Q)

Qp

Now, let us take s > % and g, € H*(2p), assuming the following form: we
suppose that there exist g1,5 € L2(Qh) and g2 € L2(8Qh), such that

(8hs D) 5.5 :fgl,h¢+ / 8219, Vo € H* (Q). (3.1

Qp 02
Under these conditions, we have the following result:

Theorem 3.1. For any A > 1 and any family {gn}repitt, (@) set by (3.1), the weak
solution of

—Apup + Aup = , inQ
o hUR h = 81,k h 32)
T = 82k on 982y,
satisfies
lunll g,y < Ngnlla-s @) (3.3)
and
lun — Enullgrq,) < I8n — Englla—s,) + gl a—s
HIVull 2y + AMullL2@)1Ct(h), 3.4

where g = gy, C is a constant independent of h and t(h) = dc1(h, Iy).
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Proof. 1tis well known that A, with Neumann boundary condition has infinity discrete
spectrum set o (Ay,) contained in (—oo, 0]. Thus, forany A > 0, . — A, is an invertible
operator. Since uy, is a weak solution of (3.2), we can write

/Vuhvdm +/kuh¢>h =/81,h¢h + / &2.hbn, ¢n € H(Qp); (3.5)

Q2 Q Qp IO

/VMV¢+/M¢=/g1¢+/gz¢a ¢ € H(Q). (3.6)
Q Q 90

Q
Taking ¢, = uyj, in (3.5), we obtain
/IVuhlz-i-/)»luhIz:/gl,huh—i- / 82.hUp.
Qp Q Qp a2y

Hence, by Holder’s inequality, we get (3.3).
Now, taking ¢, = uj, — Epu in (3.5), ¢ = Myu;, — u in (3.6) and making the
difference, we obtain

/Vuh(Vuh — VELu) — / Vu(VMuuy, — Vu)

o Q
+/Mth(uh — Epu) — /)\M(Mhuh —u)
Q Q
= /gl,h(uh — Equ) —/gl(Mhuh —u)
n Q
+ / g.n(up — Epu) — /gz(Mhuh —u),
3, 90

and then

/Vuh(Vuh — VELu) +/kuh(uh — Enu)
Qp Qp

= /gl,h(uh — Eju) —/gl(Mth —u)

Qp Q

+/Vu(VMhuh —Vu)—}—/)»u(Mhuh —u)
Q Q

+ / g2.n(up —Ehu)—/gz(Mhuh — u).

a2, 02

We add appropriate terms to obtain
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/Vuh(Vuh — VEu) — / VE,u(NVNuy, — VEyu)

Qp Qp
+/kuh(uh — Epu) — / MEyu(up — Epu)
Qn Qp
= /gl,h(uh — Epu) — [gl(Mhuh —u)
Qp Q
+ / g2.n(up — Epu) — /gz(Mhuh —u)
02, Q2
+ / Vu(VMyup — Vu) — / VE,u(NVup, — VELu)
Q Qp
+/ku(Mhuh —u) — / AMEpu(up — Epu)
Q Q
=5+ DL+ I,

where we denote the last three terms on the right-hand side, respectively, by Iy, I,
and /3.
Since L > 1, we get

lun = Enullyy g, < f |Vuj, — VEqu|? +/x|wh — Epu)*=5L+hL+ 1.

Qp Q2

Next, we estimate /1, I, and I3. First, let us observe that

_/gl(Mhuh —u)= /gl(u — Myuy)

Q Q
= / g1 (W@ (h™" — Myuy (b)) |det((h)™h)
Qp
_ / Engi(Eput — up)ldet((h) ™)
Q
and
—fgz(Mhuh —u) = f @™ — Myuy(h™h))|det(DR) ™Y
o2 th
_ f Enga(Entt — up)|det (D))
o0,
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where (Dh) ™! is the Jacobian matrix of h~! : 94 () — 9 sets by a given coordinate
on 0L2. Thus,

I = /(gl,h — Epgy)(up — Equ) + /(gz,h — Epngo)(up — Epu)
Q2 082

+ / Engi(Epu — up)(1 — |det((h) ")) + / Enga(Epu — up)(1 — |det((DR)~H)).
Qp i

If we denote T(h) = > 0 ' (IZ )7 (h)N =K then, by Lemma 2.1, we obtain

]| < / [(g1,n — Eng1)(un — Equ)| + / [(g2,n — Eng2)(un — Epu)|
Qp a2,

+f|Ehgl(Ehu —up)|th) + / |Epga(Epu — up)|t(h),
Qp 02

where we have used C; = 1 in Lemma 2.1 according to Remark 2.2.
For I3, we have

/ Au(Mpup, — u) = / AuCh™ Y (Myup (R~ — u(h™h))|det (W)™ h)|
Q Qp

_ / AEpu(up — Epi)|det((W) )],
Q

which implies

L= / AEnu(uy, — Equ)(jdet((R) ™| = 1).
Q)

Thus, by Lemma 2.1, we obtain

I < /MEhu(uh — E)F ().
Qh

Finally, we have
I, = / Vu(VNMyuy — Vu) — / VEwu(NVuy, — VELu)
Q Qp
In addition, if we denote x = h~! (y), then
Vux) = Vu(h™ () = EpVu(y)
and

VEuu(y) = Vuth~ ' (y)) = Vu(h ™' () - (07" () = ExVu(y) - (7" ()
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thus,

VEu = E,Vu-(h™.
In the same way, we obtain

VMpup = (MyVup)h'

Therefore, we can write

/Vu(VMhuh —Vu) = /W(h—l)(VMhuh(h—l) — Vuh~ YY) det((W)™H
Q Q

= / EnVu(EpV Mpuuy — EpVu)|det((h)™ )|

Q2

= / VEuu((h™Y) "N EMy Vun En(0)
Qp
— VEu((h™ ") det((h) ™|

= /VEhUEh(h/)(VMhEh(h/) — VEuEx(h))|det((h) 7],

Qp
where we have used that
RN () =x = (WY (he)h () = T = [T (y) = Ex(W (7)),

where I denotes the identity in RV .
Thus,

I, = / VEWE,(W)Y(Vuy, — VEhu)Eh(h')ldet((h')_l)l — / VEwu(Vuy, — VELu)

Qp Qp

= / VEuu(En(h') = I)(Vup — VEuu) E () |det((h") )]

Q)

+ / YV Egu(Viy — ¥ Ep) (En () — D[det((h) ™|
Qp

+ / V Epu(Vuy, — V Equ)|(det(()™1)] = 1)
Qp

Therefore,
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|I2| < IVEqull 2, IVun — VEull12(q,)

[”Eh(h)— Ulzoo @ | En (W) Iz gy) sup {I(det((h) 11}

xXeQy

1 En (W) = U=y sup {I(det(() ™)1} + sup {|(det(h) ™| = 1}].

XEQy, XeQ

But, by Lemma 2.1

sup {[(det((h") ™1 — 1} < T(h)

xey,

and

IER(R') = Tllzoo(gy) = sup IR~ (v) = Dl = sup [[(h'(x)) = Dol < T(h).

lv|= lv]=1
)eQ xeQ2

Hence, we take a constant C1 independent of / such that
|| < CillVERull 129 IVur — VERull 2,y (h)

Now, using the estimates for /1, I> and I3, we obtain

lun — Enull?py g, < / (811 — Eng))(un — Epu)] +/|Ehg1<Ehu — up)|Z(h)

Qn Qp

+ / [(g2.n — Eng2)(up — Epu)| + / |Epga(Epu — up)|t(h)
a2, Q2

+ f M Entt(uy — Epao) 2 (k)
Q)

+ CillVEull 129 IVur — VERull 2(q,) T (h).

By Holder’s inequality, we obtain
lun = Enullzyi g, < I8n = Englla-s@lun — Enull g o)
+ ”Ehg”H_s(Qh) ”Ehu — Up ”Hl(Qh)t(h)

+ M Epull 2@, lun — Epullp2q,) T (h)
+ C1||VEhM||L2(Q,,)||Vuh - VEhM”LZ(Qh)T(h)

which implies (3.4) since Ej, is bounded by K. Il
We have the following result as an immediate consequence of Theorem 3.1.

Corollary 3.2. There is a constant C > 0 independent of h such that

”A;lEh - EhA_1||£(H7‘Y(Q),H1(Qh)) < CT(l’l)
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Remark 3.3. The Laplacian operator with Neumann boundary condition is not invert-
ible; therefore, the number A > 1 will be used to translate A in order to obtain A — A an
invertible sectorial operator in L2(2) and then the analytic function u — pw+ A —A),
w € p(A — A) has o (A — A) as essential singularities, see [24].

Theorem 3.4. For each A > 1, we have
G=a) ' 5S - Al (3.7)
Moreover, there exists a constant C > 0 independent of h such that

I — A~ gn — En— )"l < Clign — Englla-scay) + T0).-
(3.8)

Proof. For all h € Diff(2), we have (A — Ap)~' : H5(Q) — HY (), well
defined and since the inclusion H!(2,) — L2%(Q) is compact, we obtain (A —
A~V HTS () — Lz(Qh) a compact operator. Formally, A — A}, is the realization
of the bilinear form ay, : H](Qh) X Hl(Qh) — R defined by

ap(u,v) = / VuVv + Auv.
Qp

It is easy to see that gy, is coercive and continuous. Moreover, if we define Lj,(v) =
(gn,v)_ for v € HYQy) C H*(Q) and {gh}repifr. () a family with g, €

H™%(2p,) such that g, _E, g, we have

ILr )| < llgnll =@ VIl s @) = I8rllm-s @ IVl a1 (@)

Thus, Ly is a continuous form and by Lax-Milgram theorem there exists a unique
up € H'(Qp) such that a, (uy, v) = Ly (v), for all v € H'(2,).
Now, consider the problems

an(up, vp) = (8h» Vn)—ss» h € Diff(2). (3.9

If we take vy, = up, — Epu and v = Mpuuj — u in (3.9) respectively to & # Iy and
h = I, we obtain

ap(un, up — Epu) — a(u, Mpup —u) = (gn, un — Epu)_g s — (g, Mpup — u)_g
But,

(gn>un — Epu)_g ¢ — (g, Mpup —u)_g ¢ = (gn, un — Epu)_g c — (Eng, un — Epu) _g g
= <gh - Ehgv up — Ehu)—x.s

and then, uy, satisfies
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(gn — Eng,un — Enu)_g o = ap(up, up — Epu) — a(u, Mpup — u)
= ap(up — Epu, up — Epu) + ap(Epu, up — Epu)
+aMpup —u, Mpup — u) —a(Mpup, Mpuy — u).

Now, we estimate
ap(Epu, up — Equ) —a(Mpup, Mpup — u) = / V(Enu)V(up — Equ) + AEpu(up — Epu)
Qp

- / V(Mpup)V(Mpup — u) + AMpup (Mpup — u).
Q

But,
fV(EhM)V(Mh — Epu) — f V(Mpup)V(Mpup — u)
Qp Q
= / VuV(Mpuj, — u)|det(h')] — / V(Muup)V(Mpuyp — u)
Q Q
- / V(u — Myup)? + / VuV (Myuy — u)(|det(h)] — 1)
Q Q
and
/AEhu(uh — Epu) — / AMuup(Muuyp — u)
Q Q
= /)L“(Mhuh — u)|det(h")] — /)\Mhuh(Mhuh —u)
Q Q
= —/,\(u — Myup)? +/,\u(Mhuh — u)(|det(h))| — 1).
Q Q
Thus,

ap(Epu, up — Equ) —a(Mpup, Myup — u)

= —a(u — Myuy, u — Mpuy) + / VuV (Myuy, — u)(|det(h)| — 1)
Q

+/)\u(Mhuh —u)(|det(h")| — 1),
Q

which implies
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ap(up, up — Epu) —a(u, Mpup — u)

— an(up — Ent, up — Equ) + / VuV (Myuy, — u)(det(h)] — 1)
Q
+/ku(Mhuh — wy(Jdet(h))] — 1).
Q

But |det(h’)] — 1 — 0 as i — Iy uniformly in €2, thus

fVuV(Mhuh —u)(|det(h)| —1) = 0 ash — Iy
Q

and

/Au(Mhuh —u)(|det(h)| —1) = 0 ash — Iy.
Q
Moreover, gp —E> g,and then, (g, — Eng, up — Epu) — 0, and ap,(up, — Epu, up —

Enu) — 0as h — Iy (here we have also used that u, — Epu is uniformly bounded
in H'(2),) with respect to h).

Finally, aj,(up — Epu, up — Epu) — 0as h — Iy implies uj, i) u since

2
an(up — Epu, up — Epu) = |lup — Epully g

which proves (3.7).
Now, we obtain the estimates (3.8).

(gn — Eng,un — Epu) = ap(up — Epu, up — Epu)

+ / VuV (Myuy, — u)(|det(h)] — 1)
Q

+/Au(Mhuh — u)(|det(h))] — 1)
Q

which implies

lun — Enullzyr g, < I8n = Englla-s@ylun — Enull g,
+ sup {|(det((") ™D = I Vull 2

xey
< (I (Muten = 0120y + MMt =l 20 )

But,

/ Myt — u)® = / (un — Equ)det(h)™|
Q Q
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and

/ V(Mpup — u)* = / V(up — Epu)*Ex(h)|det(h ™).
Q Qp

Hence,

lun — Eh””i]l(gh) < lign — Engllu—s@pllun — Enull g1 (qy)

+ sup {|(det((R) 1) = 1}|Vull 2y sup {I(det(() )]}

xey xe,
(N = Enell 20y | En W)@y + Mlun = Enttl2(g)

< (Ilgn — Engll} s 0, + (1@et@) D] = IVl 2y sup {I(det((H)™)1)?)-

xEQh
<Nun — Ehu||H1(Qh)67
where C = max({sup, ¢ {|(det((h)~")|}, A}.
By Lemma 2.1, the result follows. O

Remark 3.5. Notice that in the proof of Theorem 3.4 we need to consider a abstract
family g, € H™*(£2;,) which may not have the form g1 , + g, », where g1 5 € Lz(Qh)
and g2, € L2(8 Qj) as in Theorem 3.1. In fact, not every function in H °(£2;,) can
be written this way but, this decomposition works well when we are interested in
estimates as (3.3) and (3.4).

As a consequence of Theorem 3.4, we have the following corollaries.
Corollary 3.6. For each A > 1, there exists a constant C independent of h such that
I = A" = EnG = D)7 "Myl g @p.m @y < Ct) - (3.10)
and
IO = A Ep = Eno = O sy < Ct). (1D

Proof. Since (2.11) implies (2.12), we just have to prove (3.10). The result follows
from Theorem 3.4. O

Corollary 3.7. Let . > 1. Foreach v € p(—A + )), there exists € = € (i) such that,
w € p(—=Ap + A) forall h € Diff () and

—1 CC _
1+ ap+ )7 = (4 (A +a) 7
Moreover, there exists a constant C = C(u) independent of h such that

I+ (=An + )7 = En(u+ (= A+ 20) " Mall 25 011 ) < CT(R)

and

(i + (=Ap + 1) Ep = En(u+ (=2 + )l 2oy 11 () CT ().
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Proof. The result follows from Theorem 3.4. O

Remark 3.8. Itisinteresting to compare the results of this section with those of Section
2 in [28] and Section 3 in [29]. Notice that we have not fixed the domain, that is, the
parameter & and the domain 2; vary simultaneously and our estimates are uniform
concerning /2 and €2;,. All sectorial inequalities to estimate the resolvent operators in
[28,29] are here naturally absorbed in inequalities (3.10) and (3.11).

4. Rate of convergence for resolvent operator perturbations

The attractors Aj;, are characterized by the union of unstable manifolds of each
equilibrium point. In this way, understanding the local behavior of the equilibrium
set is essential to obtain the continuity of attractors. In order to describe the unstable
manifold, we take a linearization around each equilibrium point. This type of argument
involves making perturbations of the resolvent operators by the derivative of the vector
field. In this section, we study the resolvent perturbations by potentials establishing
some results that will be used in the next sections.

Definition 4.1. We say thata family of potentials {V},: H 1 (1) = H™* () }hepifr, ()
is admissible if sup,epir, (@) | Vall 2@y, m-5 (@) < 0 and Vi E-converges to V
in H%(2,) as h — Iy, thatis, for any family {gs}sepifr, () With g, € Hl(Qh) such

that g, £, g, wehave |Vign — EpVglly-sq,) — O0ash — Iy.

nyoo

Let {Vi}nepitr, () be a family of potentials. We denote {A}}72 , the set of eigen-
values, ordered and counting multiplicity, of the operator —Aj; + Vj, with Neu-
mann boundary condition in €2, and by {¢}}7° ; a corresponding associated family
of eigenfunctions. If A} — A" as h — Iy, we can define the spectral projection

Pl H™S () — H'(Q4) by

1
P = o /(u + (= An+ Vi)~ dp, @.1)
Tl
I

where I',, is a curve in p(—A + V) involving {A', ..., A"}

Definition 4.2. Let {V,},cpifr, (@) be a family of potentials. We say that the spectra
of —Aj + V), behaves continuously as h — Iy when A; — A" and P} £ P" as
h — In. We say that the spectra of —Aj, behave continuously as 4 — Iy when the
spectra of —Ay, + Vj behave continuously as 4 — [ for any family of admissible
potentials {V} }epitf, () -

Definition 4.3. We say that a family of domains {Q; c RV }heDiff. (@) is admissible
if it satisfies the following conditions

(i) For any K CC €, there exists ¢ = €(K) such that, K CC € for each
h € Diff.(Q2).
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(i) The spectra of —Aj, behave continuously as h — Iy.
The main result of this section states as follows.

Theorem 4.4. The family of domains {2} hepitr, (@) associated with (1.1) is admissi-
ble. In particular, the spectra of — Ay behave continuously as h — Iy.

To proof Theorem 4.4, we need some auxiliary results

Proposition 4.5. Forany X > 1and any family of admissible potentials { Vy, } hepifr. (),
it is valid

G—An'V S - )y

Proof. Let {gn}nepift. () be a family with g;, € H(}) such that gh i) g. Define
up = (A — Ap)"'Wygn and u = (A — A)~"!'Vg, then, for all & € Diff, ($2), we have
((=Ap + Mup, @) = (Vign, ¢) forall ¢ € H'($2,). The result follows as in the proof
of Theorem 3.4 since |Vign — EnVglla-sq, — 0ash — In. O

Corollary 4.6. Assume O € p(—A + V). Then, there exists € sufficiently small such
that, 0 € p(—Ay + Vp) for all h € Diff(2) and

—An+ Vi)' 5S (ca )L

Proof. We denote A, = A — Ay, for h € Diff.(2) and A > 1. Since 0 € p(—A 4+ V)
we can write

(—A+V) '=U+a(v-r)ta .

By Proposition 4.5, we have A,:l Vi RSy A~V and it is easy to see that A;l(Vh —
NS ALV =),

Claim. The operator [ + A;l (Vi —A)]~! is bounded, where I denotes the identity
in RV,

This statement is equivalent to the existence of C > 0 independent of / such that

_ 1
I+ AL Vi = Dlunll gy = > forall us € H' (@), Nl = 1.

Ifitis not true, then there is a sequence {uy, },, up, € Hl(th), ||uh||H1(th) = 1and
h, — Iy such that ||[I + A;I(Vh — )‘)]uh”H'(Q;,) — 0. But, (taking subsequence)
{A;l()» + Vi)up, }n E-converges to some u € HY(Q), lull g1y = 1 which implies
wn, + A (Vi — Mup, —> 0and u;, —> —u. Therefore, [I + A~1(V — 2)Ju = 0
is an absurd since I + A~}(V — A) is invertible.

Now, we can write

=My + VU + A (Vi =) 'a;
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Since [1 + A;l(Vh — )L)]_l is bounded, we obtain (— Ay + V}) invertible.

Now, let {gs }nepitr, () be a family with g, € H'(£2;) such that g BN g. Define
up = (—Ap + Vi)~ 'Wygn and u = (—A + V)"V, then, for all h € Diff, (Q2), we
have ((—Ap + Vi)up, ¢) = (Vign, @), forall ¢ € HY(2}). The result follows as in
the proof of Theorem 3.4. O

Remark 4.7. 1tis worth comparing Corollary 4.6 with Proposition 2.3 of [4]. Here the
compact convergence approach implies spectral convergence. In [4], the authors have
used the spectral convergence to conclude the resolvent operator convergence.

Corollary 4.8. For each u € p(—A + V), there exists € = €(u) such that, i €
p(—=Ap + V) forall h € Diff. () and

(At =2+ V) S (u+ (A + V)L (4.2)

Moreover, if |V — EnVg-s(q,) =< t(h), then there exists a constant C = C(u)
independent of h such that

1t + (=D + Vi)™ = En(+ (= A+ V) "Mill s ). 11 @y < CT()
and

I+ (=An + Vi) En — En(u+ (A + V) Ml 2og—s @i @y < CT(h).
Proof. Similar to the proof of Corollary 4.6. U

Next let us show Theorem 4.4.

Proof of Theorem 4.4. Since h is close to inclusion 7, the condition (i) in Definition
4.3 is immediate. Now, we claim that AZ — A" as h — Iy. If this does not occurs
then there exist § > 0 and a sequence h; — Iy such that

(=2 + (=D + Vi) du =0, k. leN.
[—A"|=4

But, by (4.2), we have

f (L =2+ A+ V) Hdu=0, 1eN,
[—=A"]=6
which is an absurd since the eigenvalue A" is not a removable singularity of the
resolvent map & — (u 4+ (—A; + V)L nwe p(=A; + V).
Since the spectral projection is given by (4.1), the compact convergence P;’ << pr

follows from the fact that (—Aj, 4+ Vj,) ™! is compact and satisfies (4.2). O

Corollary 4.9. There exists a constant C > 0 independent of h such that it is valid
the following estimates
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(i) Ay — A" < Ct(h);

(ii) |P} — EnP"Mull 25y, 1 (@) = CT(h);

(iti) 1Py En — EnP" || o), 11 (@) < CT(h).
Proof. The proof of (i) is the same as in [14, Corollary 3.8] or [13, Corollary 14.11].
By (4.1), we have

1 _ _
P:—P"=%f(u+(—m+vh» '+ (A + vy ldu,
r)l

the estimates (ii) and (iii) follow from Corollary 4.8. Here, the constant C depends on
n but independent of /. 0

5. Rate of convergence for permanence of equilibrium points

We are assuming here the set £ of equilibrium points of (1.2) is composed of
hyperbolic points. As consequence, we will see that the set &, of equilibrium points of
(1.1) is also composed of hyperbolic points as # is sufficiently close to 1. Moreover,
we estimate the convergence of elements of &, to elements of £ when h — Iy.

LetX > 1.Forh € Diff.(2),denote A, = A— Ay, and define, foreach i € Diff, (2)
the nonlinear operator Fj : H L@y = HS(Q) by

Fh<u)¢=ff<u>¢+/xu¢+ / fao, ue HY(Q), ¢ € H (),

Q) Qp 02,

where, by convenience, we omit the trace operator. It is well known that if f and f
are C? bounded functions with derivatives up to second order bounded and if % <
s < 1, then Fj is a well-defined Nemytskii function which is Fréchet continuously
differentiable, see for instance [29]. Hence, throughout the remainder of the text, we
fix % <s <l

Lemma 5.1. There are positive constants L fF and Cq such that

1 Fn(u) — EnF)l a5 < Ly fllu— Envlig g, + Cot(h),
ue H(Qp), ve H(Q), (5.1)

and
| Fa() = Fu@) s < L jlu = vllgig,, wve H @y (52)

Proof. Let Ly and L 7 the Lipschitz constants of f and f . Then, for ¢ € H'(Qp),
we have

| Fi(u) — EnF(v)g| = | / fw)e + f fae — / F)Myp — f F)My|.
Q Q 9Q

a2y,
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Also,

|/f(u)¢—/f(v)¢| S/lf(u)—f(Ehv)||¢|
Q Q Q

+ [ 1@l (1 - e ™)
Q2

= Lyllu — Epvlip2 i ll@ll2q, +suplfITMWIlL1 -

In the same way, we get

| f fag - / F@Migl < Lyl = Exvli2pg,) 191260,
aQy, 02
+sup [ fIT(MNl L1 a0,

which proves (5.1). Inequality (5.2) is left to the interested reader. O

The next result shows how to extend the derivative F; to a family of potentials
indexed in Diff, (€2). This extension is fundamental in the next section to characterize
the local behavior of the nonlinear semigroup in a neighborhood of its equilibrium
points. Recall that we are denoting F' = Fj|p=y, .

Lemma 5.2. Let {v,},epitr, (@) be a family with v, € HY Q) and vy, i) v. Then,
(i) The family {F,;(vh) : Hl(Qh) — H™(Qp) }nepifr, (@) is admissible.

(ii) If O ¢ 0(A — F'(v)), then Ay F|(v) <> A~VF'(v), where Ay = & — Ay,
h € Diff. ().

Proof. (i) Since f, f and its derivatives up to second order are bounded, we have

sup ”F];(Uh)||E(H1(Qh),H75(Qh)) < OQ.
heDiffe ()

Since F, is C* we can perform a Frechét version of the mean value theorem to
F ,; to obtain a constant C independent of / such that,

||F;/1(Uh) - EhF/(U)||£(H1(Q,,),Hﬂ(9h)) <Cllvn — Ehv”Hl(Qh)-

Hence, || F) (v,) — EhF’(v)IIL(Hl(Qh)’H_s(Qh)) — 0 whenever vy, £, v.
(i) Since {F} (vy)}nepitt. () is admissible, the result follows from Proposition (4.5).
O

The solutions to the elliptic problem
Apup — Fpup =0 withuy, € HY(S25) (5.3)

are the equilibrium points of (1.1) (& # Iy) and (1.2) (h = Iy). We denote &, the
set of all solutions of (5.3). Recall that we are assuming that £ is composed of p
hyperbolic equilibrium points, that is, 0 ¢ o (A — F} (u™)) for all u* € £.
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Theorem 5.3. For € sufficiently small, &, is a finite set with constant cardinality p,
thatis, &, = {u}l’*, el ufl’*}for all h € Diff (2). Moreover, £, behaves continuously
ash — Iy with

max |[up* — Epu**[l g1, < Ct(h) (5.4)

1<k<p
for some constant C independent of h.

Proof. Section 4.1 in [4] inspires the proof. Let u* € £ and define the operator
O : HY(Qp) — H' () by

On(up) = (Ap — Fj(Eqpu®)) " (Fp(up) — Fy(Epu®)up).

We have u* is hyperbolic, and it is easy to see that Eju* L, u* Thus by Lemma 5.2
{F/(Epu*) : H'(Q)) — H ™5 ()} henifr, (o) is a admissible family and by Corollary
4.6 we have 0 € p(A, — F/'(E,(u*))) thus, O is well defined. Notice that a fixed
point of ®, is equivalent to a solution of (5.3). Arguing as [4, Proposition 4.1], we first
show that ®, is a strict contraction in a closed ball centered in Ej,u*, which proves
the existence of a unique equilibrium point u} close to Eju*.

For this, let us take v and w in a ball of radius § > 0 centered at E,u* in H'(2),).
We have

-1
104 (V) = On ()l g1y < I (An = FR(Eru™) ™ 20+ @p). 11 @)
x| Fp(v) — Fp(w) — Fp(Epu™) (v — w)ll g5 (o)
Also, for some & and & between v and w, we have from the mean value theorem that
(Fi(v) = Fy(w) — Fp(Epu®)(v — w))¢

~ [r©-rE) w-wo+ [ (7@ - FEun)o-wo

Q IO
s/9h|v—w||¢|+/éh|v—w||¢|
Q BRI

where
6 (x) = 2sup | f"| min{1, [v(x) — Epu*(x)| + [w(x) — Epu™(x)[}
> |f'(E(x)) — f/(Epu*(x))| and
On(x) = 2sup | | min{1, [v(x) — Epu*(x)] + |w(x) — Epu*(x)]}
> |G = F/(Epu* ().
Now, due to [|0pllL>(, =< 1 and [0nll2q, = v — Exull2gq,) + lw —

Epu*|l12(q,) < 28 we have [0, ]| Lr(q,) < 28%/7 forall p € [2, 00). Similarly, we can
get |10y || Lr(ag,) < 28%/7 forall p € [2, 00).
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Thus,

|(Fi(v) — Fr(w) — Fj(Epu®) (v — w))@|
< 116n (v — Wl 2 1811202y + 108 0 — Wl 200y 111220502,

< 0 N vV—w 2N 2
< MOl zx @l l ¢ h)||¢||[ Q)
+||9~h||[2<N71) apllv —wll 20v-n 122000
(@S20) L N-2 (0Qp) @)

< 2min{8*N, "/NDYig || s llv — wll 1oy

Then, for § small enough, it follows from Lemma 5.2 and Corollary 4.6 that ®;, is a
contraction near to £ u*. Hence, there exists a unique equilibrium solution u} to (5.3)
close to Epu*.

It only remains to prove the estimate (5.4). We have u* and uj, given by
w* = (A+ V) UF@) + Vu*] and u} = (Ay + Vi) [Fr(u}) + Viyul]
where V = —F'(u*) and V}, = — F; (Epu™). Thus,

lu} — Enti*ll g1,y < 1(AR + Vi)™ = Ex(A+ V)" My [Fy(u}) + Vil g g,
+ IER(A + V)" M (Fi(u}) + Viul) — Fu*)
— Vu*lll g, (5.5

By Corollary 4.8, we have
I(An + Vi)™ = En(A + V)" M Fi () + Vil g g, < Crlh),  (5.6)

for some constant C independent of /.

Claim. For all n > 0, there is € sufficiently small, and positive constants Cp and
C1, independent of 1 and #, such that

| My (Fy (up,) + Viuy) — F@®) — Vu* | g q) < nColluj, — Exu™|| g1 (g, + C17(h)
(5.7)

for all 4 € Diff,(L2). In fact,

My (Fp(uy) + Vyuy) — Fu™) — Vu*
= My (Fy(u}) — Fy(Epu™)uj) — F(u™) + F'(u*)u*
= Mp[Fy(u}y) — Fy(Epu™)u) — EyF(u™) + Ep F' (u®)u™].

But, for ¢ € H* (),
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(Fn(u}) — EpF ()¢ = / FWpe +r / upg + / fwhe
Q Qp 02,
— / F@)Myg — A / u* My — / Fw Mg
Q Q oQ
and
(Fj(Epu®)u} — EpF'(u*)u)p = / FEpu®ule + A f uh

Q Q

- / F(Epu®ule

a2,
—/f’(u*)u*thﬁ—A/u*Mm
Q Q
— / ) u* M.
02

Now, for wy, and wj, between uj and Eju*, we have

/f(“Z)‘P - / fuMpp = /(f(ui) — f(Epu™))¢
Q Q

Qp

+[f(Ehu*)¢(1 — |det((h) ")

Q2

=/f’(wh)(u2 — Epu™)¢

Qh
- / FEu*)(1 — |det((W)~ 1))
Qh
and
/ fwpe — / Fw*)Mpp = / (f}) — f(Epu™)¢
I, R I,

+ / F(Epu*)p(1 — |det((DR) 1))

02,
= / FGon) (U} — Epu*)g
I

+ f FERu*)g(1 — [det(Dh)~ 1))

02
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where (Dh)~! is the Jacobian matrix of h=! : 8h(Q) — 9K sets by a given
parametrization of 9€2.
We also have for ¢ € H*(2,) that

/f’(Ehu*)ui‘,qﬁ—/f’(u*)u*thﬁ=/f’(Ehu*)(uZ — Epu®)¢
Q Q Q,

+/f’(Ehu*)Ehu*¢(1 — |det((h) "M

Q2

and

/ F(Enu®)uid — / F My = / F(Epu®) () — Equ™)¢
Q2

02 a2y,

+ / FEu*)Epu*d (1 — |det((Dh)™1))).

ay
Consequently,
(Fp(up) — Fr(Epu®uy, — EpF @) + EpF'(uu™)
= /f/(wh)(ui — Epu™)¢ — / F(Enu®)(uy, — Equ™)é
Q Qp

+ / FEu®)¢(1 — |det((W)~H)) — / FEnu*)Epu*¢ (1 — |det((h)™h))
Qp Q

+ / FGon) (uf — Epu™)p — / F(Epu®)(uf — Eqpu®)e

a2y, 2

+ / FEnu*)¢(1 — |det(DR)™1)])

a2

- / F(Epu®)Equ*¢(1 — |det(DR)™h))
02,
=L+ L+ 5L+ 1L.

Now, let us estimate /7. We have

L = ff’(wh)(uZ — Epu™)g — f I (Epu™)(uy — Equ™)é
Q Q)

_ / (' wn) — f'Enu*) il — En®)g.
Q)
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Since | f/(wn) — f'(Equ)| < e (x) where i (x) = sup | f”| min{1, wy, — Eju*),
we have

| / o)l — Equ*)g — / FUEM) W] — Enu™)p| < / r (Ol — Enu®[|g).
Q Q) )
But, i, ()| ooy < 1 and i ()l 2y < 6] — Equ*ll 20, Hence.
2

lben (O ey < Cpllug = Enie*ll s g, forall p € [2,00).

Next, it follows from [2, Proposition 4.2] that, if N > 2, then L%(Qh) —
H' () uniformly in & (the case N = 2 is simpler). Thus,

I/ [ wp) (uy — Epu*)¢ — / f(Epup)(uj — Equ*)g|
Q Qp

< llcnll pv (o) lluy — Ehu*”L%(Q’)”‘p”Lz(Qh)
1

= CN”Kh”LN(Qh)”uZ - Ehu*||Hl(szh)||¢||H°‘(Qh)

2
< CNSW |luy, — Ehu*”Hl(szh)”(f)”Hf(Qh)

where § > 0 is such that [|uj; — Epu*|| 41 q,) < 6 and Cy is a constant independent
of h.
Hence,

2
Iy + I < CNSW luy — Epu™|| g1 ) 10 Hs )

+f | f(Epu®)$ (1 — |det((h") ™))
Q2

+/ | f/(Epu*)Epu*¢ (1 — |det((h)) ™))
Q2

2
< CN8V lup, — Enu™ || g 101 15 1)
+ max{sup | f|, sup | '} Pl s ) (1 + | Ente* |l 12(q,)) T (h).

Similarly, we can obtain

1
I+ Iy < CN—1 87T |y — Epu™|| g, |91 s )

+ max{sup | £1, sup | [}l s @) (1 + 1 Ente* [l 250,)) T ().

Thus, we can conclude (5.7) setting n = 8% since N > 2.
Finally, we have
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IEn(A + V) My (Fr(ufp) + Viuy) — F*) — Vil g,
< NEn(A+ V) "Myl o= oy, 11 ) (1Colluyy — Enti* | g1 (g, + CiT () .
(5.8)

We can choose 7 sufficiently small such that nCq || E;, (A + V)~ M;, Il 2cer—s o), H (@)
< % Hence, due to (5.5) and (5.6), we obtain

1
lup — Enu™|l g1, < EHMZ — Epu™ |l g1y
+(C+ CUEA+ V)™ Ml gt @, 1)) T)

which proves the theorem. g

We finish this section by stating an important well-known estimate for the linear
semigroup generated by Aj,. For instance, we have

1
et — L f (4 Ap) et du, (59)
2
I

where I' is a curve delimiting an appropriated sector in p(—Aj) independent of & €
Diff, (2). It follows from [13, Section 6.4] that, if A, < @ < A,+1, then there exists a
constant M independent of A such that

B S
le™ "l g1,y < Me™ 't~ 3 gl g-s(ay), =0 (5.10)

6. Rate of convergence for continuity of attractors

In this section, we obtain the exponential attraction of the attractors Ay, h €
Diff, (2). This property together with the continuity of the nonlinear semigroups
generated by solutions of (1.1) and (1.2) will imply the continuity of attractors in a
way that the modulus of continuity of semigroups will define the rate of convergence
of attractors as i — [ . It is worth mentioning that our definitions and estimates are
made such that the uniform condition in the parameter / needs to be checked at each
step. Notice that, different from [12], our dynamics act in different phase spaces. Our
adaptations allow us to use the Theorems 1.1 and Proposition 1.1 of [12].

Recall that the Hausdorff distance between closed sets A, B C H' () is defined
by

dy (A, B) = supdist(u, B) + supdist(v, A),

ueA veB
where dist (u, B) = infycp ||u — Va1

Definition 6.1. We say that a family {4, }sepifr() is continuous at Iy if

dg(Ap, ERA) — 0 as h— Iy.
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The nonlinear semigroup 7j(-) given by solutions of (1.1) and (1.2) satisfy the
variation of constant formula

t
Th(Hu = e Ay +fe—AW—S)Fh(Th(s)u)ds, u € H(Qp), h € Diff.(Q),

0
6.1)

where e~ 4" is the linear analytic semigroup with infinitesimal generator A, = A— Ay,

which is a sectorial operator. Let {4}, }xepifr, (@) be its family of attractors.

Definition 6.2. We say that a family {4 }xepifr(e) is uniformly bounded at Iy if
there exist » > 0 independent of /, such that ||up|lp=(,) < r,for all uy € A,
h € Diff, ().

Proposition 6.3. The family of attractors { A }nepifr, (@) 0f (6.1) is uniformly bounded
at Iy.

Proof. The well-posedness of (1.1) and (1.2) that we are assuming requires growth and
dissipativeness conditions which implies the uniform boundedness of {4}, },epitt, (@)
in H! (2p) and L°°(L2},), see Theorem 4.5 in [6]. Since E}, is uniformly bounded in &
the result follows. It is important to note that the upper bound for the attractors may
depend on €2 but it is independent of /. d

Definition 6.4. We say that a family of nonlinear semigroups {7}, (-)}repitt, () having
global attractors {Ap}nepifr, () has a «-modulus of continuity at Iy if there exits a
continuous function « : Diff, (2) — [0, co) with k (Iy) = 0 such that

ITh(u — ExT () Mpull g1 (g, < Ce k(h), u e Ap, t > to,

where C, L and f( are positive constants independent of /.

Theorem 6.5. The family of nonlinear semigroups {T,(-)}nepifr, (@) satisfying (6.1)
has a k-modulus of continuity at Iy. In addition, there exist positive constants L, a,

Ci,Cand? € (0, %) independent of h, such that
—A —a(1—20)zt(h)29t—(%+0), >0

6.2)

A
lle™" — Ene™ Mull £(s-s ). 1 () =< Cre

and

1+s

Ty (Ou — ExT () Mpull g1 (g, < Ct()* et u e HY(Q)), 1> 0.
(6.3)

Proof. 1t follows from (5.10) and (2.2) that we can find positive constants M| and a
independent of &, such that
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—_A A —A
le™" — Ene™ Mull £crr—s ). 1t @y = €™ 25 (@) b @)

—A
+ N Ene™ N £ . 11 @)

_at . —ts
< Mie 97,

On the other hand, by (5.9) and Corollary 4.8, we obtain a constant M> independent
of A, such that

le™" — Ene™ Mull 25 .t ) < / Il + Ap)~!
r

— Ep(u+ Ap) "' My, I 2ctrs @, 1t €™ 1di
< Myt(h)t™!

where the term 1! is due to the unbounded curve I involving the spectra of —A + A.

Following [1], we take 68 € (0, %) and interpolate the above inequalities with ex-
ponents 1 — 26 and 26, to obtain a constant C; independent of 4 such that (6.2) is
valid.

Now, letu € Ay, and ¢t > 0. By (6.1), we have
1Th()u — ExT (1) Mpull g1 (g,

—A A
< le= " — Ene™ Myl £ (- ). 11 o 11 11 ()

t
+ / le= Ay (T (5)u) — EnF (T )Myl g1y s
0

t
+f I[e= =) — Epe "™ My1F (T (s) Mpu) || 1 g, ds.
0

By (5.1), we can find positive constants L 7 and Cyp independent of £ such that

| Fn(Th(s)u) — En F(T (s)Mpu) || g5 ()
= Lff”Th ($)u — EhT(s)MhuHH](Qh) + Cot(h) 6.4)

and since F}, is uniformly bounded in %, by (6.2), (6.4), (5.10) and Proposition 6.3 we
can find a constant r > 0 independent of & such that

ITh(u — ExT () Myt g g,y < Cre 02Dz ()= (540),
t
+Mij/e*“<’*”(t —5TF
0
170 (s)) — EnT (s)Mpull g1 (g, ds
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t
- Its
+CoML, fr(h)/e_“(l_s)(t —s)" 2 ds
0

t
+rCit(h)? /(z — s)*%wefa(lfze)(zfs) ds.
0

But, since s € (%, 1) and 6 € (0, %), we have
t t
145 14+s
Co = /e_“(t_s) (t—s)" 7 ds+ f(t —5)7 7 T0emall=20)(1=9) g
0 0

1 -/1 s 1 -1 s
<= (G3)* 7 (G- (G0) <=
gl=—r> \2 2 az= G0 —20)2-G-9 2 2
where T'(-) denotes the gamma function.
Thus, if we take C3 = 2C, with C, = max{CoM L 7.j»rC1}, we have

1+s

1T — ExTOMytl oy < rCre~@1=20)p ()20~ 40) | 01 Cpr ()2
'
+Mij/e*“<’*”(t —5TF
0
I Th(s)u — ExT (s)Mpull g1(q,) ds.

Now, we can take § = §(0) > O such that 1 < t’(%wk“a’. Thus, since
e~ 41-20) < 1 and ¥ > 1, we have

ITi (0 — EnT () Mpull g,y < (Cir + C3Co) ()21~ (540 g%t
t
— _lts
0

If we denote ¢ (¢) = || T (H)u — EhT(t)MhuHHl(Qh)e_“‘”, we have

t

S

(1) < (Cir+ C3C) T ¥ =340 L ML f (t—9)" T ps)ds
0
where we have used e=9% < ¢~ for s < 1.

By singular Gronwall inequality, we find positive constants C and L independent
of & such that (6.3) is valid. The result follows taking o = 1 and k (h) = (¥, O

Definition 6.6. We say that a family {.Aj },epifr, () is eventually uniformly exponen-
tially attracting if there existse € (0, 1),8 > 0,7y > 0,C > Oand y > Oindependents
of h such that

distg (Tp(1)Os(Ap), Ap) < Ce™ "', t > 19, h € Diff(Q),
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where Os(Ap) = {v e H'(Q) : dist(v, Ay) < 8}.

The main requirement to obtain the continuity of attractors with arate of convergence
is that Ay, uniformly attracts a § neighborhood of itself. Notice that the parameter §
is the same for all & € Diff.(€2). A beautiful theorem to guarantee the exponential
attraction of { Ay }nepifr, (@) is [12, Theorem 1.1].

Recall that the unstable manifold of u} € &, for the semigroup 7},(-) generated by
solutions of (1.1) is the set

W uy) ={u € HY Q) - 3 global solution &, : R — Hl(Qh) such that,
£,(0) = u and ||&,(2) — uZ||H1(Qh) — 0ast — —oo}.

Given § > 0, the local unstable manifold of uj; for 7j(-) is defined as

Wie(u}) = {u € HY Q) - 3 global solution &, : R — Hl(Qh) such that,
£1(0) = u, & (1) — u}ll g1(g,) <6, 1 <Oand
164 (6) — w1y — O as 1 — —oo).

Definition 6.7. We say that a family of local unstable manifolds {W}! (u})}xepifr. ()
is pointwise exponentially attracting if there exist positive constants C, y and § such
that, for each i € Diff, (R2),

dist (T (tyu, Wi (uf)) < Ce "

whenever [u—uj || g1(q,) < 0.t = 0and {T(s)u : s € [0,1]} C {v € HY Q) @ lv—
upllgi(q,) < 8} We say that & has uniformly pointwise exponentially attracting local
unstable manifolds if, for each u; € &, the family {W\{ (u})}repitr, () is pointwise
exponentially attracting with the same parameters C, y, § independent of /.

Theorem 6.8. The set of equilibrium points &y, of (5.3) has uniformly pointwise ex-
ponentially attracting local unstable manifolds. In addition, the C%-convergence of
the local unstable manifold can be estimate by Ct(h)*, for 6 € (0, %) and C > 0
constants independent of h.

Proof. The construction of the unstable manifold as a graph of a Lipschitz function
is a well-known result present in several papers (we refer [1,17]). Thus, we can state
that there exists a Lipschitz function s : P! H'(Q)) — (I — P")H'(§2;) such that
the unstable manifold of u; € &, is given as graph of s;;, that is,

Wl ={(v,2) € HY(Qp) 1 2 =5} (v), ve PPH ().

We can proceed as [1] being careful with the H ™ dual spaces to obtain the following
estimate

sup  lsf(v) — Ens™ (M)l y1q,) < CT(h)?,
veP! H' (Q)
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where C > 0 and 6 € (0, %) are constants independents of 4. Moreover, we can use
the projection P;' to decompose the equation (5.3) in order to obtain that the family
{W"(u};)}nepitt. (@) is pointwise exponentially attracting with the same parameters
C, y, § independent of 4. O

Given all we have obtained so far, it remains to show the following property to
complete all assumptions of [12, Theorem 1.1].

Definition 6.9. We say that a family of nonlinear semigroups {7}, (:) }»epift, () having
attractors {Aj }repifr, () 1s exponentially Lipschitz continuous relatively to its family
of attractors if there exist constants C > 0, L > 0 independent of & and € € (0, 1)
such that

1T (0 = Th (vl (g, < Cellu —vligig,), v € A

Proposition 6.10. The family of nonlinear semigroups {T;,(-)}nepifr, (@) satisfying
(6.1) is exponentially Lipschitz continuous relatively to its family of attractors.

Proof. Letu € Ay and v € A. By (6.1), (5.10) and (5.2), we can write

- _1
1Th(D)u — Th (vl g1(g,) < Me Wl — vl gt 2

t

- Cu s
+MLf,f/e A=) (0 — 5y~ F | Ty () — Tu()vll g1 ds
0

The result follows from Gronwall inequality as in the proof of Theorem 6.5. U

Proposition 6.11. The family of attractors { Ap}nepitr, (@) of (6.1) is eventually uni-
formly exponentially attracting.

Proof. We can see in [27] that Tj(-) is a gradient semigroup. The existence of A,
and Theorem 6.5 implies that the family {7}, (-)}sepifr, () 1S asymptotically compact
and continuous at &7 = Iy. Theorem 5.3 states the continuity of &, — £ as h — Iy.
Proposition 6.10 ensures that {7}, (-)}seDifr, () 1S exponentially Lipschitz continuous
relatively to { Ap }5epifr, (@), and Theorem 6.8 provides that the family of local unstable
manifolds {W}! (u})}repir, (@) is pointwise exponentially attracting for all u; € &,.
These are all assumptions of [12, Theorem 1.1] whichimplies {.Aj, } sepifr, () uniformly
exponentially attracting. O

Finally, we can state, in our context, the [12, Proposition 1.1].

Theorem 6.12. If a family of nonlinear semigroups {T},(-)}nepitt, () With attractors
{An}hepitt. @) has a k-modulus of continuity at Iy and {Ap}hepitr, ) is eventually
uniformly exponentially attracting, then for € € (0, 1) sufficiently small

di(An, EnA) < Ce(W) 7L, h € Diff. (%),

where C is a constant independent of h, y is the uniform constant given by exponential
attraction of { Ap }hepitr, (@) and L is the uniform Lipschitz constant of { Ty, () }heDifr, ()-
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Now, we have all the conditions to show the main result of this paper.

Theorem 6.13. The family of attractors { Ap}nepift, (@) is continuous at Iy and this
continuity can be estimated by

dp(An, EnA) < Ct(h)?, h e Diff(Q), (6.5)

for constants C > 0and 0 < B < 1 independent of h.

Proof. By Proposition 6.5, {T},(-)}repift, () has « (h) = 7(h)% as modulus of conti-
nuity at 4 = Iy. Proposition 6.11 ensures that {4, },cpifr, () is eventually uniformly
exponentially attracting. Thus, by Theorem 6.12, we can take € € (0, 1) sufficiently
small such that

dy (A, EpA) < ()7 = Cr(h)P,

where f = 36772. O

Remark 6.14. Finally, we notice that the choice of H'(£2;,) as the phase space to
obtain the estimate (6.5) has no advantage over H 1(Q). Since (2.11) implies (2.12),
we can remake all the results of the previous sections to obtain

dij (M Ap, A) < Ct(h)?,

where dg denotes the Hausdorff distance in H'(Q).

7. Rate of convergence of attractors in the Gromov-Hausdorff distance

The continuity of attractors gives information about how the shape of attractors
approaches each other as i — I . It does not give information on the internal structure
of the attractors. The works in this direction are of high importance and involve more
delicate questions related to the structural stability of the problem. We do not intend
to address these questions here, but we can use the previous results to quantify how
much the attractors Ay, and A are no longer isometric.

From [26], we take the following definition.

Definition 7.1. An n—isometry (n > 0) is a map i;, : A, — A (not necessarily
continuous) satisfying

lin ) — in g1y — lu = vligrgyl =0, u,v e A, (7.1)

and dy (in(Ap), A) < n. The Gromov—Hausdorff distance between A; and A is
defined by

doy =inf{n : 3 iy : A, > Aand j, : A — Aj n — isometries}.
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Remark 7.2. Notice that an isometry (n = 0) is a map that preserves distance, and
then, it is continuous. On the other side, condition (7.1) does not imply ij, continuous.
The distance dgp originated from the work [19]. It quantifies how much the attractors
Aj, and A are not isometric.

Recently, [26] have shown that there exists a n—isometry ( > 0) between A, and
A for n sufficiently small. In the next result, we show that we can take n of the order
)P, 0<B < 1.

Theorem 7.3. The Gromov-Hausdorff distance of the attractors can be estimated by
dan(An. Ao) < Cminfr ()’ T(h)?). (72)

for constants C > 0, 0 < B < 1 independent of h.

Proof. For all u, v € A, we have

/|Mhu—th| /|Mhuh U~ Myvh ™2 det (W) 7h)

f|u—v|2 /|u—v|2r<h>

and
/|VMhu—Vth|2 /|VMhuh U VMR~ P det((R) Y|
Q)
5f|w—v1)|2+f|w—w|zf(h).
Qp Qp
Thus,

1MaGe) = My @)l gy <\ lle = 01210, + (e = vl 10,y VEO)?
which implies
_ 1
| Mp(u) — Mp(W) g1 @) — llu —vligig,) < llu—vlgig,Th)?2.
In the same way, one can obtain that
_ 1
lu —vllgiq,) — IMa) — Mp) g1 < llu —vligig,)THh)2.
Since the attractors are uniformly bounded, we have My, : A, — H L(Q) is an
rf(h)%—isometry for some r > 0 independent of 4. In the same way, we can prove
that E;, : A — HY () is an rf(h)%-isometry.

Now, we can argue as in [26] to take, for each A, two maps i, : A, — A and
Jjn + A — Ap such that, by Theorem 6.13 and Remark 6.14, we have

lin () — My (un)ll 1y < CERYF and | () — Ex@)llg1(q,) < CTP.

Hence, i, and jj, are both C min{T(h)?, f(h)% }-isometries. Since dgy is the infi-
mum on the n-isometries, we obtain (7.2). O
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Figure 1. A local oscillating perturbation of the boundary of a do-
main 2

8. Example: oscillating perturbation of a piece of the boundary

Let @ C R? be a smooth C2 domain such that R; = [0, 1] x [0,1] C € and
QN Ry ={(x,1) e R? : x € (0, 1)}, see Fig. 1. We define

he(r. y) = (x, y), (x,.y)xeﬂ\int(Rl),. @.1)
(x,y+eysin(z)), (x,y) €int(Ry),

where 0 < o < 1 is fixed and € € (0, 1) is a parameter.
We have that A, is a diffeomorphism from €2 into its image ;. If (x,y) € @\
int(Ry) then det(h,) = 1 and if (x, y) € int(R1), then

1
hé(x,y)z[ 0 }

ye! ™ cos (&%) 1+ esin (&)

which implies [det(h, (x, y))| = |1 + € sin ()| Itiseasy tosee T(h) = de1(h, 1) <
Cel=® Hence,

dy (An, EpA) < CeP

forsome 0 < 8 < 1.

Remark 8.1. Tt is worth mentioning that the case @ = 1 has been addressed in [3]. In
this case, the problem presents a nonuniform Lipschitz deformation and the limiting
problem is different. Hence, to obtain the rate of convergence t(h), a differential
framework is essential (as we can see in Lemma 2.1). Thus, dealing with Lipschitz
(not differentiable) perturbation of the domain is an interesting open question of the
viewpoint of the rate of convergence of attractors for parabolic equations that we intend
to address in a future work.
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