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Abstract. In this paper, we propose the compact convergence approach to deal with the continuity of attrac-
tors of some reaction–diffusion equations under smooth perturbations of the domain subject to nonlinear
Neumann boundary conditions. We define a family of invertible linear operators to compare the dynamics
of perturbed and unperturbed problems in the same phase space. All continuity arising from small smooth
perturbations will be estimated by a rate of convergence given by the domain variation in a C1 topology.

1. Introduction

The nonlinear dynamics of reaction–diffusion equations under perturbations of
the domain have been studied by several authors concerned with different types of
domains. From pioneering to recent works, we can mention [4,5,21,29,30,32] and
[18,23] where parabolic and elliptic equations have been considered, and theories to
understand a huge class of perturbed problems are introduced. In this context, two
interesting examples were extensively studied in [11,21], the so-called localized large
diffusion and thin domain. For these problems, the works [1] and [8] have presented
a rate of convergence to estimate the continuity of attractors as a positive parameter
ε → 0.
Indeed, a convergence rate theory for attractors has been developed (for instance

in [1,12–15]), which enables us to estimate all convergences that appear when a
fixed domain is smoothly perturbed and nonlinear Neumann boundary condition is
considered. For example, it is possible to find a positive function τ(ε) that goes to zero
as the parameter ε → 0, to estimate the convergence of the resolvent operators and
linear semigroup, the permanence of hyperbolic equilibriumpoints, the convergence of
the nonlinear semigroup, the C0 convergence of unstable manifolds and the continuity
of attractors.
The seminal paper [4] addresses many types of domain perturbations and their

relations with the spectral behavior of the Laplace operator subject to homogeneous
Neumannboundary conditions. Themain difficulty tofind a rate of convergence for this
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approach is due to the extended phase space H1(�ε∩�0)⊕H1(�ε\�0)⊕H1(�0\�ε)

that does not allow to obtain estimates in the same space. The authors in [9,10,28,29]
overcome this problem using the pull-back technique proposed by [23] in which,
the perturbed nonlinear equation, is transferred to a fixed phase space. There they
deal with nonlinear boundary conditions showing the continuity of the attractors but
without estimates of convergence.
In this paper, we use the compact convergence approach introduced by Carvalho

and Piscarev in [17], in a proper way, to estimate the convergence of the dynamics
set by a reaction–diffusion equation under smooth perturbations of the domain. Our
perspective allows us to advance and refine some existing results on the continuity of
attractors for parabolic problemswhen a fixed domain undergoes smooth perturbation.
Besides that, we show precisely how to estimate all convergence from the perturbed to
the limiting problem when the perturbation parameter varies. In this way, we improve
the results of the previous works [9,10,28,29] and [4] since we deal with nonlinear
Neumann boundary conditions.
Let � ⊂ R

N , N ≥ 2, be a smooth C1 bounded domain and h : � → R
N be a

diffeomorphism onto its image �h := h(�). Consider{
ut − �u = f (u), in �h,

∂u
∂ �nh = f̃ (u), on ∂�h,

(1.1)

where� = ∑N
i=1 ∂2/∂y2i is theLaplacian differential operator in�h , �nh is the outward

unitary normal vector for the boundary ∂�h and f , f̃ are smooth real functions defined
inR. It is well known that, under standard growth and dissipative conditions on f and
f̃ , problem (1.1) is globally well-posed in H1(�h). Also, the associated semigroup
is gradient and possesses a global attractor Ah uniformly bonded in L∞ (see, for
instance, [6,13,20,27]).
We are interested here in finding estimates for the dynamics set by (1.1) as h ap-

proaches the inclusion IN : � → R
N in the C1 topology. In fact, it is known by

[9,29] that the perturbed problem (1.1) varies continuously concerning h under the
condition that all the equilibria are hyperbolic. Thus, if we denote τ(h) = dC1(h, IN ),
then τ(h) → 0 as h → IN and the limiting problem of (1.1) is given by{

ut − �u = f (u), in �,

∂u
∂ �n = f̃ (u), on ∂�,

(1.2)

where �n is the outward unitary normal vector for the boundary ∂�. The main result
of this paper states that there exist constants C > 0 and 0 < β < 1 independent of h
and a linear invertible operator Eh : H1(�) → H1(�h) such that the continuity of
attractors can be estimated by

dH (Ah, EhA) ≤ Cτ(h)β (1.3)

where dH denotes the Hausdorff distance between closed sets in H1(�h).
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In addition to thewell-posedness of (1.2) and (1.1),we can assume that f, f̃ ∈ C2(R)

are bounded with derivatives up to second order bounded. We also suppose all the
equilibriumpoints of the limiting problem (1.2) are hyperbolic, and then, they compose
a finite set E = {u1,∗, . . . , u p,∗}.
In the process to obtain (1.3), we prove the following results. Let λ ≥ 1 and Ah be

the linear operator λ − � in �h with homogeneous Neumann boundary conditions.
There are positive constants C, L , a, 0 < θ < 1

2 and 1
2 < s < 1 independent of h

such that:

(i) The rate of convergence of eigenvalues, spectral projections, and resolvent op-
erators of Ah as h → IN is given by τ(h). In particular,

‖A−1
h Eh − Eh A

−1
IN

‖L(H−s (�),H1(�h))
≤ Cτ(h). (1.4)

(ii) If u∗ is an equilibrium point of (1.2), then there exists an equilibrium point u∗
h

of (1.1) such that

‖u∗
h − Ehu

∗‖H1(�h)
≤ Cτ(h).

(iii) If e−Aht is the linear semigroup generated by Ah and Th(·) is the nonlinear
semigroups generated by the solutions of (1.1) and (1.2) then

‖e−Aht Eh − Ehe
−AIN t‖L(H−s (�),H1(�h))

≤ Ce−a(1−2θ)tτ(h)2θ t−( 12+θ), t > 0

(1.5)

and

‖Th(t)Ehu − EhTIN (t)u‖H1(�h)
≤ CeLtτ(h)2θ , u ∈ H1(�), t > t0. (1.6)

(iv) The unstable manifolds of each equilibrium point are exponentially attracting,
and the C0-convergence can be estimated by Cτ(h)2θ .

(v) The quantity η = Cτ(h)β measures how much the attractors Ah and A are not
isometric.

It isworth noticing that the optimality of the estimates obtained in items (iii), (iv), (v),
and (1.3) is an open question for a problemwhose dynamics act in infinite-dimensional
spaces. The optimal rate should be with β = 1 which is the rate of equilibria. We
already know that for semiflows in finite-dimensional phase space, the estimates are
sharp. Another class where the estimates are sharp is reaction–diffusion problemswith
large diffusion [14,31]. In this case, the limiting phase space is finite-dimensional. The
paper [15] considers large diffusion only in a piece of the domain, but it is not enough
to obtain the optimal rates once the dynamics act in infinite-dimensional phase space.
It is still worth mentioning that the work [8] improves the estimates from [21] (but
does not obtain the optimality) for a class of singular parabolic problems arising in
thin domain problems.
The paper is organized as follows: In Sect. 2, we present the compact convergence

approach together with the functional framework needed to get (1.3). As we can see in
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[4], the spectral behavior of the linear part of (1.1) and (1.2) is essential to determine its
nonlinear behavior. In Sect. 3 and 4, we developed the linear part of our problem, using
the viewpoint of [17], aiming reaction–diffusion equations with nonlinear boundary
conditions. We introduce the notions of E-convergence and admissibility for domains
and operators for problems concerning domain perturbations.We prove several results
related to the continuity of the resolvent operators and their perturbations by potentials
getting precise estimates concerning τ(h), one of these results is (1.4). In Sect. 5, we
show the permanence of equilibrium points. The key argument is to obtain estimates
in nonlinear terms. We need to explore Sobolev immersion and trace theorems. The
estimate (1.3) is proved in Sect. 6 where we also prove (1.5), (1.6) and the exponential
attraction of the local unstable manifolds. Our results are used in Sect. 7 to show that
the quantity η = Cτ(h)β measures how much the attractors are not isometric. In
Sect. 8, we present a classical example to show that our technique works.

2. Functional setting

In this section, we establish the functional setting to deal with (1.1) and (1.2). Since
� and �h are smooth bounded domains, the appropriated phase space is the Sobolev
spaces Hs(�) and Hs(�h), s > 0, that can be defined as the fractional power space
through the Laplace operator with homogeneous Newmann boundary conditions (see,
for instance, [22,33]). In fact, we have from [33, Theorem 1.35 and Corollary 2.4]
that Hs(�h) = D((−�h + IN )s/2), 0 ≤ s ≤ 1 where �h is the Laplacian operator
with Neumann homogeneous boundary condition�h : D(�h) ⊂ L2(�h) → L2(�h)

with

D(�h) =
{
u ∈ H2(�h) : ∂u

∂ �n = 0 on ∂�h

}
and �hu = �u in �h .

In the case h = IN , we may just use � = �IN . The dual space of H
s(�) and Hs(�h)

are denoted by H−s(�) and H−s(�h), and then, we also extend the scale for negative
fractional exponent.
Lemma 2.1 gives us a way to consider the set of diffeomorphisms of � close to

the inclusion as an appropriate set of parameters. We will define the operator Eh to
compare the dynamics of (1.1) and (1.2) transferring the main concepts of [17] for our
context.
Recall that we are denoting IN the inclusion of � in R

N and τ(h) = dC1(h, IN ),
where

dC1(h, IN ) = sup
x∈�

{h(x) − x} + sup
|v|=1
x∈�

{h′(x)v − v}

+ sup
x∈�h

{h−1(x) − x} + sup
|v|=1
x∈�

{(h′)−1(x)v − v}.
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We consider 0 < ε < 1 and define the following set of diffeomorphisms ε-close to
the inclusion

Diffε(�) ={h ∈ C1(�,RN ) : h is a diffeomorphism onto its image h(�) = �h

satisfying dC1(h, IN ) ≤ ε}.
The parameter ε measures how close h and IN are. Eventually, we take ε sufficiently
small to mean that h is sufficiently close to inclusion IN .

Lemma 2.1. Let h ∈ Diffε(�). If we denote τ(h) = dC1(h, IN ), then it is valid the
following estimates for x ∈ �

|det(h′(x))| ≤ 1 +
N−1∑
k=0

(
N

k

)
τ(h)N−k and

|det((h′)−1(x))| ≤ 1 +
N−1∑
k=0

(
N

k

)
τ(h)N−k .

Moreover, let �i : Ui ⊂ R
N−1 → R

N be a family of C1 local parametrizations
to ∂� such that ∂� ⊂ ∪�i (Ui ). Then, if Di j is the (N − 1)-dimensional matrix
obtaining by deleting the j th line of the matrix Di = h′�′

i defined in Ui , there is a
positive constant Ci , depending only on the parametrization �i , such that it is valid
the following estimate on ∂�

|det(Di j )| ≤ Ci

(
1 +

N−2∑
k=0

(
N − 1

k

)
τ(h)N−1−k

)

and |det(D−1
i j )| ≤ Ci

(
1 +

N−2∑
k=0

(
N − 1

k

)
τ(h)N−1−k

)
,

where D−1
i j denotes the (N −1)-dimensional matrix obtaining by deleting the j th line

of the matrix D−1
i = (h′�′

i )
−1 defined in Ui .

Proof. The Hadamard’s inequality says that for a matrix A = [v1v2 . . . vn], where
vi = N -vector, it is valid |det(A)| ≤ ∏n

i=1 ‖vi‖RN , for the proof see [25]. Applying
this inequality to Jacobian matrix of h(x), x ∈ �, we obtain

|det(h′(x))| ≤
N∏
i=1

∥∥∥(∂h1
∂xi

,
∂h2
∂xi

, . . . ,
∂hN

∂xi

)∥∥∥
RN

≤ dC1(h, 0)N

≤ (dC1(h, IRN ) + dC1(IRN , 0))N = (τ (h) + 1)N

= 1 +
N−1∑
k=0

(
N

k

)
τ(h)N−k,
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where

dC1(h, 0) = sup
x∈�

h(x) + sup
|v|=1

h′(x)v + sup
x∈�h

h−1(x) + sup
|v|=1

(h′)−1(x)v.

In the same way, we get the estimate for (h′)−1.
If x ∈ ∂�, we have x ∈ �i (Ui ) for some i , and

|det(Di j )| ≤ Ci

N−1∏
i=1

∥∥∥
(

∂h1
∂xi

, . . . ,
ˆ∂h j

∂xi
, . . . ,

∂hN

∂xi

)∥∥∥
RN−1

≤ CidC1(h, 0)N−1

≤ Ci (dC1(h, IRN ) + dC1(IRN , 0))N−1 = Ci (τ (h) + 1)N−1

= Ci

(
1 +

N−2∑
k=0

(
N

k

)
τ(h)N−k−1

)
,

where Ci = dC1(�i , 0).
In the same way, we get the estimate for D−1

i j . �

Remark 2.2. Notice that if we define

τ̄ (h) :=
N−1∑
k=0

(
N

k

)
τ(h)N−k

then τ̄ (h) → 0 as h → IN and τ̄ (h)/τ(h) → ( N
N−1

)
as h → IN . Hence, τ(h) and

τ̄ (h) have the same order of convergence to zero as h converges to IN . More precisely,
we can find a constant C uniform in h such that τ̄ (h)/τ(h) ≤ C , for h sufficiently
close to IN .
By Lemma 2.1, τ̄ (h) + 1 is an upper bound for |det(h′(x))| and |det((h′)−1(x))|

for all x ∈ � ∪ ∂�. If x ∈ ∂�, Ci depends only on the fixed parametrization of the
boundary. More precisely, since � is a C1 bounded domain its boundary ∂� is locally
the graph of a C1 function. Therefore, if �i is the parametrization of ∂� (as we have
used in Lemma 2.1), then there is a C1 function ϕi : U → R, such that

(i) �i (x ′) = (x ′, ϕi (x ′)), x ′ ∈ Ui .
(ii) ϕi (Ui ) ∩ � = {x ∈ �i (Ui ) : xN > ϕi (x ′)}, x = (x ′, xN ) ∈ R

N .
(iii) ‖∇ϕi‖L∞(Ui ) ≤ Ci .

We can define a new parametrization ϕi (
1
Ci
x ′) in order to obtain ‖∇�i‖L∞(Ui ) ≤ 1.

Thus, we can take Ci = 1 in Lemma 2.1.

Wehave {H1(�h)}h∈Diffε (�) is a family ofBanach spaces indexed in the topological
space Diffε(�) endowed with the C1 topology. It is worth noting that IN ∈ Diffε(�)

and the parameter ε is a upper bound to τ(h) independent of h. When we want to take
h sufficiently close to IN , we take ε sufficiently small.
We define the following family of linear operators

Eh : L2(�) → L2(�h), Ehu = u ◦ h−1, u ∈ L2(�).
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We have Eh(H1(�)) = H1(�h). It follows from the change of variables theorem that
Eh is a continuous operator. Moreover, by Lemma 2.1, we have

‖Ehu‖2H1(�h)
=
∫
�h

|∇(uh−1(x))|2 dx +
∫
�h

|(uh−1(x))|2 dx

=
∫
�

|∇(u(x))|2|det(h′(x))| dx +
∫
�

|(u(x))|2|det(h′(x))| dx

≤ ‖u‖2H1(�)
+ ‖u‖2H1(�)

τ̄ (h).

Hence,

lim sup
h→IN

‖Ehu‖H1(�h)
≤ ‖u‖H1(�). (2.1)

In the same way, we obtain lim suph→IN ‖Ehu‖L2(�h)
≤ ‖u‖L2(�).

By the uniform boundedness principle, there is a constant K > 0, independent of
h, such that, if we take ε sufficiently small, then the following uniform estimates are
valid

‖Eh‖L(H1(�),H1(�h))
, ‖Eh‖L(L2(�),L2(�h))

≤ K , for all h ∈ Diffε(�). (2.2)

Thus,

‖u‖2H1(�)
=
∫
�

|∇(u(x))|2 dx +
∫
�

|(u(x))|2 dx

=
∫
�h

|∇(uh−1(x))|2|det((h′)−1(x))| dx +
∫
�h

|(uh−1(x))|2|det((h′)−1(x))| dx

≤ ‖Ehu‖2H1(�h)
+ ‖Ehu‖2H1(�h)

τ̄ (h).

Hence,

‖u‖H1(�) ≤ lim inf
h→IN

‖Ehu‖H1(�h)
. (2.3)

In the same way, we obtain ‖u‖L2(�) ≤ lim infh→IN ‖Ehu‖L2(�h)
.

The inequalities (2.1) and (2.3) imply

‖Ehu‖L2(�h)
→ ‖u‖L2(�) as h → IN , u ∈ L2(�), and (2.4)

‖Ehu‖H1(�h)
→ ‖u‖H1(�) as h → IN , u ∈ H1(�). (2.5)

In order to connect the phase spaces, we also need to consider the inverse operator
of Eh . It is defined as follows:

Mh : L2(�h) → L2(�), Mhuh = uh ◦ h, uh ∈ L2(�h).
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We have that Mh also acts in H1(�h). Similarly to Eh , we can prove that Mh is a
continuous linear operator.
We are dealing with nonlinear boundary conditions; then, we need to extend Eh to

an operator Es
h acting in Hs(�). We have the following result.

Proposition 2.3. Suppose s ∈ (0, 1) and h ∈ Diffε(�) for ε ∈ [0, 1]. Then, Es
h :

Hs(�) �→ Hs(�h) given by (Es
hu)(y) = (u ◦ h−1)(y) is well defined and satisfies

‖Es
hu‖Hs (�h) ≤ C‖u‖Hs (�)

for some positive constant C independent of h. Moreover, Es
h is an isomorphism with

(Es
h)

−1 = Ms
h where Ms

h : Hs(�h) �→ Hs(�) is given by Ms
hv = v ◦ h with

‖Ms
hv‖Hs (�) ≤ C‖v‖Hs (�h)

for some C > 0 independent of h.

Proof. Let BR ⊂ R
N be a ball of radius R such that �h ⊂ BR for all h ∈ Diffε(�)

and ε ∈ [0, 1]. From [23, Chapter 1], for any h ∈ Diffε(�)with ε ∈ [0, 1], there exists
a diffeomorphism H : Rn �→ R

N of class C1 such that its restriction to � is equal to
h,
∣∣det(H ′(x))

∣∣ is strictly positive and uniformly bounded in RN and Diffε(�). Now,
from [33, Section 11.4], u ∈ Hs(�), if and only if, there exists U ∈ Hs(RN ) with
U |� = u satisfying∫

RN

∫
RN

ei(y−x)·ξ (1 + |ξ |2)s/2U (x)dxdξ ∈ L2(RN ).

Hence, as U ◦ H−1|�h = u ◦ h−1, we obtain Es
hu ∈ Hs(�h) whenever U ◦ H−1 ∈

Hs(RN ). That is, whenever∫
RN

∫
RN

ei(y−x)·ξ (1 + |ξ |2)s/2U (H−1(x))dxdξ

=
∫
RN

∫
RN

ei(y−H(x))·ξ (1 + |ξ |2)s/2U (x)
∣∣det(H ′(x))

∣∣ dxdξ ∈ L2(RN ).

(2.6)

Since
∣∣det(H ′(x))

∣∣ uniformly bounded in R
N , we get that Es

h is a well-defined op-
erator from Hs(�) into Hs(�h) with ‖Es

hu‖Hs (�h) ≤ C‖u‖Hs (�) for some C > 0
independent of h ∈ Diffε(�). Notice that, a similar argument can be done to prove that
Ms

h is alsowell definedwith ‖Ms
hv‖Hs (�) ≤ C‖v‖Hs (�h) for someC > 0 independent

of h. Thus, in order to finish our proof, we just need to show that Es
h is injective, but

this follows from h being a diffeomorphisms, and (u ◦ h−1)(y) = (v ◦ h−1)(y), for
y ∈ �h , if and only if, u(x) = v(x) for x ∈ �. �
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Remark 2.4. We also can obtain the uniform boundedness of Es
h and Ms

h from [22,
Theorem 1.4.4 and Exercise 5∗] or from [33, Inequality 2.117]. From there, there is a
positive constant Cs , independent of h, such that

‖Es
hu‖Hs (�h) ≤ Cs‖Ehu‖1−s

H1(�h)
‖Ehu‖sL2(�h)

∀u ∈ H1(�) and

‖Ms
hv‖Hs (�) ≤ Cs‖Mhv‖1−s

H1(�)
‖Mhv‖sL2(�)

∀v ∈ H1(�h).
(2.7)

Notice that herewe are using the fact that Hs(�h) = D((−�h+IN )s/2) for 0 ≤ s ≤ 1.

As we have mentioned, we denote H−s(�h), s > 0, the dual space of Hs(�h). We
define E−s

h : H−s(�) → H−s(�h) by〈
E−s
h u, v

〉 = 〈
u, Ms

hv
〉
, for all u ∈ H−s(�), v ∈ Hs(�h). (2.8)

To obtain some properties of the operators E−s
h , we need to impose s ∈ (0, 1). With

this restriction, we use an interpolation inequality to obtain the following result.

Corollary 2.5. For s ∈ (0, 1), the linear operators Es
h and E

−s
h are uniformlybounded

in h and

‖Es
hu‖Hs (�h) → ‖u‖Hs (�) as h → IN , u ∈ Hs(�), (2.9)

‖E−s
h v‖H−s (�h) → ‖v‖H−s (�) as h → IN , v ∈ H−s(�). (2.10)

Proof. The uniform boundedness follows from Proposition 2.3 and (2.8). Now, let us
check (2.9). From [33, Section 11.4], for any δ > 0, we have

‖Es
hu‖Hs (�h) = ‖Ehu‖L2(�h)

+
⎛
⎜⎝∫ ∫

�h×�h

|(u ◦ h−1)(x) − (u ◦ h−1)(y)|2
|x − y|N+2s dxdy

⎞
⎟⎠

1
2

= ‖Ehu‖L2(�h)
+
⎛
⎝∫ ∫

�×�

|u(x) − u(y)|2
|h(x) − h(y)|N+2s

∣∣det(h′(x))
∣∣ dxdy

⎞
⎠

1
2

= ‖Ehu‖L2(�h)
+
⎛
⎜⎝∫ ∫

(�×�)\Dδ

|u(x) − u(y)|2
|h(x) − h(y)|N+2s

∣∣det(h′(x))
∣∣ dxdy

+
∫ ∫

Dδ

|u(x) − u(y)|2
|h(x) − h(y)|N+2s

∣∣det(h′(x))
∣∣ dxdy

⎞
⎟⎠

1
2

with Dδ = ∪x∈�Bδ(x) where Bδ(x) = {(z, w) ∈ � × � : |(z, w) − (x, x)| < δ}.
Since � is bounded, δ > 0 is arbitrary, and h → IN in Diffε(�), we obtain (2.9) from
Proposition 2.3. Finally, since � is regular and bounded, we obtain (2.10) from (2.7)
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and

‖E−s
h u‖H−s (�h) = sup

v ∈ Hs (�h )

‖v‖Hs (�h )=1

| 〈u, Ms
hv
〉 | → sup

v ∈ Hs (�)

‖v‖Hs (�)=1

| 〈u, v〉 | = ‖u‖H−s (�)

as h → IN . �
In what follows, we omit −s in E−s

h . We will denote Eh : H−s
h (�) → H−s(�h),

and the context will avoid confusion.
The boundedness and convergence properties of Eh and Mh enable us to use the

functional framework proposed by [17] (see also [16,29]) taking H−s(�h) as the base
space for a fixed s. More precisely, we are interested here in the abstract results from
Section 3 of [17].Wewill combine themwith the techniques developed in [23] in order
to show our results. In what follows, in this section, we adapt the main concepts and
results from [17] for our context. We also recommend [2,7] to the interested reader.
Let s ∈ (0, 1) be a fixed value and Yh ∈ {L2(�h), H1(�h), Hs(�h), H−s(�h)}.

Then {Yh}h∈Diffε (�) is a family of Banach spaces indexed in Diffε(�). When h = IN
we just write Y .

Definition 2.6. We say that a family {gh}h∈Diffε (�), with gh ∈ Yh , E-converge to

g ∈ Y as h → IN if ‖gh − Ehg‖Yh → 0 as h → IN . In this case we denote gh
E−→ g.

Definition 2.7. Wesay that a sequence {ghk }k∈N, with ghk ∈ Yhk , is relatively compact
if for each subsequence {ghkl }l∈N there is a subsequence {ghkl j } j∈N and an element

g ∈ Y such that ghkl j
E−→ g. The family {gh}h∈Diffε (�), with gh ∈ Yh , is relatively

compact if any subsequence {ghk }k∈N is relatively compact.

Definition 2.8. We say that a family {Bh : H−s(�h) → H1(�h)}h∈Diffε (�) of
bounded linear operators converges compactly to an operator B : H−s(�) → H1(�)

as h → IN , which we denote Bh
CC−→ B, if the following conditions are satisfied:

(i) Bh and B are compact operators.

(ii) gh
E−→ g ⇒ Bhgh

E−→ Bg.
(iii) Each family of the form {Bhgh}h∈Diffε (�), with ‖gh‖H1(�h)

= 1, for all
h ∈ Diffε(�), is relatively compact.

As before we can extend Mh to H−s(�h) with Mh(H1(�h)) = H1(�) and
Mh(H−s(�h)) = H−s(�). In what follows we use the same notation Mh for its re-
striction to H1(�h) and its extension to H−s(�h). With the above similar arguments
for Eh , we see that Mh are bounded uniformly in h. Moreover, if {Bh : H−s(�h) →
H1(�h)}h∈Diffε (�) is a family of operators such that

‖Bh − EhBMh‖L(H−s (�h),H1(�h))
→ 0 as h → IN (2.11)

then

‖BhEh − EhB‖L(H−s (�),H1(�h))
→ 0 as h → IN . (2.12)
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3. Rate of convergence for compact convergence of resolvent operators

In this section, we estimate the convergence of the resolvent operators (μ − �)−1

in �h . We use variational methods of elliptic equations to show that the function
h → dC1(h, IN ) is a natural rate of convergence for the solutions of the elliptic parts
of (1.1) and (1.2).

Our technique differs a little from that used in [1]. Here the boundary condition
forces us to work in the Sobolev dual space H−s(�), s > 0. First, we will consider
particular elements of H−s(�) having boundary traces, and then, we will consider
more general functionals.
Let 0 < ε < 1. For each h ∈ Diffε(�), we recall that �h denotes the Laplacian op-

erator with homogeneous Neumann boundary condition: �h : D(�h) ⊂ L2(�h) →
L2(�h) with

D(�h) =
{
u ∈ H2(�h) : ∂u

∂ �n = 0 on ∂�h

}
and �hu = �u in �h .

We omit the parameter IN when considering the limiting problem h = IN . In fact, we
must say that Ah = λ − �h , λ ≥ 1 is an operator of H1(�h) onto H−s(�h) whose
realization in L2(�h) coincides with λ − �h , that is,

〈Ahφ,ψ〉−1,1 =
∫
�h

∇φ∇ψ + λ

∫
�h

φψ.

Now, let us take s > 1
2 and gh ∈ H−s(�h), assuming the following form: we

suppose that there exist g1,h ∈ L2(�h) and g2,h ∈ L2(∂�h), such that

〈gh, φ〉−s,s =
∫
�h

g1,hφ +
∫

∂�h

g2,hφ, ∀φ ∈ Hs(�h). (3.1)

Under these conditions, we have the following result:

Theorem 3.1. For any λ ≥ 1 and any family {gh}h∈Diffε (�) set by (3.1), the weak
solution of {

−�huh + λuh = g1,h, in �h
∂uh
∂ �n = g2,h on ∂�h,

(3.2)

satisfies

‖uh‖H1(�h)
≤ ‖gh‖H−s (�h) (3.3)

and

‖uh − Ehu‖H1(�h)
≤ ‖gh − Ehg‖H−s (�h) + [‖g‖H−s (�)

+‖∇u‖L2(�) + λ‖u‖L2(�)]Cτ(h), (3.4)

where g = gIN , C is a constant independent of h and τ(h) = dC1(h, IN ).
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Proof. It iswell known that�h withNeumann boundary condition has infinity discrete
spectrum set σ(�h) contained in (−∞, 0]. Thus, for any λ > 0, λ−�h is an invertible
operator. Since uh is a weak solution of (3.2), we can write∫

�h

∇uh∇φh +
∫
�h

λuhφh =
∫
�h

g1,hφh +
∫

∂�h

g2,hφh, φh ∈ Hs(�h); (3.5)

∫
�

∇u∇φ +
∫
�

λuφ =
∫
�

g1φ +
∫
∂�

g2φ, φ ∈ Hs(�). (3.6)

Taking φh = uh in (3.5), we obtain∫
�h

|∇uh |2 +
∫
�h

λ|uh |2 =
∫
�h

g1,huh +
∫

∂�h

g2,huh .

Hence, by Holder’s inequality, we get (3.3).
Now, taking φh = uh − Ehu in (3.5), φ = Mhuh − u in (3.6) and making the

difference, we obtain∫
�h

∇uh(∇uh − ∇Ehu) −
∫
�

∇u(∇Mhuh − ∇u)

+
∫
�h

λuh(uh − Ehu) −
∫
�

λu(Mhuh − u)

=
∫
�h

g1,h(uh − Ehu) −
∫
�

g1(Mhuh − u)

+
∫

∂�h

g2,h(uh − Ehu) −
∫
∂�

g2(Mhuh − u),

and then ∫
�h

∇uh(∇uh − ∇Ehu) +
∫
�h

λuh(uh − Ehu)

=
∫
�h

g1,h(uh − Ehu) −
∫
�

g1(Mhuh − u)

+
∫
�

∇u(∇Mhuh − ∇u) +
∫
�

λu(Mhuh − u)

+
∫

∂�h

g2,h(uh − Ehu) −
∫
∂�

g2(Mhuh − u).

We add appropriate terms to obtain
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∫
�h

∇uh(∇uh − ∇Ehu) −
∫
�h

∇Ehu(∇uh − ∇Ehu)

+
∫
�h

λuh(uh − Ehu) −
∫
�h

λEhu(uh − Ehu)

=
∫
�h

g1,h(uh − Ehu) −
∫
�

g1(Mhuh − u)

+
∫

∂�h

g2,h(uh − Ehu) −
∫
∂�

g2(Mhuh − u)

+
∫
�

∇u(∇Mhuh − ∇u) −
∫
�h

∇Ehu(∇uh − ∇Ehu)

+
∫
�

λu(Mhuh − u) −
∫
�h

λEhu(uh − Ehu)

:= I1 + I2 + I3,

where we denote the last three terms on the right-hand side, respectively, by I1, I2,
and I3.

Since λ ≥ 1, we get

‖uh − Ehu‖2H1(�h)
≤
∫
�h

|∇uh − ∇Ehu|2 +
∫
�h

λ|∇uh − Ehu|2 = I1 + I2 + I3.

Next, we estimate I1, I2, and I3. First, let us observe that

−
∫
�

g1(Mhuh − u) =
∫
�

g1(u − Mhuh)

=
∫
�h

g1(h
−1)(u(h−1) − Mhuh(h

−1))|det((h′)−1)|

=
∫
�h

Ehg1(Ehu − uh)|det((h′)−1)|

and

−
∫
∂�

g2(Mhuh − u) =
∫

∂�h

g2(h
−1)(u(h−1) − Mhuh(h

−1))|det((Dh)−1)|

=
∫

∂�h

Ehg2(Ehu − uh)|det((Dh)−1)|
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where (Dh)−1 is the Jacobianmatrix of h−1 : ∂h(�) → ∂� sets by a given coordinate
on ∂�. Thus,

I1 =
∫
�h

(g1,h − Ehg1)(uh − Ehu) +
∫

∂�h

(g2,h − Ehg2)(uh − Ehu)

+
∫
�h

Ehg1(Ehu − uh)(1 − |det((h′)−1)|) +
∫

∂�h

Ehg2(Ehu − uh)(1 − |det((Dh)−1)|).

If we denote τ̄ (h) = ∑N−1
k=0

(N
k

)
τ(h)N−k then, by Lemma 2.1, we obtain

|I1| ≤
∫
�h

|(g1,h − Ehg1)(uh − Ehu)| +
∫

∂�h

|(g2,h − Ehg2)(uh − Ehu)|

+
∫
�h

|Ehg1(Ehu − uh)|τ̄ (h) +
∫

∂�h

|Ehg2(Ehu − uh)|τ̄ (h),

where we have used Ci = 1 in Lemma 2.1 according to Remark 2.2.
For I3, we have∫

�

λu(Mhuh − u) =
∫
�h

λu(h−1)(Mhuh(h
−1) − u(h−1))|det((h′)−1)|

=
∫
�h

λEhu(uh − Ehu)|det((h′)−1)|,

which implies

I3 =
∫
�h

λEhu(uh − Ehu)(|det((h′)−1)| − 1).

Thus, by Lemma 2.1, we obtain

|I3| ≤
∫
�h

λ|Ehu(uh − Ehu)|τ̄ (h).

Finally, we have

I2 =
∫
�

∇u(∇Mhuh − ∇u) −
∫
�h

∇Ehu(∇uh − ∇Ehu)

In addition, if we denote x = h−1(y), then

∇u(x) = ∇u(h−1(y)) = Eh∇u(y)

and

∇Ehu(y) = ∇u(h−1(y)) = ∇u(h−1(y)) · (h−1)′(y) = Eh∇u(y) · (h−1)′(y)
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thus,

∇Ehu = Eh∇u · (h−1)′.

In the same way, we obtain

∇Mhuh = (Mh∇uh)h
′

Therefore, we can write

∫
�

∇u(∇Mhuh − ∇u) =
∫
�h

∇u(h−1)(∇Mhuh(h
−1) − ∇u(h−1))|det((h′)−1)|

=
∫
�h

Eh∇u(Eh∇Mhuh − Eh∇u)|det((h′)−1)|

=
∫
�h

∇Ehu((h−1)′)−1(EhMh∇uh Eh(h
′)

− ∇Ehu((h−1)′)−1|det((h′)−1)|
=
∫
�h

∇EhuEh(h
′)(∇uh Eh(h

′) − ∇EhuEh(h
′))|det((h′)−1)|,

where we have used that

h−1(h(x)) = x ⇒ (h−1)′(h(x))h′(x) = I ⇒ [(h−1)′]−1(y) = Eh(h
′(y)),

where I denotes the identity in RN .

Thus,

I2 =
∫
�h

∇EhuEh(h
′)(∇uh − ∇Ehu)Eh(h

′)|det((h′)−1)| −
∫
�h

∇Ehu(∇uh − ∇Ehu)

=
∫
�h

∇Ehu(Eh(h
′) − I )(∇uh − ∇Ehu)Eh(h

′)|det((h′)−1)|

+
∫
�h

∇Ehu(∇uh − ∇Ehu)(Eh(h
′) − I )|det((h′)−1)|

+
∫
�h

∇Ehu(∇uh − ∇Ehu)|(det((h′)−1)| − 1)

Therefore,
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|I2| ≤ ‖∇Ehu‖L2(�h)
‖∇uh − ∇Ehu‖L2(�h)[

‖Eh(h
′) − 1‖L∞(�h)‖Eh(h

′)‖L∞(�h) sup
x∈�h

{|(det((h′)−1)|}

+‖Eh(h
′) − 1‖L∞(�h) sup

x∈�h

{|(det((h′)−1)|} + sup
x∈�h

{|(det((h′)−1)| − 1}
]
.

But, by Lemma 2.1

sup
x∈�h

{|(det((h′)−1)| − 1} ≤ τ̄ (h)

and

‖Eh(h
′) − I‖L∞(�h) = sup

|v|=1
y∈�

‖(h′h−1(y) − I )v‖ = sup
|v|=1
x∈�

‖(h′(x)) − I )v‖ ≤ τ(h).

Hence, we take a constant C1 independent of h such that

|I2| ≤ C1‖∇Ehu‖L2(�h)
‖∇uh − ∇Ehu‖L2(�h)

τ (h)

Now, using the estimates for I1, I2 and I3, we obtain

‖uh − Ehu‖2H1(�h)
≤
∫
�h

|(g1,h − Ehg1)(uh − Ehu)| +
∫
�h

|Ehg1(Ehu − uh)|τ̄ (h)

+
∫

∂�h

|(g2,h − Ehg2)(uh − Ehu)| +
∫

∂�h

|Ehg2(Ehu − uh)|τ̄ (h)

+
∫
�h

λ|Ehu(uh − Ehu)|τ̄ (h)

+ C1‖∇Ehu‖L2(�h)
‖∇uh − ∇Ehu‖L2(�h)

τ (h).

By Holder’s inequality, we obtain

‖uh − Ehu‖2H1(�h)
≤ ‖gh − Ehg‖H−s (�h)‖uh − Ehu‖H1(�h)

+ ‖Ehg‖H−s (�h)‖Ehu − uh‖H1(�h)
τ̄ (h)

+ λ‖Ehu‖L2(�h)
‖uh − Ehu‖L2(�h)

τ̄ (h)

+ C1‖∇Ehu‖L2(�h)
‖∇uh − ∇Ehu‖L2(�h)

τ (h)

which implies (3.4) since Eh is bounded by K . �

We have the following result as an immediate consequence of Theorem 3.1.

Corollary 3.2. There is a constant C > 0 independent of h such that

‖A−1
h Eh − Eh A

−1‖L(H−s (�),H1(�h))
≤ Cτ(h).
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Remark 3.3. The Laplacian operator with Neumann boundary condition is not invert-
ible; therefore, the number λ ≥ 1will be used to translate� in order to obtain λ−� an
invertible sectorial operator in L2(�) and then the analytic functionμ → μ+(λ−�),
μ ∈ ρ(λ − �) has σ(λ − �) as essential singularities, see [24].

Theorem 3.4. For each λ ≥ 1, we have

(λ − �h)
−1 CC−→ (λ − �)−1. (3.7)

Moreover, there exists a constant C > 0 independent of h such that

‖(λ − �h)
−1gh − Eh(λ − �)−1g‖H1(�h)

≤ C(‖gh − Ehg‖H−s (�h) + τ(h)).

(3.8)

Proof. For all h ∈ Diffε(�), we have (λ − �h)
−1 : H−s(�h) → H1(�h), well

defined and since the inclusion H1(�h) ↪→ L2(�h) is compact, we obtain (λ −
�h)

−1 : H−s(�h) → L2(�h) a compact operator. Formally, λ−�h is the realization
of the bilinear form ah : H1(�h) × H1(�h) → R defined by

ah(u, v) =
∫
�h

∇u∇v + λuv.

It is easy to see that ah is coercive and continuous. Moreover, if we define Lh(v) =
〈gh, v〉−s,s for v ∈ H1(�h) ⊂ Hs(�h) and {gh}h∈Diffε (�) a family with gh ∈
H−s(�h) such that gh

E−→ g, we have

|Lh(v)| ≤ ‖gh‖H−s (�h)‖v‖Hs (�h) ≤ ‖gh‖H−s (�h)‖v‖H1(�h)
.

Thus, Lh is a continuous form and by Lax-Milgram theorem there exists a unique
uh ∈ H1(�h) such that ah(uh, v) = Lh(v), for all v ∈ H1(�h).

Now, consider the problems

ah(uh, vh) = 〈gh, vh〉−s,s , h ∈ Diffε(�). (3.9)

If we take vh = uh − Ehu and v = Mhuh − u in (3.9) respectively to h �= IN and
h = IN , we obtain

ah(uh, uh − Ehu) − a(u, Mhuh − u) = 〈gh, uh − Ehu〉−s,s − 〈g, Mhuh − u〉−s,s

But,

〈gh, uh − Ehu〉−s,s − 〈g, Mhuh − u〉−s,s = 〈gh, uh − Ehu〉−s,s − 〈Ehg, uh − Ehu〉−s,s

= 〈gh − Ehg, uh − Ehu〉−s,s

and then, uh satisfies
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〈gh − Ehg, uh − Ehu〉−s,s = ah(uh, uh − Ehu) − a(u, Mhuh − u)

= ah(uh − Ehu, uh − Ehu) + ah(Ehu, uh − Ehu)

+ a(Mhuh − u, Mhuh − u) − a(Mhuh, Mhuh − u).

Now, we estimate

ah(Ehu, uh − Ehu) − a(Mhuh, Mhuh − u) =
∫
�h

∇(Ehu)∇(uh − Ehu) + λEhu(uh − Ehu)

−
∫
�

∇(Mhuh)∇(Mhuh − u) + λMhuh(Mhuh − u).

But,

∫
�h

∇(Ehu)∇(uh − Ehu) −
∫
�

∇(Mhuh)∇(Mhuh − u)

=
∫
�

∇u∇(Mhuh − u)|det(h′)| −
∫
�

∇(Mhuh)∇(Mhuh − u)

= −
∫
�

∇(u − Mhuh)
2 +

∫
�

∇u∇(Mhuh − u)(|det(h′)| − 1)

and ∫
�h

λEhu(uh − Ehu) −
∫
�

λMhuh(Mhuh − u)

=
∫
�

λu(Mhuh − u)|det(h′)| −
∫
�

λMhuh(Mhuh − u)

= −
∫
�

λ(u − Mhuh)
2 +

∫
�

λu(Mhuh − u)(|det(h′)| − 1).

Thus,

ah(Ehu, uh − Ehu) − a(Mhuh, Mhuh − u)

= −a(u − Mhuh, u − Mhuh) +
∫
�

∇u∇(Mhuh − u)(|det(h′)| − 1)

+
∫
�

λu(Mhuh − u)(|det(h′)| − 1),

which implies
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ah(uh, uh − Ehu) − a(u, Mhuh − u)

= ah(uh − Ehu, uh − Ehu) +
∫
�

∇u∇(Mhuh − u)(|det(h′)| − 1)

+
∫
�

λu(Mhuh − u)(|det(h′)| − 1).

But |det(h′)| − 1 → 0 as h → IN uniformly in �, thus∫
�

∇u∇(Mhuh − u)(|det(h′)| − 1) → 0 as h → IN

and ∫
�

λu(Mhuh − u)(|det(h′)| − 1) → 0 as h → IN .

Moreover, gh
E−→ g, and then, 〈gh − Ehg, uh − Ehu〉 → 0, and ah(uh − Ehu, uh −

Ehu) → 0 as h → IN (here we have also used that uh − Ehu is uniformly bounded
in H1(�h) with respect to h).

Finally, ah(uh − Ehu, uh − Ehu) → 0 as h → IN implies uh
E−→ u since

ah(uh − Ehu, uh − Ehu) ≥ ‖uh − Ehu‖2H1(�h)
,

which proves (3.7).
Now, we obtain the estimates (3.8).

〈gh − Ehg, uh − Ehu〉 = ah(uh − Ehu, uh − Ehu)

+
∫
�

∇u∇(Mhuh − u)(|det(h′)| − 1)

+
∫
�

λu(Mhuh − u)(|det(h′)| − 1)

which implies

‖uh − Ehu‖2H1(�h)
≤ ‖gh − Ehg‖H−s (�h)‖uh − Ehu‖H1(�h)

+ sup
x∈�h

{|(det((h′)−1)| − 1}‖∇u‖L2(�)

×
(
‖∇(Mhuh − u)‖L2(�) + λ‖Mhuh − u‖L2(�)

)
But, ∫

�

(Mhuh − u)2 =
∫
�h

(uh − Ehu)2|det(h′)−1|
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and ∫
�

∇(Mhuh − u)2 =
∫
�h

∇(uh − Ehu)2Eh(h
′)|det(h−1)′|.

Hence,

‖uh − Ehu‖2H1(�h)
≤ ‖gh − Ehg‖H−s (�h)‖uh − Ehu‖H1(�h)

+ sup
x∈�h

{|(det((h′)−1)| − 1}‖∇u‖L2(�) sup
x∈�h

{|(det((h′)−1)|} 1
2 ·

·
(
‖uh − Ehu‖L2(�)‖Eh(h

′)‖L∞(�h) + λ‖uh − Ehu‖L2(�h)

)
≤
(
‖gh − Ehg‖2H−s (�h)

+ {|(det((h′)−1)| − 1}‖∇u‖L2(�) sup
x∈�h

{|(det((h′)−1)|} 1
2

)
·

· ‖uh − Ehu‖H1(�h)
C̄,

where C̄ = max{supx∈�h
{|(det((h′)−1)|}, λ}.

By Lemma 2.1, the result follows. �
Remark 3.5. Notice that in the proof of Theorem 3.4 we need to consider a abstract
family gh ∈ H−s(�h)which may not have the form g1,h +g2,h , where g1,h ∈ L2(�h)

and g2,h ∈ L2(∂�h) as in Theorem 3.1. In fact, not every function in H−s(�h) can
be written this way but, this decomposition works well when we are interested in
estimates as (3.3) and (3.4).

As a consequence of Theorem 3.4, we have the following corollaries.

Corollary 3.6. For each λ ≥ 1, there exists a constant C independent of h such that

‖(λ − �h)
−1 − Eh(λ − �)−1Mh‖L(H−s (�h),H1(�h))

≤ Cτ(h) (3.10)

and

‖(λ − �h)
−1Eh − Eh(λ − �)−1‖L(H−s (�),H1(�h)

≤ Cτ(h). (3.11)

Proof. Since (2.11) implies (2.12), we just have to prove (3.10). The result follows
from Theorem 3.4. �
Corollary 3.7. Let λ ≥ 1. For each μ ∈ ρ(−�+λ), there exists ε = ε(μ) such that,
μ ∈ ρ(−�h + λ) for all h ∈ Diffε(�) and

(μ + (−�h + λ))−1 CC−→ (μ + (−� + λ))−1.

Moreover, there exists a constant C = C(μ) independent of h such that

‖(μ + (−�h + λ))−1 − Eh(μ + (−� + λ))−1Mh‖L(H−s (�h),H1(�h))
≤ Cτ(h)

and

‖(μ + (−�h + λ))−1Eh − Eh(μ + (−� + λ))−1‖L(H−s (�),H1(�h)
Cτ(h).
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Proof. The result follows from Theorem 3.4. �

Remark 3.8. It is interesting to compare the results of this sectionwith those of Section
2 in [28] and Section 3 in [29]. Notice that we have not fixed the domain, that is, the
parameter h and the domain �h vary simultaneously and our estimates are uniform
concerning h and �h . All sectorial inequalities to estimate the resolvent operators in
[28,29] are here naturally absorbed in inequalities (3.10) and (3.11).

4. Rate of convergence for resolvent operator perturbations

The attractors Ah are characterized by the union of unstable manifolds of each
equilibrium point. In this way, understanding the local behavior of the equilibrium
set is essential to obtain the continuity of attractors. In order to describe the unstable
manifold, we take a linearization around each equilibrium point. This type of argument
involves making perturbations of the resolvent operators by the derivative of the vector
field. In this section, we study the resolvent perturbations by potentials establishing
some results that will be used in the next sections.

Definition 4.1. Wesay that a family of potentials {Vh :H1(�h)→H−s (�h)}h∈Diffε (�)

is admissible if suph∈Diffε (�) ‖Vh‖L(H1(�h),H−s (�h))
< ∞ and Vh E-converges to V

in H−s(�h) as h → IN , that is, for any family {gh}h∈Diffε (�) with gh ∈ H1(�h) such

that gh
E−→ g, we have ‖Vhgh − EhVg‖H−s (�h) → 0 as h → IN .

Let {Vh}h∈Diffε (�) be a family of potentials. We denote {λnh}∞n=1 the set of eigen-
values, ordered and counting multiplicity, of the operator −�h + Vh with Neu-
mann boundary condition in �h and by {φn

h }∞n=1 a corresponding associated family
of eigenfunctions. If λnh → λn as h → IN , we can define the spectral projection
Pn
h : H−s(�h) → H1(�h) by

Pn
h = 1

2π i

∫
�n

(μ + (−�h + Vh))
−1 dμ, (4.1)

where �n is a curve in ρ(−� + V ) involving {λ1, . . . , λn}.
Definition 4.2. Let {Vh}h∈Diffε (�) be a family of potentials. We say that the spectra

of −�h + Vh behaves continuously as h → IN when λnh → λn and Pn
h

CC−→ Pn as
h → IN . We say that the spectra of −�h behave continuously as h → IN when the
spectra of −�h + Vh behave continuously as h → IN for any family of admissible
potentials {Vh}h∈Diffε (�).

Definition 4.3. We say that a family of domains {�h ⊂ R
N }h∈Diffε (�) is admissible

if it satisfies the following conditions

(i) For any K ⊂⊂ �, there exists ε = ε(K ) such that, K ⊂⊂ �h for each
h ∈ Diffε(�).
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(ii) The spectra of −�h behave continuously as h → IN .

The main result of this section states as follows.

Theorem 4.4. The family of domains {�h}h∈Diffε (�) associated with (1.1) is admissi-
ble. In particular, the spectra of −�h behave continuously as h → IN .

To proof Theorem 4.4, we need some auxiliary results

Proposition 4.5. Foranyλ ≥ 1andany family of admissible potentials {Vh}h∈Diffε (�),
it is valid

(λ − �h)
−1Vh

CC−→ (λ − �)−1V .

Proof. Let {gh}h∈Diffε (�) be a family with gh ∈ H1(�h) such that gh
E−→ g. Define

uh = (λ − �h)
−1Vhgh and u = (λ − �)−1Vg, then, for all h ∈ Diffε(�), we have

〈(−�h + λ)uh, φ〉 = 〈Vhgh, φ〉 for all φ ∈ H1(�h). The result follows as in the proof
of Theorem 3.4 since ‖Vhgh − EhVg‖H−s (�h) → 0 as h → IN . �

Corollary 4.6. Assume 0 ∈ ρ(−� + V ). Then, there exists ε sufficiently small such
that, 0 ∈ ρ(−�h + Vh) for all h ∈ Diffε(�) and

(−�h + Vh)
−1 CC−→ (−� + V )−1.

Proof. We denote Ah = λ − �h , for h ∈ Diffε(�) and λ ≥ 1. Since 0 ∈ ρ(−� + V )

we can write

(−� + V )−1 = (I + A−1(V − λ))−1A−1.

By Proposition 4.5, we have A−1
h Vh

CC−→ A−1V and it is easy to see that A−1
h (Vh −

λ)
CC−→ A−1(V − λ).

Claim. The operator [I + A−1
h (Vh −λ)]−1 is bounded, where I denotes the identity

in RN .
This statement is equivalent to the existence of C > 0 independent of h such that

‖[I + A−1
h (Vh − λ)]uh‖H1(�h)

≥ 1

C
, for all uh ∈ H1(�h), ‖uh‖H1(�h)

= 1.

If it is not true, then there is a sequence {uhn }n , uhn ∈ H1(�hn ), ‖uh‖H1(�hn ) = 1 and

hn → IN such that ‖[I + A−1
h (Vh − λ)]uh‖H1(�h)

→ 0. But, (taking subsequence)

{A−1
h (λ + Vh)uhn }n E-converges to some u ∈ H1(�), ‖u‖H1(�) = 1 which implies

uhn + A−1
h (Vh − λ)uhn

E−→ 0 and uhn
E−→ −u. Therefore, [I + A−1(V − λ)]u = 0

is an absurd since I + A−1(V − λ) is invertible.
Now, we can write

I = (−�h + Vh)(I + A−1
h (Vh − λ))−1A−1

h .
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Since [I + A−1
h (Vh − λ)]−1 is bounded, we obtain (−�h + Vh) invertible.

Now, let {gh}h∈Diffε (�) be a family with gh ∈ H1(�h) such that gh
E−→ g. Define

uh = (−�h + Vh)−1Vhgh and u = (−� + V )−1Vg, then, for all h ∈ Diffε(�), we
have 〈(−�h + Vh)uh, φ〉 = 〈Vhgh, φ〉 , for all φ ∈ H1(�h). The result follows as in
the proof of Theorem 3.4. �

Remark 4.7. It is worth comparing Corollary 4.6 with Proposition 2.3 of [4]. Here the
compact convergence approach implies spectral convergence. In [4], the authors have
used the spectral convergence to conclude the resolvent operator convergence.

Corollary 4.8. For each μ ∈ ρ(−� + V ), there exists ε = ε(μ) such that, μ ∈
ρ(−�h + Vh) for all h ∈ Diffε(�) and

(μ + (−�h + Vh))
−1 CC−→ (μ + (−� + V ))−1. (4.2)

Moreover, if ‖Vh − EhV ‖H−s (�h) ≤ τ(h), then there exists a constant C = C(μ)

independent of h such that

‖(μ + (−�h + Vh))
−1 − Eh(μ + (−� + V ))−1Mh‖L(H−s (�h),H1(�h))

≤ Cτ(h)

and

‖(μ + (−�h + Vh))
−1Eh − Eh(μ + (−� + V ))−1‖L(H−s (�),H1(�h)

≤ Cτ(h).

Proof. Similar to the proof of Corollary 4.6. �

Next let us show Theorem 4.4.

Proof of Theorem 4.4. Since h is close to inclusion IN , the condition (i) in Definition
4.3 is immediate. Now, we claim that λnh → λn as h → IN . If this does not occurs
then there exist δ > 0 and a sequence hk → IN such that∫

|μ−λn |=δ

(μ − λn)l(μ + (−�hk + Vhk ))
−1 dμ = 0, k, l ∈ N.

But, by (4.2), we have∫
|μ−λn |=δ

(μ − λn)l(μ + (−� + V ))−1 dμ = 0, l ∈ N,

which is an absurd since the eigenvalue λn is not a removable singularity of the
resolvent map μ → (μ + (−�I + V ))−1, μ ∈ ρ(−�I + V ).

Since the spectral projection is given by (4.1), the compact convergence Pn
h

CC−→ Pn

follows from the fact that (−�h + Vh)−1 is compact and satisfies (4.2). �

Corollary 4.9. There exists a constant C > 0 independent of h such that it is valid
the following estimates
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(i) |λnh − λn| ≤ Cτ(h);
(ii) ‖Pn

h − Eh PnMh‖L(H−s (�h),H1(�h))
≤ Cτ(h);

(iii) ‖Pn
h Eh − Eh Pn‖L(H−s (�),H1(�h))

≤ Cτ(h).

Proof. The proof of (i) is the same as in [14, Corollary 3.8] or [13, Corollary 14.11].
By (4.1), we have

Pn
h − Pn = 1

2π i

∫
�n

(μ + (−�h + Vh))
−1 − (μ + (−� + V ))−1 dμ,

the estimates (ii) and (iii) follow from Corollary 4.8. Here, the constant C depends on
n but independent of h. �

5. Rate of convergence for permanence of equilibrium points

We are assuming here the set E of equilibrium points of (1.2) is composed of
hyperbolic points. As consequence, we will see that the set Eh of equilibrium points of
(1.1) is also composed of hyperbolic points as h is sufficiently close to IN . Moreover,
we estimate the convergence of elements of Eh to elements of E when h → IN .

Letλ ≥ 1. For h ∈ Diffε(�), denote Ah = λ−�h and define, for each h ∈ Diffε(�)

the nonlinear operator Fh : H1(�h) → H−s(�) by

Fh(u)φ =
∫
�h

f (u)φ +
∫
�h

λuφ +
∫

∂�h

f̃ (u)φ, u ∈ H1(�h), φ ∈ Hs(�h),

where, by convenience, we omit the trace operator. It is well known that if f and f̃
are C2 bounded functions with derivatives up to second order bounded and if 1

2 <

s < 1, then Fh is a well-defined Nemytskii function which is Fréchet continuously
differentiable, see for instance [29]. Hence, throughout the remainder of the text, we
fix 1

2 < s < 1.

Lemma 5.1. There are positive constants L f, f̃ and C0 such that

‖Fh(u) − EhF(v)‖H−s (�h) ≤ L f, f̃ ‖u − Ehv‖H1(�h)
+ C0τ(h),

u ∈ H1(�h), v ∈ H1(�), (5.1)

and

‖Fh(u) − Fh(v)‖H−s (�h) ≤ L f, f̃ ‖u − v‖H1(�h)
, u, v ∈ H1(�h). (5.2)

Proof. Let L f and L f̃ the Lipschitz constants of f and f̃ . Then, for φ ∈ H1(�h),
we have

|Fh(u)φ − EhF(v)φ| = |
∫
�h

f (u)φ +
∫

∂�h

f̃ (u)φ −
∫
�

f (v)Mhφ −
∫
∂�

f̃ (v)Mhφ|.
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Also,

|
∫
�h

f (u)φ −
∫
�

f (v)φ| ≤
∫
�h

| f (u) − f (Ehv)||φ|

+
∫
�h

| f (Ehv)||φ|
(
1 − |det((h′)−1)|

)

≤ L f ‖u − Ehv‖L2(�h)
‖φ‖L2(�h)

+ sup | f |τ̄ (h)‖φ‖L1(�h)
.

In the same way, we get

|
∫

∂�h

f̃ (u)φ −
∫
∂�

f̃ (v)Mhφ| ≤ L f ‖u − Ehv‖L2(∂�h)
‖φ‖L2(∂�h)

+ sup | f |τ̄ (h)‖φ‖L1(∂�h)

which proves (5.1). Inequality (5.2) is left to the interested reader. �
The next result shows how to extend the derivative F ′

h to a family of potentials
indexed in Diffε(�). This extension is fundamental in the next section to characterize
the local behavior of the nonlinear semigroup in a neighborhood of its equilibrium
points. Recall that we are denoting F = Fh |h=IN .

Lemma 5.2. Let {vh}h∈Diffε (�) be a family with vh ∈ H1(�h) and vh
E−→ v. Then,

(i) The family {F ′
h(vh) : H1(�h) → H−s(�h)}h∈Diffε (�) is admissible.

(ii) If 0 /∈ σ(A − F ′(v)), then A−1
h F ′

h(vh)
CC−→ A−1F ′(v), where Ah = λ − �h,

h ∈ Diffε(�).

Proof. (i) Since f , f̃ and its derivatives up to second order are bounded, we have

sup
h∈Diffε (�)

‖F ′
h(vh)‖L(H1(�h),H−s (�h))

< ∞.

Since Fh is C2 we can perform a Frechét version of the mean value theorem to
F ′
h to obtain a constant C independent of h such that,

‖F ′
h(vh) − EhF

′(v)‖L(H1(�h),H−s (�h))
≤ C‖vh − Ehv‖H1(�h)

.

Hence, ‖F ′
h(vh) − EhF ′(v)‖L(H1(�h),H−s (�h))

→ 0 whenever vh
E−→ v.

(ii) Since {F ′
h(vh)}h∈Diffε (�) is admissible, the result follows from Proposition (4.5).

�
The solutions to the elliptic problem

Ahuh − Fhuh = 0 with uh ∈ H1(�h) (5.3)

are the equilibrium points of (1.1) (h �= IN ) and (1.2) (h = IN ). We denote Eh the
set of all solutions of (5.3). Recall that we are assuming that E is composed of p
hyperbolic equilibrium points, that is, 0 /∈ σ(A − F ′

h(u
∗)) for all u∗ ∈ E .
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Theorem 5.3. For ε sufficiently small, Eh is a finite set with constant cardinality p,
that is, Eh = {u1,∗h , . . . , u p,∗

h } for all h ∈ Diffε(�).Moreover, Eh behaves continuously
as h → IN with

max
1≤k≤p

‖uk,∗h − Ehu
k,∗‖H1(�h)

≤ Cτ(h) (5.4)

for some constant C independent of h.

Proof. Section 4.1 in [4] inspires the proof. Let u∗ ∈ E and define the operator
�h : H1(�h) → H1(�h) by

�h(uh) = (Ah − F ′
h(Ehu

∗))−1(Fh(uh) − F ′
h(Ehu

∗)uh).

We have u∗ is hyperbolic, and it is easy to see that Ehu∗ E−→ u∗. Thus by Lemma 5.2
{F ′

h(Ehu∗) : H1(�h) → H−s(�h)}h∈Diffε (�) is a admissible family and by Corollary
4.6 we have 0 ∈ ρ(Ah − F ′(Eh(u∗))) thus, �h is well defined. Notice that a fixed
point of�h is equivalent to a solution of (5.3). Arguing as [4, Proposition 4.1], we first
show that �h is a strict contraction in a closed ball centered in Ehu∗, which proves
the existence of a unique equilibrium point u∗

h close to Ehu∗.
For this, let us take v and w in a ball of radius δ > 0 centered at Ehu∗ in H1(�h).

We have

‖�h(v) − �h(w)‖H1(�h)
≤ ‖ (Ah − F ′

h(Ehu
∗)
)−1 ‖L(H−s (�h),H1(�h))

×‖Fh(v) − Fh(w) − F ′
h(Ehu

∗)(v − w)‖H−s (�h).

Also, for some ξ and ξ̃ between v and w, we have from the mean value theorem that

(Fh(v) − Fh(w) − F ′
h(Ehu

∗)(v − w))φ

=
∫
�h

(
f ′(ξ) − f ′(Ehu

∗)
)
(v − w)φ +

∫
∂�h

(
f̃ ′(ξ̃ ) − f̃ ′(Ehu

∗)
)

(v − w)φ

≤
∫
�h

θh |v − w||φ| +
∫

∂�h

θ̃h |v − w||φ|

where

θh(x) = 2 sup | f ′′|min{1, |v(x) − Ehu
∗(x)| + |w(x) − Ehu

∗(x)|}
≥ | f ′(ξ(x)) − f ′(Ehu

∗(x))| and

θ̃h(x) = 2 sup | f̃ ′′|min{1, |v(x) − Ehu
∗(x)| + |w(x) − Ehu

∗(x)|}
≥ | f̃ ′(ξ̃ (x)) − f̃ ′(Ehu

∗(x))|.
Now, due to ‖θh‖L∞(�h) ≤ 1 and ‖θh‖L2(�h)

≤ ‖v − Ehu∗‖L2(�h)
+ ‖w −

Ehu∗‖L2(�h)
≤ 2δ we have ‖θh‖L p(�h) ≤ 2δ2/p for all p ∈ [2,∞). Similarly, we can

get ‖θ̃h‖L p(∂�h) ≤ 2δ2/p for all p ∈ [2,∞).
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Thus,

|(Fh(v) − Fh(w) − F ′
h(Ehu

∗)(v − w))φ|
≤ ‖θh(v − w)‖L2(�h)

‖φ‖L2(�h)
+ ‖θ̃h(v − w)‖L2(∂�h)

‖φ‖L2(∂�h)

≤ ‖θh‖LN (�h)
‖v − w‖

L
2N
N−2 (�h)

‖φ‖L2(�h)

+‖θ̃h‖L2(N−1)(∂�h)
‖v − w‖

L
2(N−1)
N−2 (∂�h)

‖φ‖L2(∂�h)

≤ 2min{δ2/N , δ1/(N−1)}‖φ‖Hs (�h)‖v − w‖H1(�h)
.

Then, for δ small enough, it follows from Lemma 5.2 and Corollary 4.6 that �h is a
contraction near to Ehu∗. Hence, there exists a unique equilibrium solution u∗

h to (5.3)
close to Ehu∗.
It only remains to prove the estimate (5.4). We have u∗ and u∗

h given by

u∗ = (A + V )−1[F(u∗) + Vu∗] and u∗
h = (Ah + Vh)

−1[Fh(u∗
h) + Vhu

∗
h]

where V = −F ′(u∗) and Vh = −F ′
h(Ehu∗). Thus,

‖u∗
h − Ehu

∗‖H1(�h)
≤ ‖(Ah + Vh)

−1 − Eh(A + V )−1Mh[Fh(u∗
h) + Vhu

∗
h]‖H1(�h)

+ ‖Eh(A + V )−1[Mh(Fh(u
∗
h) + Vhu

∗
h) − F(u∗)

− Vu∗]‖H1(�h)
. (5.5)

By Corollary 4.8, we have

‖(Ah + Vh)
−1 − Eh(A + V )−1Mh[Fh(u∗

h) + Vhu
∗
h]‖H1(�h)

≤ C̄τ(h), (5.6)

for some constant C̄ independent of h.

Claim. For all η > 0, there is ε sufficiently small, and positive constants C0 and
C1, independent of η and h, such that

‖Mh(Fh(u
∗
h) + Vhu

∗
h) − F(u∗) − Vu∗‖H1(�) ≤ ηC0‖u∗

h − Ehu
∗‖H1(�h)

+ C1τ(h)

(5.7)

for all h ∈ Diffε(�). In fact,

Mh(Fh(u
∗
h) + Vhu

∗
h) − F(u∗) − Vu∗

= Mh(Fh(u
∗
h) − F ′

h(Ehu
∗)u∗

h) − F(u∗) + F ′(u∗)u∗

= Mh[Fh(u∗
h) − F ′

h(Ehu
∗)u∗

h − EhF(u∗) + EhF
′(u∗)u∗].

But, for φ ∈ Hs(�h),
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(Fh(u
∗
h) − EhF(u∗))φ =

∫
�h

f (u∗
h)φ + λ

∫
�h

u∗
hφ +

∫
∂�h

f̃ (u∗
h)φ

−
∫
�

f (u∗)Mhφ − λ

∫
�

u∗Mhφ −
∫
∂�

f̃ (u∗)Mhφ

and

(F ′
h(Ehu

∗)u∗
h − EhF

′(u∗)u∗)φ =
∫
�h

f ′(Ehu
∗)u∗

hφ + λ

∫
�h

u∗
hφ

+
∫

∂�h

f̃ ′(Ehu
∗)u∗

hφ

−
∫
�

f ′(u∗)u∗Mhφ − λ

∫
�h

u∗Mhφ

−
∫
∂�

f̃ ′(u∗)u∗Mhφ.

Now, for wh and w̃h between u∗
h and Ehu∗, we have∫

�h

f (u∗
h)φ −

∫
�

f (u∗)Mhφ =
∫
�h

( f (u∗
h) − f (Ehu

∗))φ

+
∫
�h

f (Ehu
∗)φ(1 − |det((h′)−1)|)

=
∫
�h

f ′(wh)(u
∗
h − Ehu

∗)φ

+
∫
�h

f (Ehu
∗)φ(1 − |det((h′)−1)|)

and ∫
∂�h

f̃ (u∗
h)φ −

∫
∂�

f̃ (u∗)Mhφ =
∫

∂�h

( f̃ (u∗
h) − f̃ (Ehu

∗))φ

+
∫

∂�h

f̃ (Ehu
∗)φ(1 − |det((Dh)−1)|)

=
∫

∂�h

f̃ ′(w̃h)(u
∗
h − Ehu

∗)φ

+
∫

∂�h

f̃ (Ehu
∗)φ(1 − |det((Dh)−1)|)
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where (Dh)−1 is the Jacobian matrix of h−1 : ∂h(�) → ∂� sets by a given
parametrization of ∂�.

We also have for φ ∈ Hs(�h) that∫
�h

f ′(Ehu
∗)u∗

hφ −
∫
�

f ′(u∗)u∗Mhφ =
∫
�h

f ′(Ehu
∗)(u∗

h − Ehu
∗)φ

+
∫
�h

f ′(Ehu
∗)Ehu

∗φ(1 − |det((h′)−1)|)

and∫
∂�h

f̃ ′(Ehu
∗)u∗

hφ −
∫
∂�

f̃ ′(u∗)u∗Mhφ =
∫

∂�h

f̃ ′(Ehu
∗)(u∗

h − Ehu
∗)φ

+
∫

∂�h

f̃ ′(Ehu
∗)Ehu

∗φ(1 − |det((Dh)−1)|).

Consequently,

(Fh(u
∗
h) − F ′

h(Ehu
∗)u∗

h − EhF(u∗) + EhF
′(u∗)u∗)φ

=
∫
�h

f ′(wh)(u
∗
h − Ehu

∗)φ −
∫
�h

f ′(Ehu
∗)(u∗

h − Ehu
∗)φ

+
∫
�h

f (Ehu
∗)φ(1 − |det((h′)−1)|) −

∫
�h

f ′(Ehu
∗)Ehu

∗φ(1 − |det((h′)−1)|)

+
∫

∂�h

f̃ ′(w̃h)(u
∗
h − Ehu

∗)φ −
∫

∂�h

f̃ ′(Ehu
∗)(u∗

h − Ehu
∗)φ

+
∫

∂�h

f̃ (Ehu
∗)φ(1 − |det((Dh)−1)|)

−
∫

∂�h

f̃ ′(Ehu
∗)Ehu

∗φ(1 − |det((Dh)−1)|)

= I1 + I2 + I3 + I4.

Now, let us estimate I1. We have

I1 =
∫
�h

f ′(wh)(u
∗
h − Ehu

∗)φ −
∫
�h

f ′(Ehu
∗)(u∗

h − Ehu
∗)φ

=
∫
�h

( f ′(wh) − f ′(Ehu
∗))(u∗

h − Ehu
∗)φ.



    5 Page 30 of 41 M. C. Pereira and L. Pires J. Evol. Equ.

Since | f ′(wh) − f ′(Ehu∗)| ≤ κh(x) where κh(x) = sup | f ′′|min{1, wh − Ehu∗},
we have

|
∫
�h

f ′(wh)(u
∗
h − Ehu

∗)φ −
∫
�h

f ′(Ehu
∗
h)(u

∗
h − Ehu

∗)φ| ≤
∫
�h

κh(x)|u∗
h − Ehu

∗||φ|.

But, ‖κh(x)‖L∞(�h) ≤ 1 and ‖κh(x)‖L2(�h)
≤ ‖u∗

h − Ehu∗‖L2(�h)
. Hence,

‖κh(x)‖L p(�h) ≤ Cp‖u∗
h − Ehu

∗‖
2
p

L2(�h)
, for all p ∈ [2,∞).

Next, it follows from [2, Proposition 4.2] that, if N > 2, then L
2N
N−2 (�h) ↪→

H1(�h) uniformly in h (the case N = 2 is simpler). Thus,

|
∫
�h

f ′(wh)(u
∗
h − Ehu

∗)φ −
∫
�h

f ′(Ehu
∗
h)(u

∗
h − Ehu

∗)φ|

≤ ‖κh‖LN (�h)
‖u∗

h − Ehu
∗‖

L
2N
N−2 (�h)

‖φ‖L2(�h)

≤ CN‖κh‖LN (�h)
‖u∗

h − Ehu
∗‖H1(�h)

‖φ‖Hs (�h)

≤ CN δ
2
N ‖u∗

h − Ehu
∗‖H1(�h)

‖φ‖Hs (�h)

where δ > 0 is such that ‖u∗
h − Ehu∗‖H1(�h)

< δ and CN is a constant independent
of h.

Hence,

I1 + I2 ≤ CN δ
2
N ‖u∗

h − Ehu
∗‖H1(�h)

‖φ‖Hs (�h)

+
∫
�h

| f (Ehu
∗)φ(1 − |det((h′)−1)|)

+
∫
�h

| f ′(Ehu
∗)Ehu

∗φ(1 − |det((h′)−1)|)

≤ CN δ
2
N ‖u∗

h − Ehu
∗‖H1(�h)

‖φ‖Hs (�h)

+ max{sup | f |, sup | f ′|}‖φ‖Hs (�h)(1 + ‖Ehu
∗‖L2(�h)

)τ̄ (h).

Similarly, we can obtain

I3 + I4 ≤ CN−1δ
1

N−1 ‖u∗
h − Ehu

∗‖H1(�h)
‖φ‖Hs (�h)

+ max{sup | f̃ |, sup | f̃ ′|}‖φ‖Hs (�h)(1 + ‖Ehu
∗‖L2(∂�h)

)τ̄ (h).

Thus, we can conclude (5.7) setting η = δ
2
N since N ≥ 2.

Finally, we have
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‖Eh(A + V )−1[Mh(Fh(u
∗
h) + Vhu

∗
h) − F(u∗) − Vu∗]‖H1(�h)

≤ ‖Eh(A + V )−1Mh‖L(H−s (�h),H1(�))

(
ηC0‖u∗

h − Ehu
∗‖H1(�h)

+ C1τ(h)
)
.

(5.8)

We can choose η sufficiently small such that ηC0‖Eh(A+V )−1Mh‖L(H−s (�h),H1(�))

≤ 1
2 . Hence, due to (5.5) and (5.6), we obtain

‖u∗
h − Ehu

∗‖H1(�h)
≤ 1

2
‖u∗

h − Ehu
∗‖H1(�h)

+
(
C̄ + C1‖Eh(A + V )−1Mh‖L(H−s (�h),H1(�))

)
τ(h)

which proves the theorem. �

We finish this section by stating an important well-known estimate for the linear
semigroup generated by Ah . For instance, we have

e−Aht = 1

2π i

∫
�

(μ + Ah)
−1eμt dμ, (5.9)

where � is a curve delimiting an appropriated sector in ρ(−Ah) independent of h ∈
Diffε(�). It follows from [13, Section 6.4] that, if λn < a < λn+1, then there exists a
constant M̄ independent of h such that

‖e−Ahtφ‖H1(�h)
≤ M̄e−at t−

1+s
2 ‖φ‖H−s (�h), t ≥ 0. (5.10)

6. Rate of convergence for continuity of attractors

In this section, we obtain the exponential attraction of the attractors Ah , h ∈
Diffε(�). This property together with the continuity of the nonlinear semigroups
generated by solutions of (1.1) and (1.2) will imply the continuity of attractors in a
way that the modulus of continuity of semigroups will define the rate of convergence
of attractors as h → IN . It is worth mentioning that our definitions and estimates are
made such that the uniform condition in the parameter h needs to be checked at each
step. Notice that, different from [12], our dynamics act in different phase spaces. Our
adaptations allow us to use the Theorems 1.1 and Proposition 1.1 of [12].
Recall that the Hausdorff distance between closed sets A, B ⊂ H1(�h) is defined

by

dH (A, B) = sup
u∈A

dist (u, B) + sup
v∈B

dist (v, A),

where dist (u, B) = infv∈B ‖u − v‖H1(�h)
.

Definition 6.1. We say that a family {Ah}h∈Diff(�) is continuous at IN if

dH (Ah, EhA) → 0 as h → IN .
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The nonlinear semigroup Th(·) given by solutions of (1.1) and (1.2) satisfy the
variation of constant formula

Th(t)u = e−Ahtu +
t∫

0

e−Ah(t−s)Fh(Th(s)u) ds, u ∈ H1(�h), h ∈ Diffε(�),

(6.1)

where e−Aht is the linear analytic semigroupwith infinitesimal generator Ah = λ−�h

which is a sectorial operator. Let {Ah}h∈Diffε (�) be its family of attractors.

Definition 6.2. We say that a family {Ah}h∈Diff(�) is uniformly bounded at IN if
there exist r > 0 independent of h, such that ‖uh‖L∞(�h) ≤ r , for all uh ∈ Ah ,
h ∈ Diffε(�).

Proposition 6.3. The family of attractors {Ah}h∈Diffε (�) of (6.1) is uniformly bounded
at IN .

Proof. Thewell-posedness of (1.1) and (1.2) that we are assuming requires growth and
dissipativeness conditions which implies the uniform boundedness of {Ah}h∈Diffε (�)

in H1(�h) and L∞(�h), see Theorem 4.5 in [6]. Since Eh is uniformly bounded in h
the result follows. It is important to note that the upper bound for the attractors may
depend on � but it is independent of h. �

Definition 6.4. We say that a family of nonlinear semigroups {Th(·)}h∈Diffε (�) having
global attractors {Ah}h∈Diffε (�) has a κ-modulus of continuity at IN if there exits a
continuous function κ : Diffε(�) → [0,∞) with κ(IN ) = 0 such that

‖Th(t)u − EhT (t)Mhu‖H1(�h)
≤ CeLtκ(h), u ∈ Ah, t > t0,

where C, L and t0 are positive constants independent of h.

Theorem 6.5. The family of nonlinear semigroups {Th(·)}h∈Diffε (�) satisfying (6.1)
has a κ-modulus of continuity at IN . In addition, there exist positive constants L , a,

C1,C and θ ∈ (0, 1
2 ) independent of h, such that

‖e−Aht − Ehe
At Mh‖L(H−s (�h),H1(�h))

≤ C1e
−a(1−2θ)tτ(h)2θ t−( 1+s

2 +θ), t > 0

(6.2)

and

‖Th(t)u − EhT (t)Mhu‖H1(�h)
≤ Cτ(h)2θeLt t−( 1+s

2 +θ), u ∈ H1(�h), t > 0.

(6.3)

Proof. It follows from (5.10) and (2.2) that we can find positive constants M1 and a
independent of h, such that
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‖e−Aht − Ehe
At Mh‖L(H−s (�h),H1(�h))

≤ ‖e−Aht‖L(H−s (�h),H1(�h))

+ ‖Ehe
−At‖L(H−s (�h),H1(�h))

≤ M1e
−at t−

1+s
2 .

On the other hand, by (5.9) and Corollary 4.8, we obtain a constant M2 independent
of h, such that

‖e−Aht − Ehe
At Mh‖L(H−s (�h ),H1(�h ))

≤
∫
�

‖(μ + Ah)
−1

− Eh(μ + Ah)
−1Mh‖L(H−s (�h ),H1(�h ))

|eμt | |dμ|
≤ M2τ(h)t−1

where the term t−1 is due to the unbounded curve � involving the spectra of −� + λ.

Following [1], we take θ ∈ (0, 1
2 ) and interpolate the above inequalities with ex-

ponents 1 − 2θ and 2θ , to obtain a constant C1 independent of h such that (6.2) is
valid.

Now, let u ∈ Ah and t > 0. By (6.1), we have

‖Th(t)u − EhT (t)Mhu‖H1(�h)

≤ ‖e−Aht − Ehe
At Mh‖L(H−s (�h),H1(�h))

‖u‖H1(�h)

+
t∫

0

‖e−Ah(t−s)[Fh(Th(s)u) − EhF(T (s)Mhu)]‖H1(�h)
ds

+
t∫

0

‖[e−Ah(t−s) − Ehe
A(t−s)Mh]F(T (s)Mhu)‖H1(�h)

ds.

By (5.1), we can find positive constants L f, f̃ and C0 independent of h such that

‖Fh(Th(s)u) − EhF(T (s)Mhu)‖H−s (�h)

≤ L f f̃ ‖Th(s)u − EhT (s)Mhu‖H1(�h)
+ C0τ(h) (6.4)

and since Fh is uniformly bounded in h, by (6.2), (6.4), (5.10) and Proposition 6.3 we
can find a constant r > 0 independent of h such that

‖Th(t)u − EhT (t)Mhu‖H1(�h)
≤ C1e

−a(1−2θ)τ (h)2θ t−( 1+s
2 +θ)r

+ M̄L f, f̃

t∫
0

e−a(t−s)(t − s)−
1+s
2

‖Th(s)) − EhT (s)Mhu‖H1(�h)
ds
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+ C0M̄L f, f̃ τ(h)

t∫
0

e−a(t−s)(t − s)−
1+s
2 ds

+ rC1τ(h)2θ

t∫
0

(t − s)−
1+s
2 +θe−a(1−2θ)(t−s) ds.

But, since s ∈ ( 12 , 1) and θ ∈ (0, 1
2 ), we have

Cθ :=
t∫

0

e−a(t−s)(t − s)−
1+s
2 ds +

t∫
0

(t − s)−
1+s
2 +θe−a(1−2θ)(t−s) ds

≤ 1

a1−
(1+s)
2

�̄
(1
2

− s

2

)
+ 1

a
1
2−( s2−θ)(1 − 2θ)

1
2−( s2−θ)

�̄
(1
2

−
( s
2

− θ
))

< ∞,

where �̄(·) denotes the gamma function.
Thus, if we take C3 = 2C2 with C2 = max{C0M̄L f, f̃ , rC1}, we have

‖Th(t)u − EhT (t)Mhu‖H1(�h)
≤ rC1e

−a(1−2θ)τ (h)2θ t−( 1+s
2 +θ) + C3Cθ τ (h)2θ

+ M̄L f, f̃

t∫
0

e−a(t−s)(t − s)−
1+s
2

‖Th(s)u − EhT (s)Mhu‖H1(�h)
ds.

Now, we can take δ = δ(θ) > 0 such that 1 ≤ t−( 1+s
2 +θ)eaδt . Thus, since

e−a(1−2θ) ≤ 1 and eaδt ≥ 1, we have

‖Th(t)u − EhT (t)Mhu‖H1(�h)
≤ (C1r + C3Cθ )τ (h)2θ t−( 1+s

2 +θ)eaδt

+ M̄L f, f̃

t∫
0

(t − s)−
1+s
2 ‖(Th(s)u) − EhT (s)Mhu‖H1(�h)

ds

If we denote φ(t) = ‖Th(t)u − EhT (t)Mhu‖H1(�h)
e−aδt , we have

φ(t) ≤ (C1r + C3Cθ )τ (h)2θ t−( 1+s
2 +θ) + M̄L f, f̃

t∫
0

(t − s)−
1+s
2 φ(s) ds

where we have used e−aδt ≤ e−aδs for s ≤ t .
By singular Gronwall inequality, we find positive constants C and L independent

of h such that (6.3) is valid. The result follows taking t0 = 1 and κ(h) = τ(h)2θ . �
Definition 6.6. We say that a family {Ah}h∈Diffε (�) is eventually uniformly exponen-
tially attracting if there exists ε ∈ (0, 1), δ > 0, t0 > 0,C > 0 and γ > 0 independents
of h such that

distH (Th(t)Oδ(Ah),Ah) ≤ Ce−γ t , t ≥ t0, h ∈ Diffε(�),
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where Oδ(Ah) = {v ∈ H1(�) : dist (v,Ah) < δ}.
Themain requirement to obtain the continuity of attractorswith a rate of convergence

is that Ah uniformly attracts a δ neighborhood of itself. Notice that the parameter δ

is the same for all h ∈ Diffε(�). A beautiful theorem to guarantee the exponential
attraction of {Ah}h∈Diffε (�) is [12, Theorem 1.1].

Recall that the unstable manifold of u∗
h ∈ Eh for the semigroup Th(·) generated by

solutions of (1.1) is the set

Wu(u∗
h) = {u ∈ H1(�h) : ∃ global solution ξh : R → H1(�h) such that,

ξh(0) = u and ‖ξh(t) − u∗
h‖H1(�h)

→ 0 as t → −∞}.
Given δ > 0, the local unstable manifold of u∗

h for Th(·) is defined as

Wu
loc(u

∗
h) = {u ∈ H1(�h) : ∃ global solution ξh : R → H1(�h) such that,

ξh(0) = u, ‖ξh(t) − u∗
h‖H1(�h)

< δ, t ≤ 0 and

‖ξh(t) − u∗
h‖H1(�h)

→ 0 as t → −∞}.
Definition 6.7. We say that a family of local unstable manifolds {Wu

loc(u
∗
h)}h∈Diffε (�)

is pointwise exponentially attracting if there exist positive constants C, γ and δ such
that, for each h ∈ Diffε(�),

dist (Th(t)u,Wu
loc(u

∗
h)) ≤ Ce−γ t

whenever ‖u−u∗
h‖H1(�h)

< δ, t ≥ 0 and {Th(s)u : s ∈ [0, t]} ⊂ {v ∈ H1(�h) : ‖v−
u∗
h‖H1(�h)

< δ}.We say that Eh has uniformly pointwise exponentially attracting local
unstable manifolds if, for each u∗

h ∈ Eh , the family {Wu
loc(u

∗
h)}h∈Diffε (�) is pointwise

exponentially attracting with the same parameters C, γ, δ independent of h.

Theorem 6.8. The set of equilibrium points Eh of (5.3) has uniformly pointwise ex-
ponentially attracting local unstable manifolds. In addition, the C0-convergence of
the local unstable manifold can be estimate by Cτ(h)2θ , for θ ∈ (0, 1

2 ) and C > 0
constants independent of h.

Proof. The construction of the unstable manifold as a graph of a Lipschitz function
is a well-known result present in several papers (we refer [1,17]). Thus, we can state
that there exists a Lipschitz function s∗

h : Pn
h H

1(�h) → (I − Pn
h )H1(�h) such that

the unstable manifold of u∗
h ∈ Eh is given as graph of s∗

h , that is,

Wu
loc(u

∗
h) = {(v, z) ∈ H1(�h) : z = s∗

h (v), v ∈ Pn
h H

1(�h)}.
We can proceed as [1] being careful with the H−s dual spaces to obtain the following
estimate

sup
v∈Pn

h H
1(�h)

‖s∗
h (v) − Ehs

∗(Mhv)‖H1(�h)
≤ Cτ(h)2θ ,



    5 Page 36 of 41 M. C. Pereira and L. Pires J. Evol. Equ.

where C > 0 and θ ∈ (0, 1
2 ) are constants independents of h. Moreover, we can use

the projection Pn
h to decompose the equation (5.3) in order to obtain that the family

{Wu(u∗
h)}h∈Diffε (�) is pointwise exponentially attracting with the same parameters

C, γ, δ independent of h. �

Given all we have obtained so far, it remains to show the following property to
complete all assumptions of [12, Theorem 1.1].

Definition 6.9. We say that a family of nonlinear semigroups {Th(·)}h∈Diffε (�) having
attractors {Ah}h∈Diffε (�) is exponentially Lipschitz continuous relatively to its family
of attractors if there exist constants C > 0, L > 0 independent of h and ε ∈ (0, 1)
such that

‖Th(t)u − Th(t)v‖H1(�h)
≤ CeLt‖u − v‖H1(�h)

, u, v ∈ Ah .

Proposition 6.10. The family of nonlinear semigroups {Th(·)}h∈Diffε (�) satisfying
(6.1) is exponentially Lipschitz continuous relatively to its family of attractors.

Proof. Let u ∈ Ah and v ∈ A. By (6.1), (5.10) and (5.2), we can write

‖Th(t)u − Th(t)v‖H1(�h)
≤ M̄e−at‖u − v‖H1(�h)

t−
1
2

+ M̄L f, f̃

t∫
0

e−a(t−s)(t − s)−
1+s
2 ‖Th(s)u − Th(s)v‖H1(�h)

ds

The result follows from Gronwall inequality as in the proof of Theorem 6.5. �

Proposition 6.11. The family of attractors {Ah}h∈Diffε (�) of (6.1) is eventually uni-
formly exponentially attracting.

Proof. We can see in [27] that Th(·) is a gradient semigroup. The existence of Ah

and Theorem 6.5 implies that the family {Th(·)}h∈Diffε (�) is asymptotically compact
and continuous at h = IN . Theorem 5.3 states the continuity of Eh → E as h → IN .
Proposition 6.10 ensures that {Th(·)}h∈Diffε (�) is exponentially Lipschitz continuous
relatively to {Ah}h∈Diffε (�), and Theorem 6.8 provides that the family of local unstable
manifolds {Wu

loc(u
∗
h)}h∈Diffε (�) is pointwise exponentially attracting for all u∗

h ∈ Eh .
These are all assumptions of [12,Theorem1.1]which implies {Ah}h∈Diffε (�) uniformly
exponentially attracting. �

Finally, we can state, in our context, the [12, Proposition 1.1].

Theorem 6.12. If a family of nonlinear semigroups {Th(·)}h∈Diffε (�) with attractors
{Ah}h∈Diffε (�) has a κ-modulus of continuity at IN and {Ah}h∈Diffε (�) is eventually
uniformly exponentially attracting, then for ε ∈ (0, 1) sufficiently small

dh(Ah, EhA) ≤ C̄κ(h)
γ

γ+L , h ∈ Diffε(�),

where C̄ is a constant independent of h, γ is the uniform constant given by exponential
attraction of {Ah}h∈Diffε (�) and L is the uniformLipschitz constant of {Th(·)}h∈Diffε (�).
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Now, we have all the conditions to show the main result of this paper.

Theorem 6.13. The family of attractors {Ah}h∈Diffε (�) is continuous at IN and this
continuity can be estimated by

dh(Ah, EhA) ≤ Cτ(h)β, h ∈ Diffε(�), (6.5)

for constants C > 0 and 0 < β < 1 independent of h.

Proof. By Proposition 6.5, {Th(·)}h∈Diffε (�) has κ(h) = τ(h)2θ as modulus of conti-
nuity at h = IN . Proposition 6.11 ensures that {Ah}h∈Diffε (�) is eventually uniformly
exponentially attracting. Thus, by Theorem 6.12, we can take ε ∈ (0, 1) sufficiently
small such that

dH (Ah, EhA) ≤ C̄κ(h)
γ

γ+L = C̄τ(h)β,

where β = 2θγ
γ+L . �

Remark 6.14. Finally, we notice that the choice of H1(�h) as the phase space to
obtain the estimate (6.5) has no advantage over H1(�). Since (2.11) implies (2.12),
we can remake all the results of the previous sections to obtain

d�
H (MhAh,A) ≤ Cτ(h)β,

where d�
H denotes the Hausdorff distance in H1(�).

7. Rate of convergence of attractors in the Gromov–Hausdorff distance

The continuity of attractors gives information about how the shape of attractors
approaches each other as h → IN . It does not give information on the internal structure
of the attractors. The works in this direction are of high importance and involve more
delicate questions related to the structural stability of the problem. We do not intend
to address these questions here, but we can use the previous results to quantify how
much the attractors Ah and A are no longer isometric.
From [26], we take the following definition.

Definition 7.1. An η−isometry (η > 0) is a map ih : Ah → A (not necessarily
continuous) satisfying

|‖ih(u) − ih(v)‖H1(�) − ‖u − v‖H1(�h)
| ≤ η, u, v ∈ Ah (7.1)

and dH (ih(Ah),A) ≤ η. The Gromov–Hausdorff distance between Ah and A is
defined by

dGH = inf{η : ∃ ih : Ah → A and jh : A → Ah η − isometries}.
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Remark 7.2. Notice that an isometry (η = 0) is a map that preserves distance, and
then, it is continuous. On the other side, condition (7.1) does not imply ih continuous.
The distance dGH originated from the work [19]. It quantifies how much the attractors
Ah and A are not isometric.

Recently, [26] have shown that there exists a η−isometry (η > 0) betweenAh and
A for η sufficiently small. In the next result, we show that we can take η of the order
τ(h)β , 0 < β < 1.

Theorem 7.3. The Gromov–Hausdorff distance of the attractors can be estimated by

dGH(Ah,A0) ≤ C min{τ(h)β, τ (h)
1
2 }. (7.2)

for constants C > 0, 0 < β < 1 independent of h.

Proof. For all u, v ∈ Ah , we have∫
�

|Mhu − Mhv|2 =
∫
�h

|Mhuh
−1 − Mhvh

−1|2|det((h′)−1)|

≤
∫
�h

|u − v|2 +
∫
�h

|u − v|2τ̄ (h)

and ∫
�

|∇Mhu − ∇Mhv|2 =
∫
�h

|∇Mhuh
−1 − ∇Mhvh

−1|2|det((h′)−1)|

≤
∫
�h

|∇u − ∇v|2 +
∫
�h

|∇u − ∇v|2τ̄ (h).

Thus,

‖Mh(u) − Mh(v)‖H1(�) ≤
√

‖u − v‖2
H1(�h)

+ (‖u − v‖H1(�h)

√
τ̄ (h))2

which implies

‖Mh(u) − Mh(v)‖H1(�) − ‖u − v‖H1(�h)
≤ ‖u − v‖H1(�h)

τ̄ (h)
1
2 .

In the same way, one can obtain that

‖u − v‖H1(�h)
− ‖Mh(u) − Mh(v)‖H1(�) ≤ ‖u − v‖H1(�h)

τ̄ (h)
1
2 .

Since the attractors are uniformly bounded, we have Mh : Ah → H1(�) is an

r τ̄ (h)
1
2 -isometry for some r > 0 independent of h. In the same way, we can prove

that Eh : A → H1(�h) is an r τ̄ (h)
1
2 -isometry.

Now, we can argue as in [26] to take, for each h, two maps ih : Ah → A and
jh : A → Ah such that, by Theorem 6.13 and Remark 6.14, we have

‖ih(u) − Mh(uh)‖H1(�) ≤ C τ̄ (h)β and ‖ jh(u) − Eh(u)‖H1(�h)
≤ C τ̄ (h)β .

Hence, ih and jh are both C min{τ̄ (h)β, τ̄ (h)
1
2 }-isometries. Since dGH is the infi-

mum on the η-isometries, we obtain (7.2). �
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Figure 1. A local oscillating perturbation of the boundary of a do-
main �

8. Example: oscillating perturbation of a piece of the boundary

Let � ⊂ R
2 be a smooth C2 domain such that R1 = [0, 1] × [0, 1] ⊂ � and

∂� ∩ R1 = {(x, 1) ∈ R
2 : x ∈ (0, 1)}, see Fig. 1. We define

hε(x, y) =
{

(x, y), (x, y) ∈ � \ int (R1),

(x, y + εy sin( x
εα )), (x, y) ∈ int (R1),

(8.1)

where 0 < α < 1 is fixed and ε ∈ (0, 1) is a parameter.
We have that hε is a diffeomorphism from � into its image �h . If (x, y) ∈ � \

int (R1) then det(h′
ε) = 1 and if (x, y) ∈ int (R1), then

h′
ε(x, y) =

[
1 0

yε1−α cos
( x

εα

)
1 + ε sin

( x
εα

)] ,

which implies |det(h′
ε(x, y))| = ∣∣1 + ε sin

( x
εα

)∣∣. It is easy to see τ(h) = dC1(h, I2) ≤
Cε1−α . Hence,

dH (Ah, EhA) ≤ Cεβ

for some 0 < β < 1.

Remark 8.1. It is worth mentioning that the case α = 1 has been addressed in [3]. In
this case, the problem presents a nonuniform Lipschitz deformation and the limiting
problem is different. Hence, to obtain the rate of convergence τ(h), a differential
framework is essential (as we can see in Lemma 2.1). Thus, dealing with Lipschitz
(not differentiable) perturbation of the domain is an interesting open question of the
viewpoint of the rate of convergence of attractors for parabolic equations thatwe intend
to address in a future work.
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