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Abstract: This study focuses on investigating and predicting two hidden structures: plant root system
architecture and non-visible bubbles in plexiglass. Current approaches are damaging, expensive, or
time-consuming. Infrared imaging was used to study the root structure and depth of small plants
and to detect the diameter and depth of bubbles in plexiglass. A finite element analysis (FEA) model
was built to simulate the infrared imaging process to realize the detection and prediction given
the amount of heat flux required to obtain thermal images and data. For the root system, based
on a tree structure thermal profile over time derived from the FEA model, a line scan method was
developed to predict root structure. The main root branches can be viewed from the detection results.
Polynomial regression, support vector machine (SVM), and artificial neural network (ANN) models
were designed to predict root depth. For bubble defects, three ANN models were developed to
predict bubble size using temperature data generated by the FEA model. Results indicated that these
models provide valid predictions. Statistical tests were applied to evaluate and compare the above
predictive models. Results suggest that infrared imaging and machine learning models can be used
to provide information on both hidden structures.

Keywords: finite element analysis; machine learning; root system architecture; non-visible bubble

1. Introduction

The hidden structure in this study is twofold: one is the root system, the other one is
the non-visible bubble. The term root system architecture (RSA) refers to the combination
of a plant’s roots and their multiplex components in the growing environment [1]. A
robust RSA is essential for plant growth because its roots absorb water, nutrients, and other
resources, dissolve ions and synthesize and store organic matter. Since water and nutrients
are unevenly distributed in soil, the roots’ ability to absorb and transport significantly
determines the amount of resources that plants can obtain [2]. Meanwhile, coexistence with
other organisms and changes in the rhizosphere require RSA participation. According to
recent research, RSA is sensitive to the availability and distribution of nutrients. Therefore,
root quality can affect the productivity of crop plants [3,4]. Moreover, through physically
supporting and recruiting beneficial microorganisms, RSA significantly influences micro-
bial communities and plant performance [5]. Accordingly, the root system is fundamentally
essential for plant growth, production, and survival. The investigation, analysis, and pre-
diction of RSA can help growers create better plant growth and multiplication conditions.

Several non-destructive imaging techniques have been applied to study the spatial
distribution of RSA, such as ground-penetrating radar (GPR), nuclear magnetic resonance
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(NMR), and computed tomography (CT). A GPR technique has been applied to study
the three-dimensional distribution of large root systems and estimate the diameter of tree
root systems [6,7]. In contrast, the NMR medical imaging research system showed better
results for detecting tiny roots, which could investigate RSA in various soil media at a
0.6 mm resolution [8]. Moreover, Dusschoten et al. used NMR and toolbox NMRooting to
monitor the root mass, length, diameter, tip number, growth angles, and spatial distribution
non-destructively. More specifically, this technology can quantitatively measure tiny roots
with a diameter that varies between 0.2 and 0.3 mm [9]. Nonetheless, current research
applications still have limitations in terms of accuracy, application range, and cost [10].
Therefore, infrared imaging, which is an economical and non-destructive technology, has
been taken into consideration. Near-infrared reflectance (NIR) has been employed to gather
quantitative seed phenotypes to improve the study of seed traits [11]. It was also used
to develop a fixed-point observation system that could accurately predict leaf area in-
dex [12]. Moreover, a Fourier transform infrared imaging (FTIRI) approach was developed
to monitor the nutrient changes in the rhizosphere, which helped comprehend nutrient
flow processes in assorted complicated biological systems [13]. Although current research
on utilizing IR in the agricultural sector has achieved convincing results, applications for
detecting RSA are limited. In addition, FEA can simulate the heat transfer process and
provide valid results regarding various thermophysical properties and boundary condi-
tions [14]. Therefore, in this study, it is expected that IR imaging with FEA simulation can
be used to investigate and identify RSA precisely and efficiently.

The second object of this study is to detect non-visible bubbles in plexiglass boards.
Plexiglass refers to poly (methyl methacrylate) PMMA, which is lightweight, has good
tensile strength, UV resistance, and other outstanding properties. It is a commonly used
transparent thermoplastic in various industrial fields, such as architecture and electron-
ics [15]. The defects in the plexiglass strongly affect the products’ quality, which could
result in misadventure. Additionally, defective products can lead to recall or rejection by
the consumer. Hence, an accurate inspection process is necessary to ensure the plexiglass
products’ high quality. Typical defects include, but are not limited to, the following types:
scratch, crack, pits, and bubble. Traditionally, human vision examination has been widely
used in this sector, but this work could damage inspectors’ eyes, and the accuracy depends
on the inspectors’ proficiency [16]. As the demand for products increases, the requirements
for inspection’s accuracy and efficiency increase as well. Hence, modern technologies
have been implemented, such as machine vision, ultrasonic and X-ray. Machine vision
is an approach that can automatically recognize objects based on image processing algo-
rithms [17]. Ding et al. proposed a method to automatically detect dispersed defects in the
resin eyeglass by applying machine vision methodologies. The approach was validated by
simulation and experiment, which achieved a 97.50% accuracy and only took 0.636 s [18].
Machine vision algorithms have also been introduced to develop a defect detection system
to inspect mobile phone screen glass, which could meet the requirements of online detec-
tion [19]. Ultrasonic has been utilized to inspect thin-walled polymer pipes, which proved
that this method could detect defects down to a size of 1 mm [20]. Hassen et al. compared
the performance of ultrasonic C-scan and X-ray computed tomography in detecting glass
fiber and polypropylene composites with artificial defects. The results demonstrated that
X-ray could identify the size and shape of defects but not work in materials with similar
densities. Ultrasonic could not locate all embedded defects, but it could detect the defects’
size and shape in glass fiber composites [21]. However, current approaches are limited to
cost, difficulty in operation, type, and size of defects.

Thermography has also been applied to detect materials’ defects. Pulse phase ther-
mography could detect artificial defects with 5–6 mm depth in PMMA specimens [22]. The
artificial flat-bottomed hole in PMMA samples was also studied by utilizing lock-in and
pulse phase IR thermography. The experiments suggested that this method could detect a
10-mm-diameter and 3.6-mm-depth hole with an uncertainty of 17% [23]. Image processing
algorithms have been implemented in this sector. Grys presented a method, including
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background removal, image segmentation, and feature extraction, to detect holes in the
PMMA slab using active IR thermography [24]. After achieving such convincing results
in the defect detection field by thermography, it is expected that IR can be successfully
applied to detect non-visible bubble defects in plexiglass.

This study aims to develop an efficient, accurate, and economical approach to investi-
gate the root system in situ and non-visible bubble defects in plexiglass by implementing
thermography methodologies. More precisely, the objectives of this research are twofold.
The first is to develop a new methodology to investigate the RSA and bubble based on
the infrared (IR) imaging technology and evaluate the feasibility with the finite element
analysis (FEA) theory. The second is to design predictive models for the information of
root (structure and depth) and bubble (diameter and depth) based on FEA findings.

2. Implementation of FEA Theory for RSA
2.1. RSA Model and FEA Set-Ups

There are two main types of root structures: taproot and fibrous root [25]. For taproot,
the most central and stout part is the primary root, which grows vertically downwards.
The secondary roots are tiny and spread laterally around the primary root. In contrast, the
fibrous root is composed of a moderate number of small roots. In this study, sugar beet
roots that have a taproot structure were investigated and modeled. The 3D model for the
entire simulated sample was built as shown in Figure 1, which has three parts arranged in
order from front to back as follows: acrylic glass cover, soil, and the sugar beet root system
in situ.

Figure 1. Transparent isometric view of RSA model (left) and isometric view of sugar beet root
model (right).

The dimension of this sample is 65 mm× 95 mm× 12 mm. The front transparent plate
is a 2-mm-thick transparent acrylic glass cover used to protect the root and soil sample. The
cover also increases the emission rate, which contributes to better thermal imaging results.
To simulate the root growth environment, the material of the medium was set as soil. The
1-mm-thick model of the sugar beet root is on the right. The diameters are 1 mm for the
primary root and 0.5 mm for the secondary roots. The depth of the RSA was considered as
the distance between the bottom surface of the acrylic glass cover and the upper surface
of the root. RSA models for nine different depths were established and analyzed: 1 mm,
2 mm, 3 mm, 4 mm, 4.5 mm, 5 mm, 6 mm, 7 mm, and 8 mm. A model with a depth of
9 mm was not built due to limitations in the container’s size.

To investigate infrared imaging performance based on this RSA model, ANSYS and
finite element analysis (FEA) methodologies were employed. To simplify and accelerate
the simulation process, the temperature of the soil, roots, and acrylic glass was assumed to
be a constant temperature of 23 ◦C (296.15 K) initially. As shown in Table 1, the density
(ρ), thermal conductivity (k), and specific heat capacity (cp) of these three materials were
given. The specific heat capacity of the roots is twice that of the acrylic glass cover, and
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the specific heat capacity of the acrylic glass cover is twice that of the soil. Therefore, the
heating and cooling rate of the roots are lower than that of soil and acrylic glass cover,
which will eventually lead to temperature differences between the root region and soil
region on the cover’s surface.

Table 1. Constant thermophysical properties of materials.

Thermophysical Properties Materials

Materials Name Soil [26] Sugar beet Roots [27] Acrylic Glass [28]

ρ (kg·m−3) 1300 1169.9 1150

k (W·m−1·K−1) 0.35 0.427 0.17

cp (J·K−1·kg−1) 830 3546.4 1470

To create thermal excitation inside the sample, a constant heat flux was applied to
the upper surface of the acrylic glass cover for 10 s. Then the whole model was naturally
cooled for 110 s. The upper surface was set under natural convection, while other outer
surfaces were set as perfectly insulated to prevent heat loss. The amount of heat flux
was set as 0.0005 W/mm2, which transmitted a total of 30.875 J energy to the surface. In
experimental conditions, the infrared imaging camera would be placed directly above the
object. Therefore, during the whole process, including heating and cooling stages, the data
and images of the upper surface were recorded for further analysis.

The RSA model was meshed before the initiation of the numerical simulation. The
element size and method are essential factors influencing the accuracy of results during
the meshing process. While an oversubtle grid can result in the unacceptable consumption
of calculation resources, an overly coarse one can lead to inaccurate results. Therefore, the
element size was set to 1 mm to balance these two aspects, and the meshed model is shown
in Figure 2. The process generated 80,237 nodes and 53,547 elements for each model. In
addition, because the contact relationship between the roots and the soil is not entirely
rigid, ‘Node Merge’ was applied to the contact region, which merged a total of 2270 nodes.

Figure 2. Meshed RSA model showing Node Merge contact region.

2.2. Outcomes and Analysis

The 2 mm depth model is presented here as an example to elaborate on observations
from the FEA process. Figure 3 reflects the temperature distribution on the upper surface
at 17 s, 27 s, 40 s. To improve the visibility of the results, the structure of the roots
was superimposed over each image. Throughout the entire process, the shape of the
roots changed from blurred to clear, then to blurred. This phenomenon suggests that the
temperature difference between the root and soil areas becomes bigger first, then smaller.
The structure of the roots could first be viewed clearly at 17 s. At 27 s, the observed
structure contained more components, but some areas were fused. At 40 s, the suggested
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root region was well beyond the original size of the roots. In addition, some parts of
the upper surface exhibited a faster cooling rate. The regions corresponding to these
sections were the joints of primary roots, which had a larger volume, which could result in
an enormous temperature difference. It can be inferred that if a region has a significant
temperature difference, there should be roots buried underneath. In addition, the thermal
profile of the secondary roots was influenced by the primary root, while the primary root
shifted the temperature difference area to its location.

Figure 3. Upper surface’ thermal images of 2 mm root depth model at 17 s (left), 27 s (mid), and 40 s (right).

The analysis of FEA results suggested that the primary root joint areas have more
obvious temperature differences than other areas. Thus, a point from this position (shown
in Figure 4) was selected for further inspection of potential relationships between root
depth and temperature distribution on the upper surface.

Figure 4. Feature point of the root.

The temperature graphs (around 50 s) of this point from 9 different depth models are
shown in Figure 5 below.

The average temperature and cooling rate of this point’s temperature from these
models are given in Table 2 below.
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Figure 5. Temperature graph of the feature point during the cooling process.

Table 2. Average temperature and cooling rate of the selected point from each model.

Depth (mm) 1 2 3 4 4.5 5 6 7 8

Average
Temperature (K) 296.86698 296.87029 296.87242 296.87437 296.87487 296.87544 296.87609 296.87647 296.87667

Cooling rate (K/s) 0.025674 0.025682 0.025682 0.025671 0.025667 0.025661 0.025652 0.025645 0.025641

According to these figures and tables, the average temperature of the 1 mm depth
model’s selected point during the cooling process was the lowest. As the depth increased,
the average temperature kept increasing. This phenomenon was due to the closer distance
between the shallowly buried root and the upper surface, which made it easier for heat
energy to be released into the air; in other words, the energy gained from the heating
stage and then stored at that depth outflowed faster. At deeper depths, the roots are
further from the air. Thicker soil obscures the effect of the roots on the upper surface
temperature distribution. As a result, a model with a deeply buried root has a lower
average temperature than a shallowly buried one.

From Table 2, it can be observed that as depth increased, the cooling rate did not
decrease all the time. The relationship between root depth and temperature change trend
did not present a global linear property. The selected point was chosen as an example, and
polynomial fitting was used to fit its cooling process. The polynomial functions and their
corresponding R-squared values at three different depths are given as Equations (1)–(3). In
addition, for all models, the cooling process was non-linear and thus could not be fit using
linear functions.

2 mm depth model:

y = 9−11x6 − 3−8x5+5−6x4 − 0.0004x3 + 0.0134x2 0.263x+299.11, R2 = 0.98 (1)

4.5 mm depth model:

y = 9−11x6 − 3−8x5+5−6x4 − 0.0004x3 + 0.0134x2 − 0.2634x+299.11, R2 = 0.9798 (2)
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7 mm depth model:

y = 9−11x6 − 3−8x5+5−6x4 − 0.0004x3 + 0.0134x2 − 0.2633x+299.11, R2 = 0.9799 (3)

2.3. The Impact of Boundary Conditions and Front Cover

In this FEA simulation, several boundary conditions and structures of the 3D model
hold the potential to affect the result. One is through heating, and the other is through the
front cover. With the increase in heating power, the specimen could receive more heating
energy. Therefore, the differences between hidden structures and mediums may result in a
more obvious surface temperature distribution. For the front cover, a thick one may prevent
internal differences from spreading to the surface. More specifically, to investigate these
factors’ effects, the model with roots buried at 2 mm depth was chosen as the specimen,
while the amount of heat flux, length of heating, and thickness of the front acrylic glass
cover were adjusted.

The first parameter to be discussed is the amount of heat flux. It was set as 0.0005 W/mm2

in the previous simulation, then it was improved to 0.0010 W/mm2 and 0.0015 W/mm2,
while the heating time remained as 10 s. The upper surface’s temperature distribution with
each setting at 30 s is listed in Figure 6. From these figures, as the heating power increased,
the temperature increased, but the relative temperature distribution did not change much.

Figure 6. Simulation images of FEA model with heat flux of 0.0005 W/mm2, 0.0010 W/mm2, 0.0015 W/mm2 (from left
to right).

The second parameter to be adjusted is the length of heating. It has been extended
from 10 s to 20 s then to 30 s, while the amount of heat flux remained as 0.0005 W/mm2.
Compared to Figure 6, the relative thermal images at 30 s in Figure 7 did not change
significantly with extended heating time. The above phenomena indicate that the extension
of the heating period and the improvement in heating power do not significantly contribute
to inspection capability in this study.

The last argument is the thickness of the front acrylic glass boards. It was changed
to 3 mm and 4 mm, and the simulation results are given in Figure 8. The amount of
heat flux was set as 0.0005 W/mm2, and the length of heating was 10 s. As the cover’s
thickness increased, the temperature differences disappeared first, which means that the
cover thickness has a significant impact on the investigation ability. Therefore, a thinner
cover (≤3 mm) has the possibility to produce more valuable results. The 2 mm thick acrylic
glass cover was chosen in this study because it is convenient to acquire and process.
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2.4. Detection of the Root Structure

In order to detect the shape of the RSA, a data processing method based on differences
in thermal properties between root and soil was developed. The temperature data, which
contained the temperature and positions of each point on the upper surface at each time
interval, were exported from ANSYS. The preliminary processing of unsorted data was
finding out the type and value of all X and Y coordinates. Next, the data were sorted based
on each X and Y coordinates in ascending order. Then the data scanning was done through
each X and Y as the following steps.

First, start from the minimal one of the X coordinates, calculate the average temper-
ature of each point on this line. Next, smooth the data of this line by ‘Smoothdata’ and
‘Movmean’, which can eliminate the noise, smoothen the data, and reduce the impact of
irrelevant factors. Then all the minimal local value of this line is found through differences
and sign functions as follows. Calculate the differences between adjacent elements of
each line. Moreover, apply the sign function to convert the result into 1, 0, and −1. Then
calculate the differences between adjacent numbers again. If the value is larger than 0, this
would be the position of a minimal local value. Add 1 to all the founded positions, which
would equal to the corresponding indexes. Export all the indexes found in this line, which
are the corresponding coordinates of minimal local values. Furthermore, repeat the above
steps to find the coordinates of valleys from the second smallest X coordinate to the largest
one. After finishing X-Scan, redo these previous actions for each Y coordinate. Finally,
combine and plot the results of the selected coordinates from the X-scan and Y-scan.
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The process of the line scan method is given below as Algorithm 1:

Algorithm 1.

Input:
Temperature image at a timestamp Si = (x1, y1), . . . , (xm, yn)
Temperature of a point (x, y) from above image Ti(x, y)
Timestamp i = 1, . . . , t (Cooling process)
Goal:
Find the coordinates set of the root region R, Plot the image of RSA
Initialize:
R = ∅, Rx = ∅, Ry = ∅
For α = 1, . . . , m
For β = 1, . . . , n
T(xα,yβ) = mean(T1(xα,yβ), . . . , Tt(xα,yβ))
Smooth data of T(xα,yβ)
Rα = (xα,yindex1), yindex1 = position of local minimums
Rx = Rx∪Rα

Repeat above steps to get Rβ = (xindex2,yβ)
Ry = Ry∪Rβ

R = Rx∪Ry
Plot based on the coordinates of R
Output:
R, Plot of RSA

Moreover, the accuracy of this method has to be evaluated. Because the detection
result produced from the previous line scan method was a binary image, the original root
image was converted to a black and white image as well. Next, the original root image’s
grayscale value was reduced to ten percent, while that of the predicted root image was
reduced to ninety percent. Then both images with adjusted grayscale values were added
together. The FEA model with roots buried at 2 mm depth is given as an example. The
temperature data were imported into the line scan method, and the detected root structure
is presented and evaluated.

As shown in Figure 9, the main central branch could be viewed, but it swung left and
right from the original position because of the other three primary branches and secondary
branches. The upper right big root position was founded, but it has deviations due to
the main central branch’s existence. In contrast, since the bottom right primary root is
relatively far away from other big roots, it was depicted precisely. The left primary root
was almost missed because it is close to the main central branch. However, the influence of
secondary roots was covered by the impact of primary roots, small roots were not located.
Besides that, due to the sensitivity to subtle noise, many random noise points appear
around the founded RSA structure. For the result of the 5 mm depth model, several main
branches could still be detected. However, for the 6 mm depth model, root structures were
not located. Therefore, the line scan method could detect the current FEA model’s root
structure with a root depth that is not deeper than 5 mm.

2.5. Prediction of the Root Depth
2.5.1. Polynomial Regression Model

A polynomial regression model is a flexible tool for revealing complex relationships be-
tween inputs and outputs. Additionally, this model allows complete control because the ex-
ponential parameters need to be set at the beginning. A certain amount of data are required
to determine the appropriate exponential parameter to avoid overfitting and maintain
accuracy. A polynomial regression model with n inputs is shown as Equation (4) below:

y = ŷ + e, ŷ = a1 × x1 + a2 × x2 + · · · + an × xn (4)
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In the above equation, x is the input, and a is the corresponding coefficient parameter,
e is the constant error term, ŷ is the estimated output, and y is the final output.

Figure 9. Prediction results of FEA model with roots buried at 2 mm (left), 5 mm (middle),
and 6 mm (right).

The first thing to do is to select the input data for building the model. The average
temperature of the upper surface during all models’ cooling processes is depicted in
Figure 10. As root depth increased, the average temperature of the upper surface kept
increasing. Based on this phenomenon, the average temperature was then considered as
the source of the input data for the polynomial regression model.

Figure 10. Average temperature of upper surface during the cooling process.

To further study the relation between root depths and the average temperature of the
upper surface, the correlation coefficient (CC) was introduced. As listed in Table 3, the
correlation coefficient kept increasing as time increased. Therefore, the average temper-
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ature data, ranging from 60 s to 120 s for all models, were selected as inputs, and their
corresponding root depths were set as outputs to be calculated and predicted.

Table 3. Correlation coefficient between root depths and average temperature of upper surface
during the cooling process.

Time (s) 10 20 30 40 50 60 70 80 90 100 110 120

CC 0.62 0.67 0.73 0.79 0.85 0.89 0.93 0.96 0.98 0.99 0.99 0.98

Two models were created: one is the interpolation model, the other one is the extrap-
olation model. The first interpolation model used all models except the target as inputs
to predict the target (2 mm, or 3 mm, or 4 mm, or 4.5 mm, or 5 mm, or 6 mm, or 7 mm).
The second extrapolation model used all models except the target to predict the shallowest
one (1 mm) or deepest one (8 mm). For the first model, the average error was 1.03 mm,
and the average accuracy was 68.96%. For the second approach, the average error was
2.19 mm, and the average accuracy was−104.37%. The extrapolation model established the
foundation for data and provided space for upward or downward growth. Comparatively,
the interpolation model sets the lower and upper limits of the data. So, the interpolation
model produced more accurate results than the extrapolation model. The interpolation
model to predict 4.5 mm and the extrapolation model to predict 8 mm are given below
as examples.

Interpolation model to predict 4.5 mm:
y =− 67777.57173641 × x1 + 298234.7428461 × x2
− 404202.16199545 × x3 + 74860.79648985 × x4 + 72863.90284235 × x5 + 207529.91694065 × x6
−186166.48290804 × x7 + 1380601.18953825

(5)

Extrapolation model to predict 8 mm:
y = 54609.30507467 × x1 − 249530.3871525 × x2 + 390530.77926045 × x3
− 176754.24016523 × x4 + 3332.2624362 × x5
−160075.45127699 × x6 + 145232.4524183 × x7 − 2177681.87002655

(6)

In the above equations, x1, x2, x3 x4, x5, x6, x7 are the temperatures at 60 s, 70 s, 80 s,
90 s, 100 s, 110 s, 120 s of the model, respectively, and y is the corresponding predicted
root depth.

2.5.2. Data Pre-Processing for Machine Learning Models

Points on the upper surface from different regions of the root were selected, and
their temperature data over time were recorded. To compare the impact of different
combinations of points on prediction performance, the points selected were from the areas
corresponding to the primary and secondary roots. These points were then combined into
three different sets for use as input nodes. The first set consisted of thirty points from the
area corresponding to the central primary root. The second set consisted of thirty points
from areas throughout the RSA. The last set was a combination of the first two. Since the
points selected by the first and second overlapped, the last set has a total of 54 points. The
locations of these points are shown in Figure 11. For each point, temperature data from the
cooling process were extracted every three seconds. Therefore 34 sets of data of each point,
considered to be 34 features, were produced. As nine different root depth models were
simulated, for the input set 1 and 2, the total number of samples was 270. For the input set
3, the total was 486. The output was the corresponding root depth of each input data set.
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Figure 11. Different sets of temperature data input set 1 (left), input set 2 (mid) and input set 3 (right).

2.5.3. Support Vector Machine

To implement the multiclass classification, the LIBSVM toolbox was used, which is
based on a one-to-one method. In addition, the RBF kernel (Gaussian kernel) was selected
to map the low-dimensional feature space into high-dimensional feature space. Addi-
tionally, SVM has two essential factors: one is the cost (c), the other is g (gamma). Cost
means tolerance of error, which determines the generalizability of the model. Gamma
is a parameter of the RBF kernel, which is inversely proportional to the number of sup-
port vectors that affect training and prediction speed. Accordingly, to train an efficient
model that will neither overfit nor underfit, the values of c and g must be kept within an
appropriate range. Hence, grid-search and cross-validation (cv) are utilized to find the
best c and g automatically. To initiate the grid-search, a set of c and g is designated for
the parameters. Next, based on the selected scoring standards, the best setting would be
found out after exhausting all the various combinations of parameters. To avoid the model
becoming too complicated, which may lead to overfitting, cross-validation is implemented
simultaneously. The training sets will be divided into several subsets randomly. One subset
is chosen as a training set for each round, and others are set as validation sets. These
two mechanisms were combined to adjust the parameters, which improve the training
efficiency and model performance.

Since SVM is a classification technique, if the classification result is not the same as the
target, the classification is considered incorrect. The results of SVM models with different
input sets are given in Table 4. It can be observed that although the second input set
performed well on the training data set, it had the worst accuracy on the validation set,
suggesting that overfitting occurred. The third input set performed best on the validation
set and had the smallest difference in accuracy between training and validation sets.
Therefore, the SVM model trained by the third input set achieved the best performance.

Table 4. Results of SVM models.

Model Name SVM

Input Set 1st 2nd 3rd

Training accuracy (%) 68.15 70.70 66.31

Validation accuracy (%) 60.26 41.03 61.70
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2.5.4. Artificial Neural Network

ANN models trained with a small number of samples tend to have weak general-
izability and are prone to overfitting. Since the number of samples from the FEA was
insufficient to train a strong ANN, K-Fold cross-validation was used to improve the uti-
lization efficiency of the current samples. The K-fold cv contains the following four steps.
The first is dividing the training sets into k groups randomly. The second is taking each
unique group as a testing set and taking the other remaining groups as the training sets.
A parameter is set as the evaluation standard and recorded during this process for each
model. The third is comparing the parameter for all models and then picking the best
one. Therefore, the designated parameter for evaluation criteria has a direct impact on
the performance of the model. R squared is selected as the evaluation standard, which
only varies between 0 and 1 for any different models. Intuitively, the closer R squared
approaches 1, the better the model fits the data. On the contrary, if R squared is close
to 0, the model almost does not fit the data. After each comparison, the model with a
larger R squared is retained. Meanwhile, all models in this study were designed to have
a single hidden layer. Moreover, the number of neurons in the hidden layer is a vital
parameter that affects ANN performance. If the number is insufficient, the network may
not actually be trained or may have poor performance. If the number is too large, although
the system error can be reduced, the training time will be extended and potentially stick
in a local optimum, which would cause overfitting. In consideration of this possibility,
during each cross-validation, hidden layers with different numbers of neurons (ranging
from 2 to 33) were compared to determine the best number. For the last step of K-fold cv,
the best-performing model and the number of neurons are selected. Since K-fold cv reuses
training sets to dig out the parts with the most visible features, it consumes much more
computing resources than the regular ANN model. Hence, multi-core parallel operations
and GPU acceleration are utilized to exploit more computing resources and then accelerate
the training process.

The temperature data of each point from the cooling process were extracted every
three seconds. Therefore, 34 sets of data of each point were produced, considered as
34 input nodes. To verify the effectiveness of the K-Fold cross-validation, the ANN was
trained without it at first; 2/3 of the data were used as the training set; 1/3 were used as the
validation set. The two parts were separated randomly to avoid overfitting and improve
generalizability. The ‘Trainrp’ and ‘Mean Square Error’ training functions, which have a
fast convergence rate and small memory usage, were selected. The number of neurons in
the hidden layer was set as 10. As shown in Table 5, the data set of 30 points on the central
primary root provided the best result.

Table 5. Results of ANN models.

Model Name ANN ANN with K-Fold cv

Input Set 1st 2nd 3rd 1st 2nd 3rd

Number of hidden layer’s neurons 10 10 10 30 5 16

Training accuracy (%) 85.13 73.42 82.93 92.98 91.24 92.70

Validation accuracy (%) 80.12 69.78 70.28 87.18 86.29 87.97

K-fold cross-validation was then implemented to determine the optimal number of
neurons in the hidden layer and improve data utilization. Again, 2/3 of the data were
used as the training set for K-fold cross-validation, and 1/3 were used as external data
for validation. K-fold cv separated each input set into k copies for training and validation.
After comparison, the training set with the highest validation accuracy was determined as
the best input data.

From the results in Table 5, the difference in accuracy between the input sets was
slight. The third input set provided the best validation result, which was different from the
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result of the original ANN. In addition, the accuracies of all input sets were higher than
their corresponding sets in the ANN models without K-fold cv. The results indicate that
the use of K-fold cv to select the optimal number of neurons and training data for each
input set helped to improve the performance of the ANN models.

Compared with the original ANN, the K-fold cross-validation optimized the data
fitting effects and reduced error rates significantly. Nevertheless, this method reused the
data multiple times, and the calculation consumption time increased dramatically. After
using parallel computing and graphics card acceleration technologies, it took about half an
hour to train one ANN model, which may still provide a relatively efficient approach.

Three models have been trained and tested for the prediction of root depth. The
polynomial regression model used the average temperature of the upper surface during the
cooling process as input, which is more convenient to acquire. Additionally, it presented
the highest training speed, and the average accuracy was 68.96%. However, it could only
predict one root depth at a time, while SVM and ANN could predict all root depths. SVM
and ANN required appropriate input data and more time to be trained. ANN with k-fold
cv produced the best accuracy while SVM consumed less time to be trained.

2.5.5. Model Testing

To analyze and compare the temperature data characteristics of different depth models,
standard deviation (SD) was used. Since the root depth prediction models need to be fault-
tolerant, SD was also increased (in increments of 0.02) to simulate random noise due to
environmental factors. Increments of 0.02 were chosen because the temperature differences
between depths are relatively minimal. Figure 12 shows that SD increases from the 1 mm
depth model to the 2 mm depth model, then decreases as depth increases. Although the
relationship between the depth and temperature data is non-linear, the temperature at
different depths exhibits minimal differences.

Figure 12. Standard deviation of all models’ temperature data.

Statistical testing based on the incremental adjustments to SD was applied to these
models to evaluate their performance. Two parameters were adjusted: the data utilization
rate and the proportion of the data that was subject to the SD adjustment because changing
the SD of 100% of the input data would eliminate any relationship between the training
input and test output. Therefore, the noise was injected into 10%, 20%, and 30% of
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the training input. Consumption time and prediction accuracy were used as indexes of
performance. The equation for calculating the accuracy of these models is given below.

Accuracy = 1 − (
|TestOutput − TestTarget|

TestTarget
) × 100% (7)

Table 6 shows that the accuracy rate for the polynomial regression (PR) model de-
creased as the proportion of noise increased. However, in some cases, the accuracy in-
creased significantly. There was almost no change in the extremely short time consumption.
However, due to the low utilization of the overall data, the model was sensitive to the noise.

Table 6. Statistical tests of polynomial regression (PR) model.

Model PR

Noise Ratio (%) 0 10 20 30

SD addition 0 0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06

Time (s) 0.007 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Accuracy (%) 68.96 53.91 53.94 53.95 91.79 47.08 26.97 80.96 82.69 17.82

The SVM model is inclined to be sensitive to noise, so the accuracy dropped as
expected with the increase in noise (Table 7). Moreover, as the random number generator
was set as constant in MATLAB, even when noise increased significantly, the accuracy did
not change much. Due to the addition of noise, the training time of all SVM models was
extended by about one second. However, as the noise increased, the training time only
varied slightly.

Table 7. Statistical tests of SVM model.

Model SVM

Noise Ratio (%) 0 10 20 30

SD addition 0 0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06

Time (s) 9.57 10.03 11.35 10.17 10.27 10.10 11.35 10.20 10.09 10.16

Accuracy (%) 86.80 32.53 33.24 33.24 32.53 33.24 33.24 33.24 33.24 33.24

Table 8 shows that the ANN with K-fold cross-validation was not sensitive to the
noise and showed great fault tolerance ability. As the ratio and amount of noise increased,
the accuracy decreased a little and, in some cases, improved slightly. Moreover, the
training time increased significantly when the injection ratio was 20% and varied a little in
other conditions.

Table 8. Statistical tests of ANN with K-fold cross-validation model.

Model ANN with K-Fold cv

Noise Ratio (%) 0 10 20 30

SD addition 0 0.02 0.04 0.06 0.02 0.04 0.06 0.02 0.04 0.06

Time (s) 1424 1424 1394 1448 1593 1597 1440 1568 1443 1433

Accuracy (%) 87.97 85.34 83.34 84.71 83.05 80.75 84.73 85.28 81.84 84.20

3. FEA Model of Non-Visible Defect in Plexiglass
3.1. Model of Plexiglass with Non-Visible Defect and FEA Set-Ups

The defects that exist in the plexiglass sample generally contain several different types,
such as cracks on the surface or air bubbles beneath the surface, which could affect the
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quality of the products. Moreover, multiple defects in one plate could lead to difficulty in
recognition. Hence, to improve defect detection accuracy, this research adopted a more
specific condition, focusing on the plexiglass sample with a non-visible bubble defect.
More specifically, this study was aimed to predict the diameter and depth of the bubble
efficiently by using the data of the thermal imaging process. To conduct the FEA simulation,
3D models were constructed by using SolidWorks. Two plexiglass boards with the same
dimensions (40 mm × 40 mm × 7 mm) were used. Between these two plates, one is intact,
and the other one has a conical hole. To create the sample with a non-visible defect, the
larger surface of these two boards was then overlapped, as shown in Figure 13. Moreover,
considering the experimental conditions, the surface of the plexiglass sample could reflect
lights from heating sources, which then affects the quality of IR images. Additionally, for
the purpose of increasing the emissivity that is beneficial to thermal imaging results, a
layer of black electrical tape (0.152 mm thickness) was stuck to the defect-free surface of
the defective Plexiglass board. The upper surface of the tape is called the upper surface in
subsequent studies. Since the target is to predict the bubble’s diameter and size, twelve
models with bubbles of different sizes were built to accumulate the IR data. The diameters
of bubbles are 1.98 mm, 2.38 mm, 4.37 mm, 5.95 mm, respectively. The depths of bubbles
are 1.59 mm, 3.18 mm, 4.76 mm, respectively.

Figure 13. Perspective view of 3D model of experiment sample with non-visible defect.

ANSYS Workbench was used to perform finite element analysis (FEA) of all models.
To acquire temperature data through the whole process, the transient thermal condition
was introduced. The ambient temperature was set as 298.15 K. To create the necessary
thermal excitation, heat flux was applied to the upper surface of the models for the first
30 s. The amount of heat flux was set as 0.0012 W/mm2, which could provide the same
heating power as two 90-w lamps. The upper surface was set under natural convection
through the whole 150-s simulation process, while other surfaces were set as perfectly
insulated to prevent heat loss. Moreover, thermal radiation loss from the upper surface to
the environment was taken into consideration. For samples with non-visible defects, the
distance between the two Plexiglass boards must be tiny enough to create the so-called
artificial bubbles. Therefore, ‘Node Merge’ was applied to this contact region to eliminate
the gap between boundaries. The thermophysical properties of plexiglass and air are
listed in Table 9. Plexiglass and electrical tape’s density and thermal conductivity are
much higher than these two for air (25 ◦C, 1 atm), while plexiglass has a higher heat
capacity than the other two. Hence, the defect would result in differences in surface
temperature distribution.

Table 9. Properties of materials.

Thermophysical Properties Materials

Materials Name Plexiglass [29] Air (25 ◦C, 1 atm) [30]

ρ (kg·m−3) 1185 1.184

k (W·m−1·K−1) 0.1934 0.02551

cp (J·K−1·kg−1) 1359 1007
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3.2. Outcomes and Analysis

To view the simulation outcomes intuitively, several thermal images of two models
were exported from ANSYS. The first (as shown in Figure 14) has the smallest bubble
(1.98 mm diameter, 1.59 mm depth). Since this bubble’s size is tiny, its impact on the upper
surface was minimal, which did not appear until 110 s.

Figure 14. Simulation images of FEA model (1.98 mm diameter, 1.59 mm depth) at 30 s, 110 s, 150 s (from left to right).

The models with the biggest bubble outcomes (5.95 mm, 4.76 mm depth) are presented
in Figure 15. The temperature difference first appeared at 33 s, which was near the end
of the heating process. Besides that, from the color differences, it can be inferred that the
value of the temperature differences is the most significant one.

Figure 15. Simulation images of FEA model (5.95 mm diameter, 4.76 mm depth) at 33 s, 60 s, 150 s (from left to right).

From the above models, it can be noticed that the defects with different sizes were
not able to create observable differences on the upper surface through the heating process.
While in the cooling process, the larger the bubble’s size, the faster the difference occurred,
and the greater the area affected. However, the number of these FEA models is not enough
to build a valid neural network model. Hence, more samples with extended diameters
(2.78 mm, 3.18 mm, 3.58 mm, 3.98 mm, 4.87 mm, 5.27 mm, 5.67 mm) and depths (2.38 mm,
3.97 mm, 5.56 mm, 6.35 mm) were created. To analyze the potential trend more precisely,
the average temperature of the upper surface through the cooling process is presented in
Figure 16. In most cases, the model with the larger bubble outputs a higher temperature
than the model with a smaller one. Therefore, the differences in the cooling process could
be used to predict the bubble’s size.
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Figure 16. Average temperature through the cooling process from all models.

3.3. Prediction Models for Diameter and Depth Prediction

To predict the diameter and depth of the bubbles found in the plexiglass boards, three
neural network models were trained and compared by MATLAB. The first is a multi-input
multi-output (MIMO) model that can simultaneously predict diameter and depth. The
second and the last are multi-input single-output (MISO) models. The second was designed
to predict diameter, while the last was used to predict depth.

The selection of input is the first parameter taken into consideration because it is critical
to the efficiency of data preparation and prediction accuracy. The average temperature
of the upper surface through each FEA model’s cooling process was decided as the input
data for three reasons. The first is that each point’s temperature data on the upper surface
through the process is difficult to export. The second is that the bubble’s diameter would
be unknown before the prediction, so it is challenging to determine the appropriate input
data area. The last is that the average temperature shows exploitative variation trends
in the previous analysis. Besides that, in view of implementing the model in future
experiments, it could be hard to maintain the ambient temperature as a constant. Therefore,
the initial temperature was subtracted from the selected temperature data. The temperature
was extracted every three seconds from the cooling process as input, which results in
40 numbers. Therefore, the number of nodes on input layers inside the network is 40.
Otherwise, the number of input nodes could be too large to weaken the training efficiency.
Additionally, these three models are single hidden layer structures.

Moreover, for general artificial neural network models, the number of training samples
dramatically affects the model’s effectiveness and generalization ability. In the previous
chapter, 77 sets of samples with non-visible bubbles that have combinations of different
diameters and depths are built and simulated. Accordingly, the total number of training
sets reached 77. To make full use of the temperature data of these limited models, K-
fold cross-validation with R squared as the evaluation standard was utilized in these
models, which has shown excellent performance in previous root depth prediction. The
best number of nodes on the hidden layer was automatically selected in the training and
testing of K-fold cv. Usually, the number of hidden neurons is set between the number of
input and output nodes. For the MIMO model in this study, the range is from 3 to 39. For
MISO models, it varies between 2 to 39. Apart from that, multi-core parallel operations
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and GPU acceleration were used to speed up the training process and avoid excessive
calculation time.

To evaluate and compare these ANN models, 12 new samples with different combina-
tions of diameter and depth were built and simulated under the same boundary conditions.
The diameters are 2.18 mm, 3.38 mm, 4.57 mm, and 6.35 mm, respectively. The depths are
3.18 mm, 4.76 mm, and 6.35 mm, respectively. The accuracy of training and validation was
calculated by Equation (7) For the validation accuracy of any single FEA model, it was
calculated by the same equation without the ‘mean’ function.

3.3.1. MIMO ANN Model

The MIMO neural network that could predict diameter and depth was trained at
first. As listed in Table 10, the prediction accuracy of diameter and depth are both over
90%. Moreover, the accuracy of diameter prediction is higher than that of depth prediction.
Besides that, the training costs almost half an hour because of the K-fold cv.

Table 10. Overall statistics of MIMO ANN model.

Number of hidden layer’s neurons 31

Average Diameter training accuracy (%) 96.02

Average Depth training accuracy (%) 87.55

Average Diameter validation accuracy (%) 95.80

Average Depth validation accuracy (%) 91.67

Computing time (s) 1574.71

For diameter prediction, Table 11 shows that only two FEA models have less than 90%
accuracy. Besides, the model with the smallest bubble has the lowest accuracy.

Table 11. Detailed validation accuracy of MIMO ANN model for diameter prediction.

Diameter Validation Accuracy (%)
Depth (mm)

3.18 4.76 6.35

Diameter (mm)

2.18 85.14 93.71 97.39

3.38 95.64 99.73 98.26

4.57 96.34 95.62 89.50

5.35 98.62 99.86 99.82

Table 12 shows a model with an accuracy that is less than 80% for depth prediction.
Additionally, for models that have bubbles with the smallest diameters, the prediction
accuracies are less than other models. Consequently, for most models, the MIMO ANN
model’s predictions are exact. However, when the bubbles’ diameter is small, both diameter
and depth prediction accuracies would decrease.

Table 12. Detailed validation accuracy of MIMO ANN model for depth prediction.

Depth Validation Accuracy (%)
Depth (mm)

3.18 4.76 6.35

Diameter (mm)

2.18 84.06 76.10 82.44

3.38 86.27 98.59 95.43

4.57 98.51 89.82 94.32

5.35 96.63 99.78 98.09
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3.3.2. MISO ANN Models

As shown in Table 13, the MISO ANN model for diameter prediction has a faster
training speed and higher diameter prediction accuracy than those for the MIMO model.

Table 13. Overall statistics of MISO ANN model for diameter prediction.

Number of hidden layer’s neurons 18

Average training accuracy (%) 96.91

Average validation accuracy (%) 96.63

Computing time (s) 1444.81

As listed in Table 14, all models’ accuracy is higher than 90%, demonstrating that
this neural network model provides convincing results on diameter prediction. It can be
noticed that the models with the smallest depth tend to have comparatively lower accuracy
than other models.

Table 14. Detailed validation accuracy of MISO ANN model for diameter prediction.

Diameter Validation Accuracy (%)
Depth (mm)

3.18 4.76 6.35

Diameter (mm)

2.18 93.88 95.36 96.05

3.38 99.97 97.53 99.55

4.57 99.44 98.93 93.04

5.35 91.43 97.15 97.19

Table 15 displays that the MISO ANN model for depth prediction was also trained
over 10% faster than the MIMO model. Moreover, the accuracy of depth prediction is
higher than that of the MIMO model.

Table 15. Overall statistics of MISO ANN model for depth prediction.

Number of hidden layer’s neurons 3

Average training accuracy (%) 94.01

Average validation accuracy (%) 95.36

Computing time (s) 1372.61

From Table 16, only one model has an accuracy that is less than 90%. More specifically,
the MISO model only made a relatively inaccurate prediction on the FEA model with the
smallest bubble.

Table 16. Detailed validation accuracy of MISO ANN model for depth prediction.

Depth Validation Accuracy (%)
Depth (mm)

3.18 4.76 6.35

Diameter (mm)

2.18 83.91 90.30 99.30

3.38 96.85 96.00 97.04

4.57 90.95 99.61 97.64

5.35 96.72 98.17 97.80

After all, a MIMO ANN model could predict diameter and depth simultaneously
and accurately. However, it took a little bit longer to train a MIMO than to train a MISO.



Sensors 2021, 21, 5159 21 of 24

Meanwhile, a MISO model for only predicting diameter or depth could result in more
precise results. Although training two MISO models could take almost twice as long as
training one MIMO model, it is still within an acceptable range.

3.4. Model Testing

The statistical tests based on the maneuvers of standard deviation were also introduced
to verify these three ANN models’ fault-tolerant ability. At first, the standard deviation was
analyzed to view the characteristics of temperature data used in neural network models,
as shown in Figure 17. Models that have larger bubbles tend to output a lower standard
deviation than models with smaller bubbles. In most cases, with the increase in diameter
and depth, SD keeps decreasing.

Figure 17. Standard deviation of temperature through the cooling process from all models.

Next, the statistical tests were applied. Increments of SD were set as 0.1, 0.2, and 0.3
according to the amount of original SD. Moreover, to keep the buried connection between
the input and output, the proportions of data being adjusted were set as 10%, 20%, and 30%.
The time consumption and validation accuracy are two indexes of evolution. The results
of the MIMO model are given in Table 17. With the increase in noise, the computing time
rises a lot. Moreover, in some cases, it even increases around 50%. However, the accuracy
only slightly drops after the addition of noises and maintains over 85% for diameter and
depth prediction.

Table 17. Statistical tests of MIMO ANN with K-fold cross-validation model.

Model MIMO ANN with K-Fold cv

Noise Ratio (%) 0 10 20 30

SD addition 0 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Time (s) 1575 1616 2431 1883 1846 1795 1902 2135 2226 2108

Diameter accuracy (%) 95.8 90.1 90.0 86.8 92.3 91.8 92.5 92.9 90.4 92.4

Depth accuracy (%) 91.7 87.6 89.7 88.8 85.4 88.8 89.2 88.7 90.7 88.3
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The models for diameter prediction require a little more time to be trained after
adjusting the SD, listed in Table 18. In most cases, the accuracies are above 90%. Only in
two conditions, the accuracies drop significantly but are still higher than 85%.

Table 18. Statistical tests of MISO ANN with K-fold cv model for diameter prediction.

Model MISO ANN with K-Fold cv for Diameter Prediction

Noise Ratio (%) 0 10 20 30

SD addition 0 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Time (s) 1445 1647 1482 1576 1503 1525 1523 1515 1700 1555

Accuracy (%) 96.6 90.3 91.0 86.3 93.1 92.5 85.4 91.3 92.4 87.3

Last is the model for depth prediction, and the results are shown in Table 19. The
computing time increases after the addition of noise, it even increases over 60% in two
cases, but the accuracy remains above 90%.

Table 19. Statistical tests of MISO ANN with K-fold cv model for depth prediction.

Model MISO ANN with K-Fold cv for Depth Prediction

Noise Ratio (%) 0 10 20 30

SD addition 0 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Time (s) 1373 1958 2267 1649 1736 1527 1660 1605 1541 2266

Accuracy (%) 95.4 93.8 90.2 91.2 93.4 90.0 91.6 92.8 91.1 90.4

4. Conclusions and Future Directions
4.1. Conclusions
4.1.1. RSA

Finite element analysis (FEA) was employed to simulate the process of applying
infrared imaging technology to investigate plant root system architecture (RSA) below
the soil. Based on preliminary findings that different root depth models will exhibit
different surface temperature distributions, a line scan method was developed to predict
the root structure. The main branches of the shallowly buried root (depth ≤ 5 mm,
diameter = 1 mm) can be viewed from the prediction results, while the secondary roots
were not to be located. Moreover, three dissimilar classification methods were applied
to predict root depth (1–8 mm) and then compared. Two different polynomial regression
sets were employed, reaching a 68.96% accuracy. In addition, three different data sets
were established for Support Vector Machine (SVM) and Artificial Neural Network (ANN)
model development. For SVM, cross-validation and grid search were used to improve
performance. The SVM model was trained very quickly, and the accuracy was 86.80%, but
the model was susceptible to noise. With K-fold cross-validation, the ANN required almost
half an hour for training, but it had a better accuracy (87.97%) and fault-tolerance.

4.1.2. Defect Detection

FEA has also been applied to simulate the IR imaging process of detecting non-visible
bubbles (1.98–6.35 mm diameter, 1.59–6.35 mm depth) in plexiglass samples. As a result of
the simulation, a bubble would lead to observable temperature differences on the upper
surface during the cooling process. Moreover, as the bubble’s size increases, the upper
surface’s average temperature keeps increasing. Based on this phenomenon, three ANN
models were trained and compared. K-fold cv was also applied to improve the performance.
The MIMO model could predict diameter and depth simultaneously. It reached 95.8%
accuracy for diameter prediction and 91.7% for depth prediction. For the rest, two MISO
models were both trained around 10% faster and achieved higher accuracy than the MIMO
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model. The diameter prediction model achieved 96.6% accuracy, and the other one for
depth prediction outputted 95.4% accuracy. After all, statistical tests based on adjusting
the SD were applied to these predictive models. All three ANN models consumed more
time to be trained after adding the noise, but the accuracy was still around 90%, proving
the tremendous fault-tolerant property.

4.2. Future Directions

Firstly, for the studies of the root system, the simulations can be conducted with
different types of roots buried in dissimilar dry and wet mediums. Moreover, the current
RSA model used for FEA can be further optimized to approach the real root system. For the
detection of defects, more plexiglass samples with different size bubbles can be simulated
to enrich the original data. Besides that, various heating and cooling settings can be tested
to enlarge the differences between each sample.

Secondly, high-performance computing resources can be introduced to improve FEA
models’ mesh size and method. Hence, the FEA models can produce more accurate results
in a short period, which then provides better guidance for experiments. An IR camera
with high resolution can also be applied to the experiments to acquire more accurate
temperature readings.

Thirdly, efficient noise filtering methodologies are necessary for raw thermal images
and temperature data, which would improve the accuracy of the line scan method for
structure detection and machine learning models for depth prediction. To improve the per-
formance and reduce the computing consumption, more suitable and effective parameter
tuning techniques are required for ANN and SVM.
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