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ABSTRACT Training deep learning models for object detection usually requires a large amount of data,
a condition that is not common for most real-world applications, especially in the context of aerial imagery.
One possible solution is the use of simulators to generate synthetic data. For a good generalization, the
model must be able to learn on the simulated data and perform correctly on the real data, process known
as sim-to-real transfer. In this work, we analyze the generation of synthetic data to account for a data-
scarce real-world scenario, which includes aerial imagery and object detection of transmission towers and
their components. We evaluate the impact of image-to-image translation methods as domain adaptation
techniques. In this analysis, we explore training strategies to mitigate the domain shift between synthetic and
real data. According to our experimental results, the use of domain-adapted data through image-to-image
translation could slightly improve the detection performance in real test data when compared to training with
raw synthetic images only or with small datasets of real data, although it was noted through a visual analysis
that objects with small bounding boxes, like clamp, anchoring clamp and ball link, could be distorted or
vanished by the application of image-to-image translation methods. Additionally, when only a small subset
of real data is available, training with both real and synthetic data at once led to better detection results,
surpassing combinations of pre-training on synthetic and fine-tuning on real data.

INDEX TERMS Aerial inspection, domain adaptation, object detection, sim-to-real transfer, domain
adaptation, image-to-image translation.

NOMENCLATURE
Dr Real dataset.
Ds Synthetic dataset.
AP Average Precision.
AR Average Recall.
CUT Contrastive Unpaired Translation.
CycleGAN Cycle-Consistent Adversarial Networks.
GANs Generative Adversarial Networks.
IOU Intersection Over Union.

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

LPIPS Learned Perceptual Image Patch Similarity.
mAP Mean Average Precision.
TSIT Two-Stream Image-to-image Translation.
UAV Unmanned Aircraft Vehicle.
YOLO You Only Look Once.

I. INTRODUCTION
Deep Learning models have been applied throughout the
years in a wide range of computer vision tasks, such as
image classification, image segmentation, and object detec-
tion. These models usually require a great volume of samples
with good variance in order to reach a good performance and
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avoid overfitting, which can be a challenging assignment [1].
Obtaining a great number of pictures in some scenarios can
be a difficult task, not to mention that the annotation of those
images can be a time-consuming and laborious task. This is
the case of object detection in aerial scenarios [2], [3], [4].
In general, large sets of real images taken from aircrafts
are very costly. In this regard, the popularization of UAV’s
(Unmanned Aircraft Vehicles) has made a positive impact,
giving access to cheap airborne devices capable of shooting
high-quality photos. However, even with access to drones,
this is still a hard task since it requires a trained operator,
is limited by the device’s battery life (still not great nowa-
days), and depends on favorable weather.

For computer vision scenarios in which data can be scarce,
some common techniques have been used to deal with the
limited volume of images by generating synthetic data. This
has been achieved by the application of image transforma-
tion techniques (e.g., flipping, rotation, shifting, cropping),
generative models, and the use of simulators, which will be
described more deeply in Section II.

The use of synthetic data generated by computer simula-
tions has been a game changer for AI development for several
reasons. Reducing costs and increasing time efficiency are
the main factors since a limited effort of setting up a realistic
simulation or a generative model can be worth a large volume
of high-quality data [5]. Moreover, restrictive licenses for
data usage and privacy are not a problem for synthetic data
generated internally.

Nevertheless, the use of simulated data might not be the
‘‘final’’ step for a successful application of computer vision in
the real world since there is often a large gap in visual features
between the generated and real data [6], [7]. Although the
quality of computer-generated images has improved greatly
in the last few years, the photorealistic simulation of light
and texture still poses a great challenge for computer graphics
research [5]. For situations where there may be differences
in synthetic and real data distributions, researchers have
explored the application of style transfer and domain adaption
techniques (techniques that aim to improve the performance
of a model trained on data that belongs to a different domain)
to compensate for these differences and improve results for
applications in the real-world [8], [9], [10], [11].

For this study, we are interested in investigating how to
overcome the lack of training data available in a real-world
aerial inspection scenario that involves detecting electri-
cal transmission towers and their components in real-time.
Considering that gathering enough data samples in this con-
text can be quite costly, we explored the possibility of
generating synthetic data by computer simulations (here
referred as ‘‘synthetic data’’) to expand our initial dataset.
For this purpose, we designed a photorealistic environ-
ment using the AirSim simulator [5], which is based on
the Unreal Engine [12]. To further compensate for the
appearance differences between synthetic and real images,
we explored the use of domain adaption techniques based
on image-to-image translation and evaluate two practical

scenarios for training the model: mixed training with all
available data and fine-tuning on a real-data subset.

To better describe our methodology and findings, we orga-
nize the paper as follows: Section II gives a short technical
background and discusses some of the related work that
involves this paper’s main topics, Section III describes in
detail the data processing methods, and proposed experi-
ments, followed by Section IV with the presentation and
discussion of the results. Finally, Section V provides our
final considerations regarding the findings of this paper and
possible research directions to improve the image-to-image
translation methods usage as ready-to-use domain adaptation
techniques for specific tasks such as object detection in UAV
images collected for transmission lines inspections.

II. BACKGROUND AND RELATED WORK
This section briefly describes the base knowledge necessary
for understanding the discussions in the next sections and
contextualizes related works on the fields explored by this
paper.

A. AERIAL INSPECTION OF TRANSMISSION TOWERS
The process of performing a preventive inspection of trans-
mission towers is important for evaluating the lifecycle of
components and keeping the safety of those around them.
During the inspection, several tower components, such as
lightning rods, insulator strings, spans, and conductor cables,
must be checked for defects or abnormalities.

Considering the large number of items to be inspected and
the difficulty of evaluating them individually, which is mostly
done by climbing the structure or with the use of binoculars,
several companies have invested in the use of UAVs for both
increase in speed and quality, and a decrease of costs in each
inspection. However, the assessment must still be properly
planned and supervised by people with the right site safety
skills and equipment to avoid causalities around the electrical
transmission structure.

With the advent of using a UAV in an inspection, the
technician has the ability to take high-quality pictures of
electrical components, archive them for comparisons and then
list their corrosion and degradation levels, which is another
laborious task prone to automation with the use of machine
learning techniques. To achieve this, the drone can run an
object detection model to detect and identify each electrical
accessory and guide its flight toward acquiring photos with
similar framing and conditions to aid the standardization of
the assessment.

B. OBJECT DETECTION
The object detection task involves identifying an object
alongside its position in an image. Traditional techniques
have explored the use of feature descriptors and other
handcrafted features [13] as reference for object localiza-
tion. However, with the recent advances on deep learning
and the improvement of hardware capabilities, most of the
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state-of-the-art methods in this field has been built on top of
deep neural networks [14], [15].

Detectors based on deep learning can have several dif-
ferent architectures and perform the detection on one or
multiple stages. Two-stage detectors usually work by first
identifying regions of interest or possible bounding boxes and
then running a classifier on those regions with sometimes
a post-processing step for filtering out duplicated detec-
tions [16]. Methods such as R-CNN [17] and its extensions,
Fast R-CNN [18], Faster R-CNN [19] andMask R-CNN [20],
are all two-stage models and have been largely employed as
successful strategies for real-world applications [21], [22],
[23]. Alternatively, one-stage models treat the whole detec-
tion as a single task. The YOLO network, for example,
interprets object detection as a single regression problemwith
the pixels of the image as inputs and the bounding boxes
coordinates and class probabilities as outputs, making it sim-
pler and extremely fast [24]. The tradeoff commonly involved
when choosing to use one-stage over two-stage detectors
is based on the preference for the former when speed is
necessary, with the caveat of a decrease in performance.
However, new one-stage detectors, such as FCOS [25] and
YOLOv5 [26], have shown that one-stage solutions are also
suitable for performance-dependent tasks.

The detections are evaluated by calculating how much
a predicted bounding box for an object hits or misses the
ground truth annotation based on a specified threshold. The
hits and misses are calculated in terms of true positives (hits),
false positives (mistakes) and false negatives (misses). The
IOU (Intersection Over Union) value is used to measure the
ratio between the intersection area and union area of the pre-
dicted and ground truth bounding boxes, so as the intersection
area grows, this value also grows. In (1), Bpred refers to the
predicted bounding box and Bgt to the corresponding ground
truth, Fig.1 exemplifies this. The defined threshold specifies
the minimal overlap needed to consider a prediction as hit,
a miss or a mistake.

Jaccard Index = IOU =
area(Bpred ∩ Bgt )
area(Bpred ∪ Bgt )

(1)

From individual prediction metrics, the average precision
(AP), average recall (AR), and mean average precision for
all classes (mAP) can be calculated and used as means of
comparing the detection capabilities of a model. Also, the AP
can be calculated by varying the IOU threshold from 0.5 to
0.95, with a step size of 0.05, and then the mean value within
these thresholds is obtained, followed by the mean value
between the classes, usually reported asmAP@[.5 : .95] [27].

The successful training of these detectors is somewhat
dependent on the availability of large datasets. Transfer learn-
ing and the fine-tuning of models trained initially on publicly
large datasets such as VOC [28] and COCO [29] is often the
preferred direction for practitioners. Yet, when the domain
for the task is too different from the one originally used for
training the base model, their use comes down to only serving
as a better weight initialization for the neural network.

FIGURE 1. IOU calculation from predicted and ground truth bounding
boxes - made by the authors.

C. SYNTHETIC DATA
Lack of data is one of the most challenging problems to
overcome when training deep learning models. For several
situations, mainly in real-world applications, it might not be
possible to acquire large real datasets due to cost, time, or lack
of variance on the available data sources.

The popularization of game engines has made it possible
to create environments with great fidelity based on physical
simulations. In such scenarios, all parameters for the scene
can be adjusted to assemble the highest photorealistic appear-
ance that mimics the real scene and its objects. One example
of both a similar scene in the real world and simulator can be
seen in Fig. 2.

FIGURE 2. Real and simulation driving scenes from CityScapes [30] and
GTAV [31] datasets.

From one simulated environment, thousands or even mil-
lions of images can be generated for different framing and
positions. In this way, game engines have currently become
the go-to tool for leveraging applications that involve the
training of deep learning models when the number of avail-
able labeled data is nonexistent or small, which is the case for
several applications in the inspection industry due to costs to
generate and annotate data [32], [33].

In this context, Hwang et al [34] used the Unreal Engine
to develop ElderSim, a platform for generating synthetic data
for human action recognition of elderly people. Hu et al. [35]
used the engine of the game Grand Theft Auto V (GTAV)
to create a dataset called SAIL-VOS 3D for object detection
and 3D mesh reconstruction from videos. Also using the
GTAV environment, Angus et al. [36] created the URSA
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dataset for semantic segmentation of road-scene images.
For the purpose of training and validating autonomous
cars systems, the CARLA simulator was developed by
Dosovitskiy et al. [37], which included the generation of
semantic segmentation, object detection, depth, and LiDAR
(Light Detection and Ranging) data.

For creating reliable environments with aerial views of
scenes, the AirSim plugin for the Unreal Engine was pro-
posed by Shah et al. [5]. With this tool, large datasets such
as the Mid-Air [38] and TartanAir [39] benchmarks were
created to advance research in robot navigation and visual
understanding. Both datasets present RGB frames, surface
normal orientation, depth, and semantic information for each
scene captured in several drone flights, which make them
useful for solving other related visual tasks.

D. SIM-TO-REAL TRANSFER
Although synthetic data generation is a promising approach
when data is lacking, the performance of a deep learning
model trained on synthetic data may not be satisfactory when
testing on real data due to the domain shift between the two
datasets. The distribution of the visual features present in
the synthetic data domain may differ from those in the real
domain distribution [10] as texture and light reflectance are
hard to be represented computationally. The process in which
a model is trained on simulated data and tries to perform on
real data is referred as ‘‘sim-to-real transfer’’ (here, ‘‘sim’’
standing for ‘‘synthetically generated images’’).

To successfully solve the sim-to-real generalization issue,
diverse domain adaptation, randomization, and transfer tech-
niques have been proposed. Tobin et al. [40] explored the
concept of domain randomization by training an object detec-
tion model on geometric objects with non-realistic random
textures and demonstrated the model trained on the simulated
data has better generalization when tested in the real domain.
Tremblay et al. [41] applied domain randomization on object
detection of cars by generating scenes with random position,
rotation, and textures of the vehicles, as also including in the
scene random geometric shapes to be used as negative exam-
ples and randomized lighting and position of the camera.
The models were trained on the resulting unrealistic synthetic
dataset and then fine-tuned on real data, improving the results
when testing on the real domain.

Tang et al. [42] explored the usage of synthetic data gen-
erated with Blender [43] and studied a handful of aspects
regarding the usage of such data for downstream segmenta-
tion tasks. The results suggested that a pre-training performed
on synthetic data can be better than pre-training on real
data for model generalization. It also remarked that synthetic
images should be generated with variations on object scale,
textures, camera viewpoint and image background in order to
increase their contribution to the model performance.

Some specific works have focused on making syn-
thetic data more realistic through the use of GANs.
Shrivastava et al. Reference [8] proposed the SimGAN,
an adversarial network that learns to improve the realism

of synthetic data for gaze estimation using unsupervised
learning. Bousmalis et al. [44] used a GAN approach on
the Synthetic Cropped LineMod [45] dataset to make the
synthetic 3D models closer to the target domain for object
classification and position estimation. [46] proposed the
GeneSIS-RT, an approach that explores the use of Cycle-
GAN, [47], for image-to-image translation, transforming
simulated images into more realistic ones for segmentation
and obstacle avoidance tasks for the flight of a quadcopter.
Also based on the CycleGAN, Hoffman et al. [9] presented
CyCADA with the addition of a semantic consistency loss
to constrain the image-to-image translation and pay attention
to differences in pixel and feature levels with the use of
segmentation masks.

Despite the growth in sim-to-real transfer research, to the
best of our knowledge, there is still a lack of experiments
that specifically apply techniques to improve aerial inspection
object detection, with most works focused on the image
segmentation task for more common objects. Besides that,
the application of those kinds of methods to translate simu-
lated aerial images to approximate them to real UAV images
and improve downstream tasks has yet to be explored. The
purpose of this work is, therefore, to experiment with these
techniques as ready-to-use tools to improve object detection
by translating simulated UAV images closest to real, and then
give some insights for further research for improvements on
the application of these methods with this aim.

III. METHODOLOGY
This section describes the experiments performed within
the context of object detection in an aerial inspection setting,
the arrangements to augment the original real dataset, and the
evaluation of image-to-image translation strategies with the
objective of discussing the following questions:

• In a real-world situation with scarce aerial inspection
real data, howwell can an object detection model trained
only on synthetically generated images perform?

• Given that there is a gap between these synthetically gen-
erated images and the real images domain, can we apply
image-to-image translation methods to approximate the
simulated images to the real world and improve the
detector metrics using only this synthetically generated
data?

• If we have a setting where there is a small amount of
real data and a larger amount of synthetically generated
images, how can we combine those subsets to improve
the detector’s performance?

The following subsections dive into the datasets generation
process, choice of object detection model, and the experi-
ments performed to answer the questions. Fig. 3 presents a
summary of the pipeline of our study.

A. DATASETS
A collection of annotated images is essential for training an
object detection model. In this work, we use datasets from
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FIGURE 3. Summary of the proposed methodology to study and evaluate methods to improve object detection in aerial inspections of transmission
towers within scarce data scenarios. A larger dataset with synthetically generated images and a smaller dataset of collected real images are used to
train Image-to-Image translation methods to approximate the simulated environment to the real target environment. Then, variations on dataset
composition and training strategies are studied and compared based on the performance metrics achieved by the object detection model on real
collected data - made by the authors.

two distinct sources: a small dataset created from videos
captured in real life around transmission towers, here referred
to as Dr ; and a second synthetic dataset, generated from an
environment created on the AirSim simulator, here referred to
asDs. Both datasets were annotated and contained the classes
tower, insulator, yoke plate, ball link, clamper, and anchoring
clamp. These objects were chosen for their visual character-
istics and their relevance in the structure of the transmission
towers.

After gathering all the images for each dataset, we per-
formed the subset division between train, validation, and
test, containing 80%, 10%, and 10% of the data, respec-
tively. The training and evaluation procedures used only
their respective subsets for the studies carried out in this
methodology section. The test data was reserved exclu-
sively to generate the final performance metrics presented
in the results section. This procedure was adopted to reduce
the authors’ bias in choosing the final model and offer
a more formally rigorous performance evaluation. Table 1
shows the number of images in each dataset and each
subset.

As we aim to study the performance of a detector for the
aerial inspection scenario and how the domain shift between
real and synthetic data affects it, the following subsections
provide more details about the characteristics of each data
subset.

FIGURE 4. Examples of images from the training set of each real dataset.
Those images were captured by the UAV - made by the authors.

1) REAL IMAGES
The real dataset Dr is formed by the union of 4 different
datasets (Dr = D1

r ∪D2
r ∪D3

r ∪D4
r ) which were obtained from

videos captured on different field trips to power transmission
towers. Fig. 4 contains example images of each dataset.

The images were collected flying from transmission towers
and their components, varying different distances and angles.
Each dataset was acquired in a different city with its partic-
ular biome and environment. The variability of vegetation,
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TABLE 1. Quantity of images in each dataset: one large dataset of synthetic images and four small datasets of real images. Inside the parenthesis, the
percentage of images relative to each split.

climate, and lighting in different cities provided a greater
diversity of features for the images, which can be used to
evaluate the model’s power for generalization.

Considering that the set of collected images could have
other images very similar to each one due to the frame
extraction procedure from the videos and leading this way to
overfitting the training, we used a script based on the Learned
Perceptual Image Patch Similarity (LPIPS) [48] to select the
frames of interest. When running LPIPS, we compare con-
secutive frames, f and f+1. If they have a similarity smaller
than 50%, then f+1 is selected. If not, then the script evaluates
f+2, and so on, until reaching this minimum threshold of dif-
ference. The algorithm provided us with a dataset containing
images sufficiently distinct from each other.

2) SYNTHETIC IMAGES
Based on the videos captured during the field trips, we set
up a 3D virtual environment in the Unreal game engine [12].
We used the open-source software AirSim to control the UAV
and capture images and Unreal to modify and create a map
with the desired characteristics.

We modeled the objects of interest and inserted them into
the virtual environment. Fig. 5 shows each of the considered
classes, its modeled 3D object, and a real reference image.

A series of randomization rules were established to cap-
ture a set of images representative of the locations that the
UAV would be flying relative to the tower. We tried to offer
the same perspectives and framing that appear in our real
datasets.

B. AVOIDING DATA LEAKAGE
When using the same video frames on the train, test, and
validation subsets, the resulting images will contain very
similar visual aspects. The videos, in this scenario, are usually
recorded around a central tower. Therefore the vegetation, the
tower itself, and the daylight will be the same for all frames.

To avoid the bias toward evaluating the model on frames
for the training and test set that are originally from the same
video, in the following studies, we do not use real images
from the same video for training and testing. For example,

FIGURE 5. Examples of the 3D objects modeled to generate synthetic
images for the dataset. Each object was based on reference photos
present in the real dataset. From top to bottom, on the left column: tower,
yoke plate, and clampers; and on the right column: ball link, insulator,
and anchoring clamp - made by the authors.

if a certain model is trained using D2
r ∪ D3

r ∪ D4
r , then

the test subset will only contain images from D1
r . Models

that do not contain any real image on their training and
validation steps will be tested on the whole real dataset
(Dr = D1

r ∪ D2
r ∪ D3

r ∪ D4
r ), since there is no chance that

the model has already seen any of those images. In addition
to guaranteeing that there is no similar image leaks from
training to test subsets, this process also favors models that
can achieve a better generalization. Further details regarding
which images are used in each experiment can be seen in
Appendices A and B.

C. CHOICE OF DETECTOR
Themodel chosen for this project is the YOLOv51 [26]. It is a
widely used one-stage detector based on convolutional neural
networks and is specifically designed for high performance
and low inference times. The version used (YOLOv5s) is
adequate to run inside real-time applications, obtaining a
good trade-off between size, consumed memory, processing

1https://github.com/ultralytics/yolov5
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time, and precision. The YOLOv5s training took from 8 to
12 hours to complete on a single NVIDIA TITAN X GPU,
following the number of images and the parameters shown
on Appendices A, B and C. The inference time on the same
GPU takes around 10ms, and around 60 ms on a SAMSUNG
S10 Lite with a Snapdragon 855 chipset, a hardware similar
to the one present on some UAV controllers.

The metric used for evaluating the model performance is
the mAP@[.5; .95] for its generability. This value shows us
how well the model is performing with respect to finding the
correct objects in the correct positions. This is the standard
metric used in the YOLOv5 and the official metric for the
COCO dataset [29] object detection challenge, which was
the dataset used as the base for the weight initialization in
our model. This also has been the metric reported on most
papers to compare state-of-the-art object detection models,
for example on [17], [18], [19], [20], [24], and [49]. The
hyperparameters for all training procedures can be seen in
Appendix C.

D. TRAINING WITH REAL DATA (REAL BASELINE)
We first trained and tested the YOLOv5 model with
all the scarce available real data, following what would
usually be done when training an object detection model in
a new task with sufficient data for transfer learning. This
model established a baseline for the possible improvements
in performance when using real and synthetic images in
combination, as explored in the following experiments. The
baseline performance was affected mainly by the diverse
environments and backgrounds represented in each sub-
set of Dr and the dissimilarity in appearance between
the base classes from COCO and the transmission line
accessories.

E. STUDY A - EVALUATING THE SYNTHETIC DATA
GENERABILITY AND DOMAIN GAP
Earlier works identified the difficulty of reaching state-of-
the-art model performance when only synthetic data is used
for training the network [50]. However, as this might be the
case due to difficulties in image acquisition and annotation,
a solution could be to use the scarce real data only on the
testing set to emulate real-world scenarios and therefore fit
only on synthetic data.

In this section, we describe experiments to identify the
presence of the domain gap between simulated and real
images, set a baseline for performance comparison, and try
to close this gap using domain adaptation techniques based
on image-to-image translation.

1) ESTABLISHING A BASELINE WITH ONLY SYNTHETIC
IMAGES (STUDY A1)
In order to evaluate how well we could identify the objects
of a real situation when training only with simulated
data, we trained the YOLOv5 model for 300 epochs on

100% synthetic data. Then, we evaluated this model’s per-
formance on all real data available on our datasets.

2) SIM-TO-REAL TRANSLATION (STUDIES A2-A4)
Considering the availability only of simulated images and the
apparent success of unsupervised image-to-image translation
techniques based on GANs, we focused on their investigation
to close the gap between our applications’ real and synthetic
domains. The following techniques were evaluated:

• CycleGAN [47] (Study A2): this method introduced the
cycle consistency loss to regularize the mapping from
one domain to another and back again. The architecture
was based on two discriminators, which aim to differen-
tiate the real image from the translated image to the other
domain, and two autoencoders, with the objective of
translating images from one domain to another. Most of
the state-of-the-art domain adaptation techniques report
results against this technique and consider it as a strong
baseline.2

• Constrative Unpaired Translation - CUT [51]
(Study A3): this method explores contrastive learning
through the use InfoNCE [52] loss for conditional image
synthesis, enforcing the network to learn an encoder
that approximates image patches that correspond to each
other and disassociate not corresponding patches. The
proposed framework acts on unpaired images through
a multilayer approach using a generator composed of
two components, an encoder and a decoder, which
avoids the use of inverse auxiliary generators and dis-
criminators and simplifies the training procedure. The
method is a follow-up work from the same authors of the
CycleGAN.3

• Two-Stream Image-to-image Translation - TSIT [11]
(Study A4): this approach uses a two-stream network
dedicated to integrating content and style informa-
tion into the generated image. The proposed method
introduces two feature transformations: feature adaptive
denormalization (FADE) to preserve the content spatial
structure and feature adaptive instance normalization
(FAdaIN) to transpose the style information, both acting
in multi-scale feature levels. Also, the method claims to
be simpler than other strategies since it does not depend
on external constraints such as the cycle consistency loss
and presents state-of-the-art results for image-to-image
translation task.4

Since the objective of image-to-image translation models
is to learn the mapping from one domain to another, and the
quantity and variety are two important factors in this task, the
three image-to-image translation models were trained using
the training and validation subsets from the synthetic and
real datasets. It was noticed that the TSIT model has more
restrictions to image and crop size due to its architecture,

2https://junyanz.github.io/CycleGAN/
3https://github.com/taesungp/contrastive-unpaired-translation
4https://github.com/EndlessSora/TSIT
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and we used the value 512 for both variables. Also, TSIT
uses pairs of images from both domains, but since the real
domain has fewer images that the synthetic one, we ensured
that the synthetic images that did not have a pair got a
random image that was already used from the real domain.
As noticed, this disparity may have led to poorer results.
Both CycleGAN and CUT used a value of 720 as image
and crop sizes for training. All three methods were used to
train translation models for 100 epochs. More details on the
hyerparameters used for each experiment can be seen in the
Appendix D.

After the training, an inference was performed on the
whole set of synthetic images from the simulator to map
them closer to the real domain, and then the object detection
models were trained on 100% on the synthetic images gener-
ated by the image-to-image translation techniques and tested
on 100% of the real images.

F. STUDY B - FINE-TUNING AND TRAINING WITH MIXED
DATA
Another option when having only a small number of real
images is to combine those images in the training step using
some strategy to optimize the contribution of this data to
the training. The proposed experiments explored mainly two
ways to combine simulated images, adapted or not, with real
images to improve the performance of the object detection
model:

• Train the model first on synthetic data and fine-tune it
on real data.

• Train the model with all available data at once, without
a pre-training step.

1) FINE-TUNING FROM SYNTHETIC DATA (STUDY B1)
A common approach to training deep learning models with
little data is to apply transfer learning. This process consists
of reusing a model trained on a different but similar domain
that contains a larger amount of data and then fine-tuning this
model on your target domain, to incorporate the knowledge
obtained from the similar task the model was previously
trained to perform.

The simulated environment was modeled based on the
reference objects present in real scenes and contains almost
10 times more images than the real dataset, so a pre-training
on this larger dataset and fine-tuning on the smaller real
dataset could improve the performance of the model and
decrease the chance of overfitting.

In this experiment, the model obtained in Experiment A1,
which had been trained for 300 epochs solely on synthetic
data, was fine-tuned for 30 additional epochs on real data sub-
sets and evaluated on real images. We followed the process
described in Section III-B to avoid data leakage. The exact
number of images used for each training step is shown in
Appendix B.
In this process, all hidden layers were re-trained and no

weight value was left frozen.

2) FINE-TUNING FROM ADAPTED SYNTHETIC DATA
(STUDY B2)
Since applying domain adaptation techniques should approx-
imate the synthetic and real domains, we hypothesize that it
should also contribute to improving the performance in the
pre-training stage.

To evaluate the contribution of the domain adaptation to
this scenario, we used the weights of the network trained
on Study A2, which employed synthetic data transformed
with CycleGAN, and fine-tuned the YOLOv5 on real data,
following the same process as Study B1.

The CycleGAN-adapted dataset was chosen based on a
visual inspection and the fact that a qualitative analysis of the
translation results indicated that those images were the most
photo-realistic and presented fewer distortions. More on that
will be discussed in Section IV, and visual examples can be
seen in Appendix E.

3) TRAINING WITH MIXED DATA (STUDY B3)
Mixed training is defined aswhen the training set is composed
of a mix of real and synthetic data. In this study, we planned
to verify how adding real images to a synthetic dataset for
training impacts the model’s performance on the test set.
In order to do so, we combined all available data for training
the network.

Different from the previous experiment, where the training
was performed in two stages (pre-training on synthetic and
fine-tuning on real data), this experiment mixed images from
both datasets on the training and validation steps. This means
that for each forward pass, the neural network received as
input either a real or a synthetic image, randomly defined.

The final performance evaluation was performed on the
same test images as the previous experiments in order to avoid
bias and compare the results following the considerations
described in Section III-B and the image distribution shown
in Appendix B.

4) TRAINING WITH MIXED DATA AND DOMAIN
ADAPTATION (STUDY B4)
Following the same assumption that the domain adaptation on
synthetic images could lead to images more closely related to
real scenarios, we also performed a training mixing the real
data with the simulated images adapted with CycleGAN.

IV. RESULTS
A. DOMAIN SHIFT WITH SYNTHETIC IMAGES (STUDY A)
The presented Real Baseline experiment result is the mean
between the tests of four trained models, following the pro-
cess detailed in Subsection III-B to avoid leakage. In this
experiment, each model was trained and validated on three
real datasets and then tested on the data subset that was left
out. The other four models (A1-A4) were all trained and
validated on sets of synthetic images and then tested on all
available real images. The synthetic data from A2-A4 were
translated toward the real domain. The overall results can be
seen in Fig. 6.
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FIGURE 6. Study A results for mAP@[.5;.95] on the test set - made by the
authors.

The difference between the mAP@[.5; .95] value achieved
by the baseline training on real data, 0.212, and simulated
data without any domain adaptation techniques, 0.177, makes
explicit the domain gap between real and synthetic domains
and reinforces the difficulty to improve a deep learningmodel
only training on simulated data. Model A1 was trained on as
much as 10 times more data than the real baseline model and
performed worse, suggesting that even when increasing the
number of images, training in a dataset without any resource
of the real domain might not be a viable solution. The small
values, even for the models fully trained on real images,
also corroborate the need for a more complete dataset and
put in evidence the contrast between the ideal and the real
application of object detection for scenarios with scarce data.

Regarding the attempt to reduce the shift using image-to-
image translation as domain adaptation techniques, approxi-
mating the simulated images to real ones, we can compare the
results of the models trained only on simulated images taking
Study A1 as a baseline, since it used synthetic images without
any additional processing. In this scenario, the objective is to
consider the influence of only the domain adaptation tech-
niques on the model performance. As shown in Fig. 6, only
the CycleGAN-adapted model presented an overall slightly
better result than 0.177, with amAP@[.5; .95] of 0.181. Some
samples of the images generated by the domain adaptation
methods can be seen in Fig. 7.

By observing the generated images, the CycleGANmethod
was able to approximate some background characteristics,
such as vegetation and ground, without distorting too much
the objects and structures that need to be detected. The
other methods presented a number of artifacts that could
have led the model to performing worse than it performed
whereas using purely synthetic images from the simulator.
When looking at images generated by CUT, we observed
that the network introduced objects like insulators and tower
structures into the images and mixed the objects with the
background, even transforming structures into clouds. TSIT-
generated images also presented instabilities with impor-
tant power line components disappearing, getting blurred,
or being merged with the background. Since the annotations

FIGURE 7. Images generated using image-to-image translation. From left
to right, the first column represents the original synthetic images
provided by the AirSim simulator, followed by the results of the
CycleGAN, CUT, and TSIT methods - made by the authors.

used for each version of the synthetic images are still the
same, the disappearance or creation of new objects leads to
the presence of false positives and negatives that influence the
mAP metric and have an effect on the updates of the network
weights during training.

Through a visual analysis of the synthetic datasets, it was
noted that the smaller objects like anchoring clamps, clam-
per, and ball links were the most affected in the generated
images, presenting distortions, hallucinating artifacts, and
even vanishing from the image. Some examples of this anal-
ysis are shown in Figures 12, 13 and 14 in Appendix E.
The distributions of bounding boxes shapes (height and width
percentage of the image) for each dataset were also analyzed
(Figure 11) and it was confirmed that these classes (anchoring
clamps, clamper and ball link) correspond to smaller objects,
having the height and/or the width of their bounding boxes
concentrated within the range of 5%.

Additionally, it is worth noting that YOLOv5 filters small
objects after the image augmentation on the training phase:
bounding boxes with width or height less than 2 pixels, aspect
ratio width/height greater than 20, and less than 10% of the
area before the pre-processing are disregarded), what could
also be interfering on the detection performance of these
classes as shown by the Recall and Precision achieved on each
experiment for each class in Fig. 8. Amore extensive analysis
on the general filtering and pre-processing techniques com-
monly used by popular detectors could be interesting to be
investigated by further studies. Nevertheless, for objects that
take a bigger part of the images, like towers, insulators, and
yoke plates, we can see that the results improved for one or
multiple techniques.
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FIGURE 8. Study A Recall x Precision results for each class. The Precision
and Recall presented are the mean values for each experiment
considering the discussion on Section III-B - made by the authors.

A more in-depth study of how each method modified
the images and their optimization for the specific case of
aerial images might lead to better results, such as the pro-
posal of heuristics to find better image-to-image pairs and
the exploration of other hyperparameter settings. Besides
that, a combination of images generated by different domain
adaptation techniques may also be a solution to improve the
variability of images present on the dataset and increase the
generalization capacity of the trained models.

B. FINE-TUNING AND TRAINING WITH MIXED DATA
(STUDY B)
This study analyzed what would be the best practical scenario
for involving the scarce real data in training in order to max-
imize its contribution when allied with the simulated images
or their domain-adapted versions. ThemAP@[.5; .95] results
for Study B are shown in Fig. 9.

FIGURE 9. Study B results of mAP@[.5;.95] on the test set - made by the
authors.

The two settings where the model was fine-tuned with
real data after being pre-trained on synthetic data, Studies
B1 and B2, presented a better performance than the baseline,
where only real data was available. The results also indicated
that the mixed training procedure from Studies B3 and B4,
which combined the synthetic data and the real data for
training, presented a better performance than the fine-tuning
experiments.

Comparing the two mixed training experiments, Study B4,
which used synthetic data adapted with CycleGAN, had a
lower mAP@[.5; .95] than Study B3, which introduced syn-
thetic data without any image-to-image translation technique.
One possible explanation for these results is that the approx-
imation of synthetic to the real images generated by the
CycleGAN has harmed the dataset variability, as opposed to
keep the domain randomization aspect that is already embed-
ded into the simulated data.

Fig. 10 shows the Precision x Recall for all classes in
Study B. The yoke plate and the insulator classes were bet-
ter detected using the settings from Study B2, whereas the
classes clamper and anchoring clamp had better results with
the mixed training using the synthetic data presented in Study
B3. Since these two classes belong to objects with smaller
sizes than the yoke plate and the insulator, we assume that the
CycleGAN image-to-image translation might have generated
image artifacts that led to a deterioration in performance
for the mentioned classes, and that the proportion of real
to synthetic images used on the dataset was not enough to
compensate for this deterioration.

FIGURE 10. Study B Recall x Precision results for each class and training
combination. The Precision and Recall presented are the mean values for
each experiment considering the discussion on Section III-B - made by
the authors.

One hypothesis for the non-satisfactory performance of
image-to-imagemethods is that the diversity of picture angles
and zoom on the objects could disturb their training, which
can lead them to produce the previously mentioned artifacts.
However, it is interesting to notice that using a proportion of
only 10% real images to 90% synthetic (adapted or not), the
object detection model greatly improved both precision and
recall for the tower, insulator, and yoke plate, and showed
at least a small gain for clamper and ball link, leading to
better overall results. A more in-depth and foundational study
could be performed in the future, with more sets of real
and simulated data, to find the optimal proportion between
synthetic and real samples in mixed dataset training.

V. CONCLUSION
In this work, we evaluated the application of object detection
with scarce data for the UAV inspection of transmission
towers. For mitigating the lack of data, we explored the gen-
eration of synthetic images using a simulated environment,
and the application of several image-to-image translation
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TABLE 2. Number of images from each dataset used on each experiment from Study A.

TABLE 3. Number of images from each dataset used on each experiment from Study B.

techniques with their default settings to close the domain gap.
Additionally, we investigated different training regimes that
could lead to better detection performance in the real world.

The initial experiments, in which models were trained
only using synthetic data and assessed on real-world data,
showed that there could be a gap in visual information from
the simulated and real images, since performance was lower
than when only training with a small subset of real data.
To solve for that, the image-to-image translation methods
CycleGAN, CUT and TSIT were applied to the synthetic
images for improving their relatedness with real images
and the performance of the object detection model. It was
observed that CycleGAN introduced fewer artifacts on the
adapted images compared to the other methods, and aided
the detector for reaching a better mAP performance than
the model trained solely on the synthetic data without any
image-to-image translation. However, the performance was
still behind the training baseline with the subset of real
samples. These results lead to the conclusion that the use
of such methods is a promising approach to create more
adequate synthetic data, but might not be sufficient to solely
replace the need of at least a small amount of real data for
training.

The main contribution of this work is the demonstration
that, for the scenario where synthetic data can be generated
and a small subset of real-world data is available in the con-
text of aerial inspection, mixing both of them for training has
shown to be more prone for better practical results than the
application of fine-tuning. This approach increased around
36% the mAP value when compared with the baseline of only
real images. The obtained results mixing domain adapted
synthetic images with real data also suggest that there is still
room for more optimizations on the image-to-image trans-
lation methods that could further improve the performance
of object detectors. Thus we conclude that the mixing of
real and synthetic data, with the addition of image-to-image
translation or not, can have a great impact on scenarios with
scarce real data.

TABLE 4. Hyperparameters used on YOLOv5 trainings.

As future directions for investigating the practical use of
unsupervised domain adaptation in this context, a promising
venue can be the proposition of heuristics for filtering the
training images used by the translation models to avoid arti-
fact generation, as well as the use of similarity metrics, like
LPIPS, to choose better pairs of images to be given as input to
paired models. Studies on proportion and volume of synthetic
images onmixed datasets could also be interesting to improve
downstream tasks as object detection and segmentation.

APPENDIX A
DATASETS USED ON STUDY A
Number of images and respective datasets used on each
experiment of Study A is shown on Table 2.
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FIGURE 11. Bounding boxes’ shape distribution (height and width percentage of the image) per class for each of the real datasets D1
r (a), D2

r (b),
D3

r (c) and D4
r (d), for all real datasets together Dr = D1

r ∪ D2
r ∪ D3

r ∪ D4
r (e) and for the synthetic dataset Ds (f) - made by the authors.
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APPENDIX B
DATASETS USED ON STUDY B
Number of images and respective datasets used on each
experiment of Study B is shown on Table 3.

APPENDIX C
YOLOV5 TRAINING HYPERPARAMETERS
All YOLOv5s models were trained with the same hyperpa-
rameters in order to evaluate only the dataset influence on the
results. The most relevant parameters are shown below, all
other are presented on Table 4.

• Batch size: 128.
• Optimizer: SGD with initial learning rate ′lr0′ 0.01 fol-
lowing a linear scheduler.

• Image size: 416.
• Epochs: 300 for training and pre-training, 30 for fine-
tuning.

APPENDIX D
IMAGE-TO-IMAGE TRANSLATION TRAINING
HYPERPARAMETERS
The hyperparameters described below are relative to the
execution script of the official implementations [47], [51]
and [11] of all three methods.

• CycleGAN
– Epochs: 100
– Batch size: 1
– Optimizer: Adam
– Beta1: 0.5
– Learning Rate: 0.0002 with linear policy and decay

after 50 iterations.

FIGURE 12. Example of distortion and vanishing of the ball link class in
the outputs of the image-to-image translation methods - made by the
authors.

– Pool size: 50
– GAN loss: LSGAN

• CUT
– Epochs: 100
– Batch size: 1
– Optimizer: Adam
– Beta1: 0.5

FIGURE 13. Example of distortion and vanishing of the clamper class in
the outputs of the image-to-image translation methods - made by the
authors.

FIGURE 14. Example of distortion and vanishing of the anchoring clamp
class in the outputs of the image-to-image translation methods - made by
the authors.
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– Beta2: 0.999
– Learning Rate: 0.0002 with linear policy and decay

after 50 iterations.
– Pool size: 50
– GAN loss: LSGAN

• TSIT

– Epochs: 100
– Batch size: 1
– Optimizer: Adam
– Beta1: 0.5
– Beta2: 0.999
– Learning Rate: 0.0002
– Lambda VGG: 1
– Lambda Feat.: 1
– Alpha: 1
– GAN loss: Hinge
– Number of discriminator filters in the first convolu-

tional layer: 64
– Discriminator iterations per Generator iterations: 1

APPENDIX E
ANALYSIS OF SMALL BOUNDING BOXES COMPONENTS
See Figures 11–14.
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