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When a pair of tandem cylinders is immersed in a flow the downstream cylinder can
be excited into wake-induced vibrations (WIV) due to the interaction with vortices
coming from the upstream cylinder. Assi, Bearman & Meneghini (J. Fluid Mech., vol.
661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin
in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates
across the wake. In the present paper we investigate how the cylinder responds to that
excitation, characterising the amplitude and frequency of response and its dependency
on other parameters of the system. We introduce the concept of wake stiffness, a
fluid dynamic effect that can be associated, to a first approximation, with a linear
spring with stiffness proportional to Re and to the steady lift force occurring for
staggered cylinders. By a series of experiments with a cylinder mounted on a base
without springs we verify that such wake stiffness is not only strong enough to sustain
oscillatory motion, but can also dominate over the structural stiffness of the system.
We conclude that while unsteady vortex–structure interactions provide the energy input
to sustain the vibrations, it is the wake stiffness phenomenon that defines the character
of the WIV response.

Key words: flow-structure interactions, vortex streets, wakes/jets

1. Introduction
Wake-induced vibration (WIV) is a fluid-elastic mechanism able to excite into

transverse oscillatory motion a bluff body immersed in a wake generated from another
body positioned upstream. In the present study we are concerned with the WIV
of the downstream cylinder of a tandem pair. WIV differs from the well-studied
phenomenon of vortex-induced vibration (VIV) in the sense that the excitation is not

† Present address: NDF Research Group, Dept. Eng. Naval e Oceânica, Escola Politécnica
da Universidade de São Paulo, Av. Professor Mello Moraes 2231, 05508-030, São Paulo, SP,
Brazil. Email address for correspondence: g.assi@usp.br
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FIGURE 1. Arrangement of a pair of cylinders. The static upstream cylinder may be removed
during experiments with a single cylinder. Solid lines represent hypothetical interaction
between shear layers.

generated in the vortex shedding mechanism of the body itself, but it comes from the
interaction with a wake developed farther upstream. In addition to that, while VIV is
a resonant phenomenon, WIV does not depend on the fluid excitation matching the
natural frequency of the structure. This will be explained in detail later.

In the past literature, WIV has also been referred to as: ‘interference galloping’
(Ruscheweyh 1983), ‘wake-induced galloping’ (Bokaian & Geoola 1984) and ‘wake-
displacement excitation’ (Zdravkovich 1988). Nevertheless, later in the present work it
will become clear why we hold to the WIV terminology.

In order to investigate the fundamental physics behind the phenomenon we study
the simplest case consisting of two circular cylinders with the same diameter initially
aligned with the flow. The basic arrangement is illustrated in figure 1, where x0 and
y0 define the initial geometry of the pair. In the present work, the upstream cylinder is
always static while the downstream cylinder is allowed to respond with oscillations in
one degree of freedom (1-dof) in the cross-flow direction only.

Previous works found that the typical WIV response is characterized by an
asymptotic build-up of amplitude with increasing reduced velocity. In one of them,
Assi, Bearman & Meneghini (2010) investigated the origin of the fluid force involved
in the excitation of the second cylinder. It has been concluded that WIV is indeed
a wake-dependent type of flow-induced vibration (FIV), yet it was found that the
unsteadiness of the wake plays a critical role in the WIV excitation mechanism and
not simply the displacement of a steady flow field. It has been suggested that the WIV
mechanism is sustained by unsteady vortex–structure interactions that input energy into
the system as the downstream cylinder oscillates across the upstream wake. It has been
shown that, in WIV, the upstream static body sheds vortices as an isolated cylinder
while the downstream elastic body responds with oscillations at a different frequency.
For flow velocities far beyond the typical VIV resonance the upstream vortex shedding
frequency ( fs) can be many times the natural frequency ( f0), and yet the body will
respond with severe vibrations.

Assi et al. (2010) showed that WIV is not a resonant phenomenon. Coherent
vortices impinging on the second cylinder and merging with its own vortices induce
fluctuations in lift that are not synchronized with the motion. While VIV finds
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212 G. R. S. Assi and others

its maximum amplitude of vibration at the resonance when fs ≈ f0, WIV response
keeps increasing even when fs is much higher than f0. Nonetheless, for the sake of
classification, WIV is essentially a type of vortex-induced mechanism in the sense that
it requires the interaction of the structure with vortices, even though these vortices are
coming from an upstream wake.

So far, this is what is known from previous research efforts as recently highlighted
in Assi et al. (2010). In the present paper we will concentrate our attention on what
we call the ‘character’ of the vibration. In other words, once we have understood why
vibrations are excited and sustained (Assi et al. 2010), we are able to investigate how
the cylinder responds to that excitation. Our objective is to characterize the response
(amplitude and frequency) and its dependence on other parameters of the system, such
as Reynolds number, x0 separation, structural stiffness and structural damping. Thus,
the present paper is a continuation of the work presented in Assi et al. (2010).

1.1. WIV response of the downstream cylinder
Reflecting a need from the heat-exchanger industry, the earliest experiments to
measure the response due to WIV of a pair of cylinders were performed with flexible
tubes in order to supply data to design engineers. A more complete understanding
of the fluid mechanics of the phenomenon was gradually developed when researchers
started to limit the number of variables, performing tests with rigid cylinders in 2-dof.
A further step was to simplify even more and allow a rigid cylinder only to vibrate
either in the in-line or in the cross-flow direction. First, let us present some previous
data found in the literature (including figures reproduced in this paper) that will be
useful to support our conclusions.

King & Johns (1976) performed experiments in water (Re = 103–2 × 104) with two
flexible cylinders for separations in the range x0/D = 0.25–6.0. They observed that
for x0/D = 5.5 the upstream cylinder responded with a typical VIV curve reaching
amplitudes around ŷ/D = 0.45 at the resonance peak, comparable to their tests with
a single cylinder at same Re. On the other hand the downstream cylinder also started
to build up oscillations together with the upstream one, but instead of the oscillations
disappearing after the synchronization range they remained at roughly the same level
for reduced velocities up to the highest tested. They identified the response of the
second cylinder as a type of buffeting, since it originated from the wake interference
coming from the upstream cylinder.

Brika & Laneville (1999) performed tests with a pair of long tubes in a wind
tunnel with a flexible cylinder positioned from 7 to 25 diameters downstream of a
rigid cylinder for Reynolds number between 5000 and 27 000. A series of curves
for different separations reveal that as x0 increases the interference effect from the
upstream wake is reduced until the response resembles that of a single cylinder
without any (or with very little) interference. It is interesting to note that even between
separations of 16 and 25 diameters the authors were still able to identify some change
in the interference effect with the second cylinder positioned so far downstream.
Because their experiment was performed in air, the mass ratio m∗ (the ratio between
the mass of the structure and the mass of displaced fluid) was two orders of magnitude
higher than other experiments in water. Yet their damping parameter ζ was extremely
low, resulting in a combined mass-damping of only m∗ζ = 0.068.

Moving from flexible to rigid cylinders, we recall experiments performed by
Zdravkovich (1985) with two rigid cylinders free to respond in 2-dof mounted in
a wind tunnel (Re = 1.5 × 104–9.5 × 104, m∗ = 725 and ζ = 0.07). Due to a very
high mass-damping parameter of m∗ζ = 50, Zdravkovich was only able to observe
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FIGURE 2. Response in the cross-flow direction of the downstream cylinder under WIV.
(a) Varying x0, m∗ = 8.4, ζ = 0.013, Re = 700–2000, ωw is the natural frequency in radians
per second measured in still water (Bokaian & Geoola 1984). (b) ♦, x0/D = 4.75, m∗ = 3.0,
ζ = 0.04, Re = 3 × 104 (Hover & Triantafyllou 2001); ©, x0/D = 4.0, m∗ = 1.9, ζ = 0.007,
Re= 3000–13 000 (Assi et al. 2006).

a build-up of oscillations at x0/D = 4.0 for reduced velocities beyond U/Df0 = 50,
asymptotically reaching a maximum of ŷ/D= 1.7 for the last point of his experiments
at around reduced velocity 80. Nevertheless, he has also recorded a monotonically
increasing branch of response that was qualitatively very similar to those results later
presented by Brika & Laneville (1999). In a subsequent study of the effect of mass
and damping, Zdravkovich & Medeiros (1991) performed similar 2-dof tests in a wind
tunnel varying m∗ζ between 6 and 200 (Re= 5×103–1.4×105). Once more, the cross-
flow vibrations presented the same monotonic-asymptotic behaviour with the amplitude
increasing with the reduced velocity. Their results revealed a strong dependence of the
response on m∗ζ , but more importantly showed that very high values of mass-damping
are required to inhibit WIV of the second cylinder. Maximum amplitude was obtained
at a maximum reduced velocity of 120, but in order to reduce the amplitude ŷ/D by
half (from 2.2 to 1.1) it was required to increase m∗ζ ten times (from 6.4 to 64).

Going one step further in the simplification of the problem, we find a few results
from Bokaian & Geoola (1984) who performed experiments for two rigid cylinders
in tandem responding only in 1-dof in a water channel. The upstream cylinder was
fixed while the downstream cylinder was elastically mounted on air bearings and free
to respond only in the cross-flow direction. They varied centre-to-centre separation
in the range of x0/D = 1.09–5.0. Results for amplitude of response versus reduced
velocity (with ωw being the natural frequency in radians per second measured in still
water) are presented in figure 2(a) for three values of x0 tested. A vigorous build-up
of oscillations with increasing flow speed is observed for all flow speeds greater than
a critical threshold velocity. Such a severe 1-dof vibration was observed to resemble
the response of classical galloping of non-circular bodies; therefore it was referred to
as ‘wake-induced galloping’. They noted that ‘galloping carries the strong connotation
of a negatively damped single degree of freedom oscillation, and its use to describe the
problem under study is only because of the many similarities between the two kinds
of instability’. However, elsewhere in their work Bokaian & Geoola (1984) stated that
‘whilst some characteristics of wake-excited galloping were found to be similar to
those of galloping of sharp-edged bodies, others were observed to be fundamentally
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214 G. R. S. Assi and others

different’. The authors concluded that depending on x0, m∗ and ζ the downstream
cylinder ‘exhibited a vortex-resonance, or a galloping, or a combined vortex-resonance
and galloping, or a separated vortex-resonance and galloping’ response. In figure 2(a)
two examples of these different responses are found: results for x0/D = 1.5 present
a vortex resonance that is followed by (or combined with) a ‘galloping’ response at
about reduced velocity 2; results for x0/D = 2.0 and 3.0 present separated vortex-
resonance and ‘galloping’ regimes. A pure vortex resonance is not shown in figure 2(a)
but this would be similar to what we understand as a typical VIV response.

Hover & Triantafyllou (2001) measured displacements of and forces on rigid
cylinders under WIV in a water towing tank at a constant Reynolds number. They
made use of a closed-loop control system that forces the oscillation of the cylinder in
response to a measured and integrated fluid force. In this way they cleverly tuned the
mass, damping and stiffness parameters (m–c–k) in an equation of motion in order to
generate any artificial combination of f0, m∗ and ζ . As a result, their curve presented
in figure 2(b) was obtained for Re = 3 × 104 adjusting f0 in order to vary the reduced
velocity from 3 to 12. The resulting parameter m∗ζ = 0.12 is very close to m∗ζ = 0.11
obtained by Bokaian & Geoola (1984) in figure 2(a); however the difference in the
level of amplitude might be related to a difference of one order of magnitude in Re,
as will be discussed later. For a separation of x0/D = 4.75, Hover & Triantafyllou
(2001) observed one single branch of response that builds up monotonically reaching
amplitudes of [ŷ/D]max = 1.9 for reduced velocities around 17 (their curve represents
an average of the 10 % highest peaks of displacement). Although they referred to the
branch of high amplitude as an ‘upward extension of the frequency lock-in branch’
that occurs for the VIV response of a single cylinder, there is no evidence that the
vortex shedding frequency of either cylinder is synchronized with the frequency of
oscillation; on the contrary, their results reveal that vibrations occur ‘without any clear
signature of vortex resonance’.

More recently, Assi et al. (2006) performed 1-dof experiments with two rigid
cylinders in a recirculating water channel (Re = 3 × 103–1.3 × 104). Their results,
also presented in figure 2(b), are comparable to those of Hover & Triantafyllou (2001)
since they have a similar Re range; however Assi et al. (2006) employed a very
low-damping elastic system resulting in m∗ζ = 0.013, one order of magnitude lower.
Both curves are in good agreement showing an expected branch of high-amplitude
oscillation building up as the reduced velocity is increased. In addition, the data
points from Assi et al. (2006) also reveal a smooth hump corresponding to a local
vortex-resonance response around U/Df0 = 6.0.

Later in this paper we shall return to some of these results in order to compare our
data and support our conclusions.

1.2. Steady fluid forces on staggered cylinders
It is known that the downstream cylinder of a staggered pair experiences a steady
lift force even if the bodies are held static in the flow (Price 1976; Bokaian &
Geoola 1984). Zdravkovich (1977) presents a map of steady fluid forces acting on a
cylinder across the wake for separations as large as x0/D = 5.0. His results, which
are in agreement with many other maps in the literature, clearly show that the steady
lift always points towards the centreline of the wake, i.e. as restoring the staggered
downstream cylinder back to the tandem configuration. The steady lift is zero on
the centreline of the wake, increases as the second cylinder is displaced towards the
wake interference boundary and is reduced as the body is positioned farther out of
the wake. Assi et al. (2010) have suggested that such a strong steady lift is induced
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The role of wake stiffness on wake-induced vibration 215

by the unsteady interaction of vortices present in the wake coming from the upstream
cylinder. In a controlled experiment, the periodic unsteadiness associated with vortex
shedding was removed from the upstream wake, leaving only a steady shear profile
generated by a set of screens. It was shown that the steady lift acting on a static
downstream cylinder was considerably reduced if coherent vortices were not present in
the upstream wake.

Igarashi (1981) and others have identified two distinct regimes in the wake formed
in the gap between tandem cylinders. The first regime occurs when the proximity
of the cylinders allows the shear layers that separate from the upstream cylinder to
reattach to the second body and a vortex street is not developed in the gap. The second
regime, which normally occurs for larger separations, is characterized by the existence
of a developed vortex wake in the gap. The force map presented by Zdravkovich
(1977) shows that distinct regimes also appear for staggered arrangements and a steady
lift force presents two prominent regions associated with different wake regimes. In
the present work we are only interested in the second regime, i.e. the force field
and vibration generated when a developed wake is present in the gap. The transition
from the first to the second regime has a small influence of Re, but most of the
investigations agree that the critical separation is between x0/D= 3.0 and 4.0.

Bokaian & Geoola (1984) presented more detailed measurements of the steady
lift Cy acting across the wake for three separations of 3.0, 4.0 and 5.0 diameters
and Re = 5900. Their measurements made it clear that the maximum lift towards
the centreline decreases as the second cylinder moves farther downstream. While
the steady drag Cx is minimum on the centreline, due to the shielding effect of
the upstream wake, Cy is minimum around y0/D = 1.0. This brings us back to the
definition of interference regions proposed by Zdravkovich (1977). He says that ‘the
wake boundary is a line along which the (mean) velocity becomes the same as the
free stream one. The (wake) interference boundary is the line along which (the mean)
lift force becomes zero or negligible’. These two lines do not necessarily coincide, but
the wake interference boundary is always outside the wake boundary. It will become
clearer later that the interaction between flow and structure occurring within the wake
boundary is fundamental to WIV.

1.3. Vortex-induced vibration of a single cylinder
Before starting our analysis of WIV, we briefly review the modelling employed to
understand other types of flow-induced vibrations, especially vortex-induced vibration
(VIV), which has its origin in the cyclic loads generated by vortices shed from a bluff
body. It has been extensively reviewed in the literature (Sarpkaya 1979; Bearman 1984;
Parkinson 1989; Blevins 1990; Zdravkovich 1997; Williamson & Govardhan 2004),
but some of the basic modelling is mentioned here since it will be employed to model
WIV later in this paper.

An elastic cylinder will be modelled by its structural properties: mass (m), stiffness
(k) and damping (c). Allowing for displacements only in one degree of freedom
(1-dof) in the y-axis, the equation of motion per unit length becomes

mÿ+ cẏ+ ky= 1
2ρU2D

[
Cy + Ĉy sin(2πft + φ)

]
, (1.1)

where y, ẏ and ÿ are respectively the displacement, velocity and acceleration of the
body, leaving the term on the right-hand side of the equation to represent the time-
dependent fluid force in the cross-flow direction. As proposed by Bearman (1984) and
others, the displacement of a cylinder under VIV may be expressed by the harmonic
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216 G. R. S. Assi and others

response

y(t)= ŷ sin(2πft), (1.2)

where ŷ and f represent the harmonic amplitude and frequency of oscillation. For
large-amplitude oscillation under a steady-state regime of VIV the fluid force and the
body response oscillate at the same frequency f , which is usually close to the natural
frequency of the system. According to this ‘harmonic forcing and harmonic motion’
hypothesis the fluid force can be divided into a time-average term Cy and a transient
term modelled as a sine wave with amplitude Ĉy and frequency f . For body excitation
to occur, the phase angle between y(t) and Cy(t) must be between φ = 0 and 180◦.

A second-order oscillator presents an undamped natural frequency that only takes
into account the structural stiffness and mass of the system ( f0 =

√
k/4π2m). The

structural damping is generally expressed by a damping ratio ζ , defined as a fraction
of the critical damping (ζ = c/

√
4km). If ζ is kept sufficiently low, the damped natural

frequency can be considered approximately equal to f0. It is useful to present the flow
speed in terms of a reduced velocity U/Df0. The reduced velocity for maximum VIV
response occurs around U/Dfs (the inverse of the Strouhal number), that is at the
resonance where the vortex shedding frequency fs is equal to f0.

According to Bearman (1984) the VIV response is inversely proportional to the
product of m∗ and ζ , yielding the non-dimensional amplitude of vibration as

ŷ

D
= 1

4π3 Ĉy sinφ
(

U

Df0

)2( 1
m∗ζ

)(
f0

f

)
. (1.3)

Bearman (1984) states that ‘It is clear that the phase angle φ plays an extremely
important role. The amplitude response does not depend on Ĉy alone but on that part
of Ĉy in phase with the body velocity. Hence, measurements of just the sectional
fluctuating lift coefficient on a range of stationary bluff-body shapes will give little
indication of the likely amplitudes of motion of similar bodies flexibly mounted’.
Therefore, the combined Ĉy sinφ term is fundamental in an unsteady analysis of the
phenomenon.

2. Experimental set-up and validation with a single cylinder
The experimental set-up employed in the present study is exactly the same as

that described in Assi et al. (2010). For further details, refer to Assi (2009). It is
worth recalling here that a pair of coil springs connecting the moving base to the
fixed supports provided the restoration force of the system. All the moving parts of
the elastic base contributed to the effective mass oscillating along with the cylinder
resulting in a mass ratio of m∗ = 2.6 (calculated as the total oscillating mass divided
by the mass of water displaced by the cylinder). By carrying out free decay tests in air
it was also possible to estimate the structural damping of the system as ζ = 0.7 %,
calculated as a percentage of the critical damping. Therefore, the mass-damping
parameter was m∗ζ = 0.018 for the majority of the experiments.

In order to validate the experimental set-up and obtain reference data for
comparison, a preliminary experiment was performed with a single cylinder free to
oscillate in 1-dof in a uniform flow. These results have been discussed in more detail
in Assi et al. (2010); therefore they will be presented very briefly here to allow
comparison with the main WIV data to be discussed later.
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FIGURE 3. VIV response of a single cylinder free to oscillate in the cross-flow direction.
Reproduced from Assi et al. (2010).

The typical VIV response, in terms of amplitude and frequency of oscillation, is
presented in figure 3 and shows a good agreement with the results reviewed by
Williamson & Govardhan (2004). The three typical branches of response, initial, upper
and lower, are clearly identified in the displacement curve. Fluid force measurements
(not presented in this paper) were in good agreement with the results presented by
Khalak & Williamson (1999) and can be found in Assi et al. (2010). Figure 3 also
shows the frequency response normalized by the natural frequency ( f /f0); variation
from light to dark grey represents higher peaks in the normalized power spectral
density (PSD) of the frequency of oscillation (refer to Assi 2009 for more details).
(The fw/f0 line will be explained later.)

Throughout the study, the cylinder displacement amplitude normalized by the
cylinder diameter (ŷ/D) was found by measuring the r.m.s. value of response and
multiplying by

√
2. Such a harmonic amplitude assumption is likely to give an

underestimation of maximum response but was judged to be perfectly acceptable
for assessing the average amplitude of response for many cycles of steady-state
oscillations. The same procedure was employed to determine the magnitude of all
other fluctuating variables, such as Ĉy and Ĉx.

3. Results: WIV response of the downstream cylinder
The characteristic build-up of response for higher reduced velocities, reported in

previous works, is clearly observed in figure 4 and contrasts with the typical VIV
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FIGURE 4. WIV response of the downstream cylinder for various x0 separations:
(a) displacement; (b) dominant frequency of oscillation.

response obtained for a single cylinder in figure 3. A discrete hump is found to occur
for all centre-to-centre separations at around U/Df0 = 5.0 and corresponds to the local
peak of VIV resonance, although this happens slightly later in the reduced velocity
scale due to the shielding effect of the wake that reaches the downstream cylinder.
Beyond that, for higher reduced velocities, a branch of monotonically increasing
amplitude starts to build up showing different levels of vibration for each separation.
As expected, it reveals that displacement amplitude is inversely proportional to the
separation x0. As the downstream cylinder is moved farther away, the effect of WIV
is reduced until the response curve eventually resembles that of VIV of an isolated
cylinder. While at x0/D = 4.0 the cylinder reaches displacement amplitudes around
ŷ/D = 1.6, a cylinder at x0/D = 20 shows only the VIV peak with levels of ŷ/D
around 0.2 for the rest of the regime. The curve for x0/D = 8.0 is a particularly
interesting one because the intensity of the WIV effect is just enough to sustain
the same level of response observed for VIV through the whole range of reduced
velocities. Nevertheless, all presented cases show some type of combined VIV and
WIV response, with the maximum amplitude of VIV at U/Df0 = 5.0 showing a minor
dependence on x0.
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Since WIV has its origin in the wake developed in the gap between the cylinders, it
is expected that the centre-to-centre separation between a tandem pair has a major
effect on the response of the downstream body. In Assi et al. (2010) we have
suggested that as x0/D is increased the fluid force induced by upstream vortices is
reduced due to diffusion of vorticity and increasing flow three-dimensionality. This
theory is supported by the results presented in figure 4 showing that the response
curve has indeed a strong dependence on x0. Our results are in good qualitative
agreement with those of Laneville & Brika (1999) even though they have performed
tests with flexible tubes.

Figure 4(b) shows the dominant frequency of oscillation for each case plotted above.
At first sight it is remarkable that all data points collapse over the range of separations
investigated. During the beginning of the VIV regime the frequency curve follows
closely the St = 0.2 line until f = f0, but later it departs from this line to follow the
lock-in behaviour observed for a single cylinder within the synchronization regime.
But where the typical VIV regime would have finished for a single cylinder, say for
U/Df0 > 15, the f /f0 curve remains on the same trend as before, which is distinctively
lower than St = 0.2. Even for larger separations of x0/D = 20, in which the response
resembles that of simple VIV, the dominant frequency is observed not to return to
St = 0.2 after the end of the supposed synchronization, but instead it remains at a
much lower level for the rest of the reduced velocity range with ŷ/D around 0.2.

This is the first evidence that there must be a fluid force with a lower frequency that
sustains the response – a frequency that is lower than the vortex shedding frequency of
both cylinders. The frequency of this fluid force appears not to vary with x0 and shows
only a small dependence on reduced velocity or Reynolds number when compared to
the St = 0.2 line, for example.

3.1. WIV response of the downstream cylinder at x0/D= 4.0
In order to investigate the mechanism behind WIV we will now concentrate our
attention on a single separation; later we shall return to the effect of x0/D on the
response. A separation of x0/D = 4.0 was chosen for various reasons: (i) it was
beyond the critical separation where a bistable reattachment of the shear layers may
occur, therefore a developed wake was observed to be present in the gap for all
flow speeds; (ii) it gave a WIV response that is qualitatively consistent with other
larger separations, being the most energetic behaviour observed; (iii) the cylinder
displacement and magnitude of fluid forces were rather large and provided accurate
measurements with the load cell; (iv) and the separation was not too large to fit in the
particle image velocimetry (PIV) field of view.

Figure 5 presents the WIV response of the downstream cylinder of a pair, initially
in tandem, with x0/D = 4.0. The same pair of springs was employed during the
whole experiment and the velocity of the flow in the test section was varied in
order to cover a large range of reduced velocity, therefore yielding Re = 2000–25 000.
Figure 5(a) plots displacement versus reduced velocity with ŷ/D being the harmonic
amplitude of displacement. Although it gives a good idea of the average amplitude
of vibration for many cycles of oscillation, ŷ/D does not offer a good estimation
of the maximum amplitude the cylinder might reach if displacement is varying from
cycle to cycle. By actually counting individual peaks of oscillation it was possible to
estimate a maximum and a minimum peak amplitude taking an average of the 10 %
highest and 10 % lowest peaks of the whole series, yielding [ŷ/D]max and [ŷ/D]min
respectively. Therefore we can say that for a certain reduced velocity the cylinder
oscillates on average with ŷ/D but reaches the maximum and minimum limits given
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FIGURE 5. WIV response of the downstream cylinder at x0/D = 4.0: (a) average
displacement and average of maximum and minimum peaks; (b) normalized PSD of
frequency of oscillation.

by the other two curves. This brings considerable new information about the response
since it shows that ŷ/D is not only building up with reduced velocity, but also the
deviation from the average amplitude is increasing, i.e. the width of the envelope is
also increasing.

Figure 5(b) shows the frequency of oscillation versus reduced velocity, the same
data presented for x0/D= 4.0 in figure 4 but now plotted as normalized PSD. It shows
that f indeed follows a branch with values greater than f0 but still not related to
St = 0.2. However, the PSD contours also reveal that any other secondary frequency
or harmonic present in the spectrum of oscillation is much smaller than the single
dominant branch that is evident across the reduced velocity range. That is to say that
there is no significant trace of a frequency branch associated with St = 0.2 beyond
reduced velocity 10, with only a hint appearing between 5 and 10 (represented by
white shading around the dashed line).

In Assi et al. (2010) we discussed in detail the behaviour of the lift force acting
on both cylinders. For now it is enough to remember that the upstream cylinder
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is shedding vortices as a single static body with St ≈ 0.2. This was evident from
measurements of lift as well as velocity fluctuation in the wake of the upstream
cylinder. On the other hand, the lift force on the downstream cylinder has shown
two clear branches bifurcating from the VIV resonance point (refer to figure 10 in
Assi et al. 2010). The lowest branch corresponds to the frequency of oscillation in
figure 5, but the highest branch is clearly associated with a vortex shedding frequency
that follows the St = 0.2 line. This frequency may originate in the vortex shedding
mechanism occurring on the upstream cylinder, or on the downstream cylinder, or on
both.

Looking again at the response curve in figure 5 it is quite apparent that three
different regimes can be identified and related to different inclinations of the
displacement curve: (i) a VIV resonance hump (upper branch) around U/Df0 = 5; (ii)
a combined VIV (lower branch) and WIV regime roughly in the range U/Df0 = 5–17;
and (iii) a WIV regime for U/Df0 > 17.

We conclude that the WIV response of the downstream cylinder of a pair is
distinctively different from the VIV response of a single cylinder. Although some
aspects are common to both types of FIV, especially those related to the overlap of
VIV regime in the WIV response, others are very different. So far, it is clear that
the low frequency of response observed for high reduced velocities is not directly
associated with the vortex shedding mechanism of either cylinder.

4. Results: steady fluid forces on static cylinders
Traditionally, quasi-steady theory has been employed in an attempt to model various

fluid-elastic phenomena. Therefore, we have also performed experiments with a pair
of static cylinders in order to evaluate the behaviour of fluid forces acting on the
downstream body in various staggered arrangements. Measurements were obtained by
holding the upstream cylinder fixed and traversing the downstream cylinder across 160
stations (each marked by a small cross in figure 6) in and out of the wake interference
region at Re= 19 200.

Figure 6(a) presents the map of steady lift (or mean lift) acting on the downstream
cylinder for different regions of wake interference. A negative value of Cy indicates
lift force acting towards the centreline. As expected, the first evident observation is
that the steady lift force points in the direction of the centreline for all configurations
investigated. The Cy map reveals two regions of intense steady lift as high as −0.8.
The first region between x0/D = 1.5–2.5 is associated with the gap-flow-switching
mechanism (described in Zdravkovich 1977) occurring in the first wake-interference
regime, i.e. when fully developed vortices do not form in the gap. The second region
with intense lift occurs for larger lateral separations around y0/D = 0.8. Beginning
around x0/D = 2.5–3.0 with Cy ≈ −0.8, it develops into a trend of maximum Cy

(indicated by the dash-dotted line) that decreases in intensity as the second cylinder
moves farther downstream. For x0/D > 3.0, it is observed that the magnitude of Cy

continually decreases on increasing the separation, but the transverse extent of the
force field increases farther downstream as the wake widens. This second region is
associated with the second interference regime in which the upstream shear layers are
not able to reattach to the downstream cylinder but roll up to form a developed vortex
wake in the gap, i.e. what we are calling WIV.

In the steady drag map presented in figure 6(b) positive contours of Cx denote
drag in the streamwise direction. Dotted lines represent contours of zero or negative
drag that occur when the cylinders are close enough for the gap flow to be enclosed
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FIGURE 6. Contours of (a) steady lift (Cy) and (b) steady drag (Cx) on the downstream
cylinder of a static pair. Re= 19 200.

by the reattaching shear layers. For x0/D > 2.5 the downstream cylinder in tandem
arrangement only experiences positive drag indicating that a developed wake can now
be formed in the gap. This critical separation coincides with the overlap of the two
trends of maximum Cy presented in figure 6(a). While the downstream cylinder is
immersed in the wake of the upstream cylinder the steady drag will be lower than that
expected for a single cylinder exposed to a free stream. Only for lateral separations
greater than y0/D = 1.5 does this shielding effect disappear and Cx reaches values
above 1.0. Our experimental results for the steady components are in very good
agreement with other works found in the literature, including the maps produced by
Zdravkovich (1977) and Bokaian & Geoola (1984).

4.1. Detailed map for x0/D= 4.0

Since we are concentrating our attention on x0/D = 4.0 we present a more detailed
investigation of the steady fluid forces acting on the downstream cylinder for this
separation. These results will be the basis for the discussion that will follow.

Starting from the Cy and Cx maps above, we can keep the downstream cylinder at
x0/D = 4.0 and traverse it in small steps across the wake along the vertical dashed
line plotted in figure 6. If we now vary Re for each one of these stations we have the
detailed curves presented in figure 7. Once more, it shows that the steady lift acting
on the downstream cylinder points towards the centreline of the wake for all y0/D
separations. An almost linear behaviour is observed for the range −1.0 < y0/D < 1.0
with a maximum of absolute Cy = 0.65 found just past y0/D = −1.0. Beyond that
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FIGURE 7. Steady fluid forces on a static downstream cylinder at x0/D= 4.0 and various
staggered positions.

separation the steady lift gradually reduces until it is beyond the influence of the wake
and reaches zero around y0/D= 3.0.

In figure 7(b) the steady drag curve reveals the shielding effect of the wake by
showing an almost 60 % reduction in drag at the centreline; however the mean drag
never attains negative values (drag inversion) for this separation. Bokaian & Geoola
(1984) observed that the distribution of the drag coefficient is insensitive to a limited
increase of Re from 2600 to 5900. Price (1975) also observed the same independence
from Re for a range one order of magnitude higher. We also conclude that the steady
fluid forces, lift and drag, do not vary with Re for the range of the experiments
(Re= 2000–25 000). In fact, several Re within this range were analysed but only three
are plotted in figure 7 for clarity. This explains why our maps from figure 6 for
Re= 1.9× 104 are in good agreement with Zdravkovich’s (1977) for Re= 6× 104.

5. Experiment without springs: f0 = 0
In Assi et al. (2010) we performed an idealized experiment by removing the

unsteadiness of the upstream wake generated by vortices being shed from the upstream
cylinder. In that case we made fs = 0 and concluded that a cylinder immersed in
such a steady wake would not develop WIV. We were convinced that the interaction
between the oscillating cylinder and the unsteady wake from upstream is crucial to
sustain the WIV mechanism. The necessary phase lag that drives and maintains the
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excitation was shown to originate in this complex vortex–structure interaction. But
one question was still left unanswered: Why is the cylinder oscillating at a frequency
that is distinctively different from both the upstream vortex shedding frequency ( fs)
and the natural frequency of the system ( f0)? WIV turned out to be understood as
a non-resonant mechanism with the amplitude of response increasing far beyond any
synchronization range. The fact that the excitation mechanism is not dependent on the
forcing frequency matching f0 gave us the idea of removing yet another fundamental
frequency of the system. In the previous experiment we made fs = 0 by generating a
steady shear profile without vortices; now we make f0 = 0 by removing the springs of
the oscillator.

The same experimental set-up was employed. While mass (m) and damping (c)
remained unchanged, the pair of springs was removed from the system so that k = 0
and f0 = 0. Therefore, for the downstream cylinder immersed in still water there
was no structural stabilizing force whatsoever to keep it in position. Cylinders were
initially aligned in tandem, but the downstream body would drift away from the
centreline, responding to any perturbation coming from the flow or from the rig.

We found no other works on WIV of cylinders where all stiffness had been removed.
Zdravkovich (1974) performed experiments with a downstream cylinder mounted
on a horizontal swinging arm without springs, but he was left with a restoration
force generated by the steady flow. The drag acting on the cylinder generated a
stabilizing force component towards the centreline – in the same way that the weight
stabilizes a vertical pendulum in free oscillation – resulting in an equivalent stiffness
generated by the flow. Most of his experiments were concerned with the gap-flow-
switching mechanism, hence were concentrated in the proximity interference region.
For x0/D< 3.5 he observed severe vibrations with a clear dominant frequency; yet the
response was abruptly reduced for separations between x0/D = 3.5–7.0 with no clear
dominant frequency being identified. Beyond that critical separation the downstream
cylinder was not prone to gap flow switching any longer but on entering the WIV
region still the expected build-up of response was not observed. Zdravkovich’s
experiment was performed in air and his elastic rig presented a very high damping
factor of ζ = 0.24. Probably, we believe, a high value of combined m∗ζ was enough to
suppress WIV but not gap flow switching, only proving that the content of energy in
the first mechanism is lower than in the latter. Apart from this experiment we have not
seen any other WIV investigation on cylinders mounted without springs – and even in
this case there was still a remaining stabilizing force left due to resolved drag.

5.1. WIV response without springs

In the WIV response with springs we found that a VIV resonance peak always
occurred around U/Df0 = 5.0, before a pure WIV mechanism could prevail. A
hypothesis is that the cylinder was being excited by VIV up to a condition of motion
(coupled displacement and frequency) from which WIV could eventually take over.
But now, once the springs are removed, we do not expect to see the local peak of VIV
appearing, consequently the cylinder may not be excited into the critical motion for
WIV to start. Would it still be possible to obtain a WIV response without first passing
through a VIV resonance peak?

We already know that a static downstream cylinder in a staggered arrangement
experiences a steady lift force towards the centreline. Keeping this stabilizing effect
in mind, we expect that a free downstream cylinder mounted without springs would
respond in one of the three possible ways.
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(i) Drift sideways: the impulse generated by the vortex–structure interaction would
be strong enough to overcome Cy towards the centreline; the cylinder would drift away
beyond the wake-interference region (static divergence) and no oscillatory motion
would be sustained.

(ii) Remain stable on the centreline: the impulse generated by the vortex–structure
interaction when the cylinder is on the centreline would be too weak to displace
the cylinder and initiate any WIV; the cylinder would find a stable position on the
centreline due to a strong Cy field and no oscillatory motion would be sustained.

(iii) Develop oscillatory motion: the impulse generated by the vortex–structure
interaction would be strong enough to displace the cylinder, but the stabilizing Cy

would restore the cylinder towards the centreline. A phase lag between force and
displacement would appear to build up the WIV mechanism and sustain oscillatory
motion even without springs.

In principle it appears that the existence of oscillatory motion depends on the
balance between the impulse force from the vortex–structure interaction and the
stabilizing lift towards the centreline, at least in a system without springs. But since
both force components depend on the unsteady wake configuration and motion of the
body we cannot predict a priori if the system will respond with sustainable oscillatory
motion – and even if some oscillation is developed there is no indication that it would
resemble the WIV response obtained when springs were present.

Figure 8 presents the WIV response for the downstream cylinder mounted without
springs compared with the curve already presented for a cylinder with springs. Both
curves were obtained for the same variation of the flow speed; therefore both data sets
share the same Reynolds number scale. But because the system without springs has
no inherent f0 it does not make sense to plot this curve with a reduced velocity axis.
In fact, by making f0 = 0 we are effectively making U/Df0 =∞ for all points of the
response without springs; the variation of flow speed can only be represented by Re in
this case.

From among the three hypotheses presented above, the response certainly agrees
with the third one concerned with sustainable oscillatory motion. Not only was the
cylinder able to sustain oscillations, but most surprisingly the amplitude of response
was remarkably similar to the case with springs. As far as the amplitude of response
is concerned, it appears that the absence of springs is insignificant for the WIV
mechanism. As expected, the local peak of VIV around U/Df0 = 5.0 disappeared once
the resonance fs = f0 was eliminated by removing the springs. However, the overall
response for both cases, with and without springs, is notably similar. The fact that
ŷ/D increases with flow speed is not an effect of reduced velocity; in other words, the
increase in WIV response observed for a cylinder without springs cannot be related
to any structural stiffness. Instead, it seems that the response reveals some dependence
simply on Reynolds number. Since both curves are essentially very similar, we suggest
that an independence of response from reduced velocity and a dependence on Re
might also be occurring for the cylinder mounted with springs. We shall return to this
subject later on.

Let us turn now to the frequency of response presented in figure 8(b). Since f0 is
not defined for the case without springs, we can only compare both curves if they are
plotted in dimensional form (s−1). The response with springs was analysed above, but
it is convenient to summarize it here once more: f follows the St = 0.2 line up to the
VIV resonance; then follows close to f0 through a distorted synchronization range, but
eventually continues on a distinct branch dominated by pure WIV. On the other hand,
the frequency of response without springs shows no effect of VIV synchronization
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FIGURE 8. WIV response of a downstream cylinder mounted with and without springs at
x0/D= 4.0: (a) displacement; (b) dominant frequency of oscillation.

– that is obvious since there is no f0 for it to be synchronized with – but follows an
almost straight line as the flow speed is increased. In fact, we note that it follows
very closely the dash-dotted line marked as fw, which shall be explained later. Another
way to analyse this result is to create a non-dimensional parameter fD/U, a type
of Strouhal number, plotted in figure 9. This way, the St = 0.2 line presented in
figure 8 becomes a constant in figure 9 and all the data are distorted to incorporate the
effect of U varying in both axes. We shall return to this graph after some analytical
modelling that will follow in the next sections. Before that, we will look at the time
series of displacement and lift.

Figure 10 shows three examples of time series for the WIV response without
springs. The flow speed in each case, represented by Re, would correspond to a
reduced velocity of U/Df0 = 10, 20 and 30 for the cylinder mounted with springs
(which can be compared with the plots in Assi et al. 2010). The displacement
plots on the left (a,c,e) show that the system is indeed responding with oscillatory
motion. Although the frequency of response seems to be rather regular, it is evident
that the envelope of amplitude varies from cycle to cycle throughout the series.
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40
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0
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0 3.0

FIGURE 9. Non-dimensionalized dominant frequency of oscillation of a downstream cylinder
mounted with and without springs. See figure 8 for key.

Figure 10(b,d,f ) presents superimposed plots of displacement and lift for similar cycles
around the average value of ŷ/D given in figure 8.

A considerable variation in displacement is evident from the deviation of dark-grey
lines from the average cycle represented in black. Nevertheless, it is the irregularity
of the lift force that really catches the attention. A clutter of light-grey lines reveals
that almost no cycle is identical to any other and an abundance of higher frequencies
induce Cy to present significant fluctuations within a single cycle of displacement.
Once more we can note that intense, high-frequency fluctuations in lift, a consequence
of the instantaneous interaction between cylinder and wake, may have a similar effect
as generating the phase lag between y and Cy that is necessary to transfer energy
from the flow to the structure. However, by looking at the average cycle of lift, given
by a dashed-black line, we can still note a lower frequency component almost, but
not exactly, out of phase with the displacement. This term must have some inertia
component reacting against the acceleration of the body; part must be related to the
flow excitation, but part must also be related to the steady Cy field acting towards the
centreline.

Analysing the PSD of Cy of both cylinders (figure 11) we note that the upstream
cylinder (figure 11a) is shedding vortices as an isolated body, with no interference
from the motion of the second cylinder propagating upstream. This was also observed
for the case with springs and there is no reason to expect that it would be different
for the same separation. On the other hand, the PSD of lift on the downstream
cylinder shows two distinct branches of frequency: the higher f (Cy) branch is clearly
an effect of vortex shedding from the upstream cylinder; whereas the lower f (Cy)

branch is promptly identified with that frequency of response observed in figure 8. It
is important to note that in this case there is no f0 defined by springs (that is why
f (Cy) has a dimension of s−1), hence the fact that f (Cy) presents a lower branch is
not associated with any structural stiffness. It is only at the very beginning of the
scale, for Re < 0.3 × 104, that we see the vortex shedding branch having more energy
than the lower one; otherwise, for the rest of the response curve, the lower frequency
branch clearly dominates the character of Cy. Now, with such a clear preponderance
of the lower f (Cy) branch it is not surprising that the dominant frequency of response
matches this major excitation.
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FIGURE 10. Three examples of time series for WIV without springs. (a,c,e) Displacement
signal for around 50 cycles of oscillation. (b,d,f ) Superimposed plots of similar cycles:
y/D in dark grey and Cy in light grey with average cycle in black. (a,b) Re = 0.8 × 104,
(c,d) Re= 1.5× 104, (e,f ) Re= 2.3× 104.
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FIGURE 11. Normalized PSD of lift force acting on the (a) upstream static cylinder and (b)
downstream cylinder without springs.

The body is able to sustain oscillatory motion even without any springs to create
structural stiffness and we are still left with the question about the origin of a lower
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frequency force that is not related to either fs or f0. The only possibility left is that
there must be another force acting to restore the body to equilibrium. Since the body
is essentially without any structural stiffness, such a stabilizing force has to be coming
from the flow itself. That is to say that there must be a fluid force playing the role of
the stiffness in the oscillator, otherwise no oscillatory motion would be observed. So
we turn our attention once more to the steady lift generated in staggered arrangements.

6. The wake-stiffness concept
Now that we have observed that the WIV response without springs indeed presented

oscillatory motion – with amplitude increasing with Reynolds number and a frequency
distinct from fs or any f0 – we should model the problem of a cylinder with no
structural stiffness. The equation of motion (1.1) has the stiffness term removed if we
make k = 0 for a downstream cylinder without springs, resulting in

mÿ+ cẏ= Cy
1
2ρU2D, (6.1)

where all forces are per unit length of cylinder.
Applying the same ‘harmonic forcing and harmonic motion’ assumption, where

y= ŷ sin(2πft) and Cy = Ĉy sin(2πft + φ), results in

ŷ

D
= 1

4π
Ĉy sinφ

ρU2

cf
. (6.2)

Notice that neither the mass nor any stiffness comes into the equation, but the
excitation is simply balancing the structural damping of the system given by c (friction
damping per unit length of cylinder). Rearranging (6.2) into non-dimensional groups
results in

ŷ

D
= 1

4π
Ĉy sinφ

(
U

Df

)(
ρUD

µ

)(µ
c

)
. (6.3)

Knowing that the dynamic viscosity µ is a physical property of the fluid and
assuming that viscous damping per unit length c is only based on the friction of the
air bearings, we conclude that µ/c does not vary with Reynolds number. We are left
with three non-dimensional groups: (i) Cy sinφ is associated with the excitation force,
we call it the vortex-impulse term and will consider it later; (ii) U/Df represents the
inverse of a non-dimensional frequency of oscillation; (iii) ρUD/µ is the Reynolds
number.

6.1. Frequency of oscillation and natural frequency of wake stiffness
Let us first investigate the behaviour of the non-dimensional oscillation frequency
(fD/U). If we consider the map of steady lift across the wake for x0/D = 4.0
presented in figure 7 we note that Cy acting towards the centreline has a rather
good linear behaviour between −1.0 6 y0/D 6 1.0 and does not vary within the Re
range. Of course nonlinearities appear for larger separations, but we can estimate the
slope ∣∣∣∣ ∂Cy

∂(y0/D)

∣∣∣∣≡∆Cy ≈ 0.65 (6.4)

with 95 % confidence inside the wake interference region (considered to be −1.0 6
y0/D 6 1.0 in this analysis). For convenience, we shall refer to this slope simply as
∆Cy from now on.
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We know that this steady lift works as a restoring force towards the centreline.
Similarly to the stiffness generated by a spring, the magnitude of Cy increases linearly
with transverse displacement of the cylinder, at least within the wake interference
region. For that reason, the Cy field can be understood as a ‘fluid-dynamic spring’
generated by the flow; such an effect will be referred to as wake stiffness from now
on.

The equivalent spring constant per unit length (kw) that would generate such a flow
effect is

kw =∆Cy
1
2ρU2; (6.5)

thus an equivalent natural frequency fw could also be associated with the wake stiffness
as

fw = 1
2π

√√√√√ kw

(m∗ + Ca)ρ
πD2

4

, (6.6)

where Ca denotes the potential added mass coefficient to take into account the effect of
the added inertia of the displaced water.

Since wake stiffness is a fluid-dynamic force, its effect would be equivalent to a
spring with a kw that increases with U2, as seen in (6.5); hence the associated natural
frequency fw increases linearly with Re. Replacing (6.5) in (6.6) and multiplying it by
D/U results in a Strouhal-type non-dimensional parameter

fwD

U
= 1

2π

√
2
π

∆Cy

(m∗ + Ca)
. (6.7)

We already know that ∆Cy is invariant with Re. Since Ca cannot vary with Re either,
we conclude that fwD/U is a constant irrespective of Re.

Turning back to figure 8 we note that the frequency of oscillation f for a cylinder
without springs presents a remarkable linear behaviour that grows with Re, which is
represented by an almost constant curve far from St = 0.2 in figure 9. This suggests
that there must be a preferred frequency lower than fs dominating the response. Note
that this characteristic frequency cannot be related to f0 because the system has no
springs. Therefore we are left with the possibility that this restoration is indeed coming
from the Cy field, hence it must be related to ∆Cy .

Now if we substitute the numerical values ∆Cy = 0.65, m∗ = 2.6 and Ca = 1.0 in
(6.7) we find that fwD/U = 0.054, which is represented by the fw dot-dashed line in
figures 8 and 9. The agreement between fw and the WIV response without springs is
remarkable. This is evidence that a cylinder without springs may also be responding
to the wake stiffness with f = fw for the whole range of Re. That is to say that the
excitation frequency identified in the lower branch of f (Cy) in figure 11 – the one
that matches the response frequency f in figure 8 – is actually governed by the wake
stiffness effect described in (6.5) to (6.7).

If it is true that f = fw, (6.7) tells us that fD/U is also a constant and the cylinder
indeed oscillates with f that increases linearly with Re. In figure 8 we note that
f closely follows fw up to around Re = 1.5 × 104 when the response amplitude
reaches about ŷ/D = 1.4. Beyond this point the amplitude grows towards values
around ŷ/D = 1.8 meaning that the cylinder is oscillating further out of the wake
interference region. From the Cy map for x0/D = 4.0 (figure 7) we know that the
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steady lift grows linearly with lateral separation up to around y0/D= 1.0. Beyond that,
nonlinear effects start to appear and the wake stiffness is not able to be represented
simply by the slope ∆Cy but would gradually be reduced. This is exactly what is
observed as the frequency curve begins to depart from the fw line as ŷ/D increases. Of
course some effect in reducing f must be coming from the fact that secondary effects
in the effective added mass of fluid may appear as the cylinder moves in and out of
the wake interference region. But even considering that the effective added mass is
constant throughout Re the agreement is still very good.

Although it is very helpful to think of the wake stiffness effect as a linear spring,
a quasi-static lift map still is an oversimplification of the problem. If the restoring
fluid force towards the centreline is induced by complex vortex–structure interactions
– as proposed in Assi et al. (2010) – it should also present unsteady variations as the
cylinder moves across the wake. However, we can still imagine that if the cylinder
is displaced farther away from the wake interference region (y/D� 1.0) the induced
force at that instant must be reduced. On the other hand, if in another instant the
cylinder is located closer to the wake boundary the vortex-induced force can be
amplified. For that reason we could suggest that the total excitation force must be
composed of two fluctuating terms with distinct frequencies: one term is associated
with the wake stiffness, which obviously depends on the position of the body across
the wake and is related to f ; the other is associated with the impulse vortex-force
induced on the cylinder, which also depends on the lateral position of the cylinder
and is thus related to fs. We believe that while a series of vortices streaming along
the wake induces a steady force towards the centreline, each vortex also induces an
instantaneous force fluctuation (an impulse) on the cylinder. The magnitude of both
wake-stiffness and vortex-impulse terms will depend on the relative position of the
body and a particular interaction with the wake.

6.2. VIV and WIV resonances: fs = f0 and fw = f0

If the wake-stiffness is dominant over the vortex-impulse term it is straightforward to
predict that the cylinder should respond with f = fw and not f = fs. As we have seen
so far fwD/U does not vary with flow speed, thus fw increases linearly with Re. Since
f0 is a constant defined by the springs, there must be a critical point where the wake
stiffness has the same intensity as the spring stiffness, i.e. kw = k and fw = f0. This
occurs in figures 8 and 9 where fw crosses the f0 line at Re = 1.2 × 104 (equivalent
to U/Df0 = 18.8 for the case with springs). We know the present set of coil springs
provides the system with a measured stiffness of k = 11.8 N m−1. But considering the
steady lift map with ∆Cy = 0.65 in (6.5) we see that the wake stiffness can reach
values as high as kw = 34 N m−1 at the end of the Re range of the experiments.

For the case with springs we find f following closer to the f0 line during the range
where VIV is relevant, with the lock-in peak occurring around the intersection of f
with both f0 and St = 0.2 lines. This first VIV resonance is marked by the vertical
line fs = f0 in figure 8. At this point kw = 1.8 N m−1 is only 15 % of k provided
by the springs. As the flow speed is increased the VIV synchronization tends to
disappear as St = 0.2 moves away from f0. At the same time the wake stiffness is also
getting stronger until both kw and k have the same value. As we saw, this occurs for
U/Df0 = 18.8 and is marked by the second WIV resonance line fw = f0, beyond which
kw is greater than k.

The two resonance lines divide the response for a cylinder with springs into three
regimes that are best identified in figure 8. (i) Before fs = f0, when St = 0.2 is
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approaching f0, the displacement resemble an initial branch of VIV and f follows the
Strouhal line up to the resonance peak. (ii) The second regime, between fs = f0 and
fw = f0, is marked by a steep slope in the displacement curve; f remains rather close
to f0 as the VIV synchronization range gradually gives way to a wake stiffness that is
growing stronger with Re. (iii) The third regime, beyond the second resonance fw = f0

is characterized by a change of slope in both the displacement and frequency curves.
With kw > k the WIV response is established and dominates alone for the rest of the
Re range.

The system works as if the set of springs were important only in the first regime
before the fw = f0 resonance, but the system completely overlooks its small structural
stiffness given by f0 as kw gets relatively stronger. It appears that away from the
resonances fs = f0 and fw = f0 the spring acts against the WIV excitation with the effect
of reducing the amplitude of vibration. This idea is in agreement with the classical
theory of linear oscillators; if the excitation force is outside the resonance of the
system the response will not be as high as the resonance peak.

Various experiments have investigated the flux of energy in the system for a cylinder
oscillating in forced vibrations in a flow. Recently, Morse & Williamson (2009) have
presented a detailed energy map for VIV of a single cylinder. If we take values of
displacement and frequency from our own WIV curves and plot them in their VIV
energy map we will see that the structure is actually losing energy to the flow. If we
assume that the major forcing term is coming from the WIV mechanism governed by
wake stiffness, the VIV part governed by spring stiffness is contributing to dissipate
energy and reduce the vibration. That is why the response curve with springs shows
reduced amplitude away from the two resonance lines when compared with the case
without springs. Because our excitation force is believed to have a wake-stiffness
and a vortex-impulse component, each related to one characteristic frequency, the
response will be slightly accentuated when fs = f0 (VIV resonance) and fw = f0 (WIV
resonance).

One could ask if it would be possible to have a third resonance fs = fw, potentially
occurring also for a cylinder without springs. Since both St = 0.2 and fw are dependent
on Reynolds number, they would have to be equal throughout the whole Re range.
Starting from (6.7) and considering that the Strouhal number of a cylinder is roughly
constant with Re, there are only two ways to bring both St = 0.2 and fw lines together.

Firstly, fixing the mass of the system we would have to generate a steady lift field
with ∆Cy = 8.9 which is one order of magnitude higher than the maximum value
measured for staggered cylinders. Now, if the steady lift towards the centreline has its
origin in the unsteady vortex–structure interaction, both fs and fw originate in the same
phenomenon and have to coexist within physical boundaries. By this we mean that
the wake structure required to generate such an intense steady field would have to be
very different from the vortex shedding mechanism that we know. Therefore we do not
expect fs = fw due to such an intense Cy field.

Secondly, knowing that ∆Cy is invariant with Re, we can change the mass of the
system in order to change the natural frequency fw. Keeping ∆Cy = 0.65 and Ca = 1.0
constant in (6.7) and equating the right-hand side to St = 0.2 results in m∗ = −0.74.
Since this result is impossible in a physical system we can affirm that St = 0.2 and fw

will never overlap.
In fact, since we know the cylinder is responding to WIV with f = fw, to have

fw = fs means that the cylinder would be oscillating at the frequency of vortex
shedding for the whole Re range. This is the WIV equivalent of the phenomenon
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described by Govardhan & Williamson (2002) for VIV of a single cylinder. They
verified that for m∗ below a critical value around 0.54 the VIV response would
persist for an infinite regime as if the lower branch were extended indefinitely. It
was observed that the frequency of oscillation f would follow the vortex shedding
frequency fs, linearly increasing with reduced velocity, sustaining a regime they called
‘resonance forever’. Although this appears to be physically impossible in our case, we
hypothesize that if we could artificially bring both St = 0.2 and fw lines together – in a
force feedback system this would be possible – the cylinder would vibrate indefinitely
with both VIV and WIV perfectly combined.

6.3. Response without springs in a shear flow

In Assi et al. (2010) we have seen that the unsteadiness of the wake was necessary to
excite WIV; a cylinder immersed in an artificial wake without vortices did not respond
with WIV. In the present paper we investigated the importance of the wake-stiffness
effect in sustaining the vibration of a cylinder mounted without springs. Finally, we
can combine the two concepts of wake stiffness and vortex impulse in the response
of a cylinder immersed in a shear flow (without unsteady vortices) but also without
springs (without structural stiffness). This experiment was performed and the result
was that no vibration was observed.

Although some small wake-stiffness effect was left in the shear flow after vortices
were removed – ∆Cy ≈ 0.2 could be estimated from the steady lift field in Assi et al.
(2010) – it was not strong enough to sustain oscillatory motion and the cylinder did
not respond with vibrations. If our theory is correct, we need to bring the excitation
term from the vortex–structure interaction acting together with the wake-stiffness effect
in order to produce a WIV response. Removing the unsteadiness of the upstream wake
we are essentially left without the WIV excitation term, therefore the response will be
that of VIV. But, by removing both the unsteadiness of the wake and the springs at the
same time we are left with no response at all.

7. Dependence on Reynolds number
Returning to (6.3), we can now analyse the behaviour of the non-dimensional

parameter Ĉy sinφ (that we are calling the vortex–impulse term) with respect to
Reynolds number. We already know that the cylinder is responding with f = fw, a
dominant frequency produced by the wake stiffness effect. In the harmonic assumption
applied in (6.1) we consider that the fluid force is represented by only a single
dominant frequency and phase angle. However, in figures 10 and 11 we clearly see
that Cy in fact presents two significant frequencies: a lower branch associated with
wake stiffness and a higher branch associated with vortex–impulse from the upstream
wake.

Retaining the harmonic hypothesis we could split the actual effect of Cy into two
parts. Because fw is clearly dominant over fs let us consider that the magnitude of
Ĉy is only produced by the wake stiffness effect and has very little influence from
vortex–impulse fluctuations. Consequently, the fluid force would have a dominant
component f = fw, with magnitude depending only on ∆Cy and acting out of phase
with the displacement (again we are entering quasi-static territory, but at least now
we are supported by having U/Df0 = ∞). On the other hand, we need to account
for the phase lag necessary to sustain the vibration. We have already proposed (Assi
et al. 2010) that it is generated by the complex vortex–structure interaction as the body
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FIGURE 12. Comparison between lift coefficient (a) and phase angle (b) for the WIV
response of a cylinder with and without springs at x0/D= 4.0.

crosses the wake, therefore we could attribute the existence of φ to the vortex–impulse
fluctuations operating at fs.

We have shown that ∆Cy does not vary with Re, therefore Ĉy should also be
invariant. However, we have also demonstrated that, due to fluctuations caused by
vortex–impulse, the phase angle varies from cycle to cycle as the cylinder interacts
with different wake configurations. Albeit not being very strong, this supposition
finds some support in the time series presented in figure 10. Therefore, let us now
investigate Ĉy and φ independently.

Figure 12(a) compares the total lift coefficient for WIV responses both with and
without springs. An abrupt reduction in Ĉy for the case with springs is characteristic
of the VIV phase shift and occurs at the fs = f0 resonance. We can still note some
differences between the cases while VIV is losing strength between the resonances,
but yet it is beyond the resonance fw = f0 that WIV clearly dominates and both curves
follow each other closely for the rest of the Re range. Apart from a small range of
Re < 0.5 × 104, Ĉy without springs shows a fairly constant behaviour with a small
negative slope. Figure 12(b) compares average values of φ for WIV responses with
and without springs. Each data point was obtained by employing the Hilbert transform
to calculate instantaneous values of phase angles and then averaging φ for more than
500 cycles of oscillation (refer to Assi 2009 for more details). The curve shows that φ
without springs presents a relatively constant value around 153◦ for Re> 0.5× 104.

Although both Ĉy and φ appear to be fairly invariant with Re, we cannot forget
that values plotted in figure 12 are averaged for as many as 500 cycles of oscillations.
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We have already seen in figure 10 how irregular Cy can be from cycle to cycle.
Variations within the present Re range are also expected to occur due to the complex
characteristic of the wake. For example, it is known that the vortex formation length
presents a strong variation with Re (Norberg 1998; Assi et al. 2006); and the three-
dimensionality of the wake may also present some Re dependence. Nevertheless,
although Ĉy and φ cannot be confirmed as strictly constant we are able to conclude
that, to a first approximation, the non-dimensional term Ĉy sinφ should be roughly
invariant with Re, at least within the subcritical Re range of the experiments.

Turning back to (6.3), we can now verify that µ/c, U/Df and Ĉy sinφ are
approximately invariant with Re, leaving only the Reynolds number term itself on
the right-hand side of the equation. As a result it is evident from this analysis that
ŷ/D is linearly dependent on Re and the WIV response should increase with flow
speed up to a critical amplitude. Once the cylinder starts to be displaced out of the
wake interference region nonlinear effects become important, limiting the response to
an asymptotic value. Secondary effects may be acting on U/Df and Ĉy sinφ conferring
on the response the curved shape presented in figure 8. The analysis developed above
is in good agreement with displacement curves presented for both cases (with and
without springs). Therefore we conclude that the mechanism that is building up the
amplitude of vibration in WIV is definitely not a consequence of reduced velocity but
a direct effect of Reynolds number.

Picking a displacement point from the curve without springs at an arbitrary value
of Re = 2.3 × 104 (the location represented by a vertical arrow in figure 8) we are
able to estimate the limiting value the response is asymptotically approaching as
U/Df0 →∞ for that specific Re. Of course this is the data point from the curve
without springs immediately above the vertical arrow, but it can also be represented on
the right-hand axis for U/Df0 =∞ (this will be useful later when comparing different
x0/D separations).

Such a strong Re dependence turned out to be a rather unexpected result. It took us
some time to comprehend how a fluid-elastic system could show large variations over
such a short Re range. However, if we consider that our system actually possesses a
fluid-dynamic spring that increases stiffness with U2, a seen in (6.5), we are left with
the only conclusion that ŷ/D must indeed vary with Re.

7.1. Experiments with constant Re
At this point one may recall the results from Hover & Triantafyllou (2001), presented
in figure 2(b), who measured the WIV response of a cylinder at x0/D = 4.75 and
constant Re = 3 × 104. They achieved this by varying the spring stiffness of a force-
feedback system. In spite of operating at a fixed Reynolds number, they were able
to measure a build-up of response that increased with reduced velocity. In principle,
this seems to contradict our theory that the WIV response is not affected by reduced
velocity.

Considering that their separation of x0/D= 4.75 must provide a wake-stiffness effect
in the order of ∆Cy ≈ 0.55 (based in our figure 6), we can estimate that the critical
reduced velocity at which the wake stiffness equals the spring stiffness (kw = k) is
as high as U/Df0 = 21 (based in our Cy map of figure 6, Ca = 1.0 and their value
of m∗ = 3.0). However, the maximum reduced velocity achieved in their experiment
is only around 17. Hence the regime Hover & Triantafyllou (2001) observed was
still between the resonances fs = f0 and fw = f0, a region where VIV still has some
significance.
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FIGURE 13. WIV response at constant Re for x0/D = 4.0. Reduced velocity varied by
changing the springs, compared to our reference cylinder with fixed springs and varying
U/Df0 by varying flow speed (the secondary axis of Re refers to this curve only).

According to our theory, we would expect their results to reach an asymptotic
value around ŷ/D = 1.5 for Re = 3 × 104, which is in good agreement with their
curve reproduced in the present work (figure 2b). Note, however, that Hover &
Triantafyllou (2001) do not plot ŷ/D but an average of the 10 % highest peaks of
displacement. As we have seen in figure 5 the maximum displacement of the cylinder
can be considerably greater than the averaged ŷ/D that we usually employ. The same
observation is also true for the results obtained by Assi et al. (2006) also presented in
figure 2(b). Even though k was constant, they could not reach the regime above the
WIV resonance fw = f0 due to a limitation in the maximum flow speed.

In order to verify this phenomenon, we carried out a series of experiments for three
constant Reynolds numbers at x0/D = 4.0. The flow speed was fixed and reduced
velocity was varied by changing the set of springs and, consequently, changing f0.
Figure 13 presents the results compared to our reference WIV response of a cylinder
with fixed springs and varying U/Df0 by varying flow speed (the secondary axis of Re
refers to this curve only).

Three vertical arrows (A, B, C), one for each Re curve, mark the condition where
the stiffness of the varying wake spring matches the fixed spring k. Hence all data
points to the right of these arrows have a spring that is softer than our reference curve
(and stiffer to the left). None of the curves was able to span the three regimes defined
by the resonance lines fs = f0 and fw = f0, but considering the results of all three curves
we are able to understand the general behaviour of the response at a constant Re.

The curve for Re = 9600 does not have enough data points to reveal a local peak
of VIV at fs = f0, but the majority of the points fall within the first regime between
the resonances, where VIV is gradually losing its influence to WIV. In our experiment
with varying Re we have noticed that the amplitude of response generally presents a
positive slope in this first regime; this is verified now for a constant Re as well. As
we have discussed above, Hover & Triantafyllou (2001) also found increasing response
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for a constant Re in this regime. Our data agree with theirs in showing a build-up of
response between fs = f0 and fw = f0. Such an effect is also observed for our curve at
Re= 19 200.

Let us move on to the other curves at Re= 14 500 and 19 200 that cross fw = f0 and
enter the second regime where WIV dominates. Now that the wake stiffness is greater
than the spring stiffness we see that the response is not influenced by reduced velocity
anymore, but presents a rather constant level of amplitude for each fixed value of Re.
Even if the reduced velocity is increased from 20 to 35 the amplitude of response
seems not to be much affected and the data points appear to follow the same trend as
long as Re is kept constant. Going back to the curve without springs in figure 8 we
are able to find a displacement amplitude for each of our Re curves at U/Df0 =∞
towards which the data points should be converging. We note that they are slightly
higher than the level of amplitude the curves are reaching beyond fw = f0, but we have
to remember that we are still operating with springs, although soft ones, that might be
contributing to reduce the response away from the resonance lines.

While on the one hand the VIV peak at fs = f0 seems to always reach ŷ/D around
1.0 (for this value of m∗ζ ), the amplitude at the end of the first regime, at fw = f0,
varies with the intensity of the wake-stiffness effect. Because kw increases with Re the
amplitude at fw = f0 must also increase with Re. This level of amplitude is already
very close to the asymptotic value predicted by the experiments without springs; hence,
as the spring stiffness gets less important beyond fw = f0, we expect the curves to be
converging towards the values plotted at U/Df0 =∞.

This series of experiments at constant Re proved that while the response below
fw = f0 is dependent on both Re and reduced velocity, the response for fw > f0 is
clearly governed by Re only. In other words, we conclude that in the first regime
where both VIV and WIV are competing (or cooperating) the response increases due
to a combination of spring and wake-stiffness effects. Even with constant Re we note
a build-up of response while the ratio between k and kw makes reduced velocity an
important parameter. But once the wake stiffness becomes dominant over the springs
the response is not affected by the structural stiffness and is only governed by wake
stiffness. Now this second regime is clearly dominated by a Reynolds number effect.

7.2. Equivalent damping
Another way to comprehend the behaviour of the amplitude of response is to think in
terms of an equivalent damping ratio. We can define ζ by the ratio between c and a
critical damping:

ζ = c

4πf0m
. (7.1)

Note that the natural frequency and the mass of the system are present in the
denominator. Apart from removing the pair of springs we keep exactly the same
set-up from previous experiments, therefore we assume all other parameters are kept
constant including the structural damping c. In other words, we presuppose the friction
in the air bearings was kept the same; hence the system would dissipate the same
amount of energy for a similar velocity of the cylinder. However, now that the springs
are removed we do not have f0 that can be used to non-dimensionalize ζ as expressed
in (7.1).

Govardhan & Williamson (2002) encountered a similar problem to define a suitable
damping ratio when performing experiments with a cylinder mounted on air bearings
without springs. They also wanted to investigate the VIV response for U/Df0→∞
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and achieved that by removing the springs from the elastic system, making k = 0
and f0 = 0. In their experiment f followed the shedding frequency throughout
the oscillatory regime, therefore they employed an equivalent damping ratio non-
dimensionalized by fs instead of f0. But in the present WIV investigation f was
observed not to follow fs; instead it increases linearly with flow speed following fw

– the natural frequency given by wake stiffness – as demonstrated above. Therefore,
unlike in Govardhan & Williamson (2002), it does not make sense to define an
equivalent damping ratio based on the shedding frequency fs, but based it on the
oscillation frequency f = fw instead:

ζw = c

4πfwm
. (7.2)

According to this definition of ζw the damping ratio varies with flow speed since
fw is also varying with U, as seen in (6.6). The same occurred for Govardhan &
Williamson (2002), where their damping ratio was based on fs which also varies
with U according to the Strouhal law. (This was not the case with the traditional ζ ,
which is invariant with U given a constant natural frequency f0 defined by structural
stiffness.) Now, substituting c from (7.2) into (6.3) results in

ŷ

D
= 1

4π
Ĉy sinφ

(
U

Df

)2( 1
m∗ζw

)
, (7.3)

with a combined m∗ζw parameter appearing in the denominator.
We now observe that the amplitude of response should be inversely proportional

to this new m∗ζw. However, now the combined mass-damping parameter is not
constant but incorporates a variation with flow speed. Because fw increases with Re, ζw

decreases with flow speed and, thinking about an equivalent damping term, we reach
the same conclusion that the response should in fact increase with Re.

8. Wake stiffness for other separations
Now that we have analysed the WIV response for a pair of cylinders at x0/D = 4.0

we can bring the wake-stiffness concept back to our starting point and investigate the
effect it has on other separations. We already know that moving the second cylinder
farther downstream does not affect the wake formed in the gap, i.e. the upstream
vortex shedding process is not affected if the separation changes from x0/D = 4.0 up
to 20.0, the highest case investigated in the present work.

The development of a von Kármán wake from a static cylinder has been diligently
studied in the literature. Schaefer & Eskinazi (1958) performed experiments in a wind
tunnel in order to model the effect of fluid viscosity in diffusing a vortex from the
instant it is shed from the cylinder. The core of concentrated circulation expands with
time as vortices travel downstream towards the second body, so if the cylinder is
farther away we expect weaker vortices (at least with less concentrated vorticity) to
reach that specific position of the wake. Weaker vortices induce weaker fluid forces,
therefore we would expect both wake-stiffness and vortex-impulse terms to decrease
with increasing x0.

Looking back at the steady lift map presented in figure 6 we see that the maximum
Cy is indeed decreasing for larger separations, consequently ∆Cy is also reduced with
increases in x0. To a certain extent it is straightforward to think that the wake-stiffness
effect is inversely proportional to x0 and results in lower values of fwD/U for larger
separations. As a consequence, the frequency of oscillation should also be reduced.
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FIGURE 14. WIV response of a downstream cylinder mounted without springs at various x0
separations: (a) displacement; (b) dominant frequency of oscillation.

However, (6.3) tells us that the amplitude must increase if fD/U is reduced and all
other terms are kept constant. This is clearly not observed in the response with springs
presented in figure 4. Instead ŷ/D for the WIV regime is seen to be reduced with
increasing x0, up to a separation where no effect from the upstream wake can be
sensed by the downstream cylinder and it returns to a simple VIV regime. Therefore,
some other non-dimensional terms in (6.3) must be dominating over the effect of fD/U
to reduce the response as x0 is increased.

Figure 14 presents the effect of x0 on the response of a cylinder mounted without
springs. In accordance with (6.3), the amplitude of displacement should increase with
Reynolds number for a fixed separation, while ŷ/D should be reduced for larger
separations if Re is kept constant. Although this plot is not as densely populated with
data points as figure 4, it can still reveal the overall behaviour of the response in
relation to Re and x0. The main difference now is that no VIV resonance peak is
identified because the system lacks any f0 conferred by springs, but still the WIV
response seems to diminish as the second cylinder is moved farther downstream.

Remember that every point in figure 14 represents an infinite reduced velocity.
Therefore, variations observed in the curves are an effect of Re and x0 only. We can
pick one data point from each x0/D curve at Re = 2.3 × 104 in figure 14 and plot
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FIGURE 15. Non-dimensionalized dominant frequency of oscillation of a downstream
cylinder mounted without springs at various x0 separations. See figure 14 for key.

them back in figure 4 at U/Df0 =∞. Every point plotted there (on the right-hand axis)
represents the asymptotic value the response would reach if Re were kept constant
beyond the vertical dashed line of Re = 2.3 × 104. This agreement confirms that
beyond the flow speed range in which VIV is important reduced velocity has no
effect on the WIV response and the cylinder is expected to sustain a constant level of
vibration for the rest of the Re range. It is also verified that the asymptotic value that
limits ŷ/D is indeed a function of Re and x0 alone and must be related to the actual
configuration of the wake at those conditions.

As we saw in figure 8 for x0/D = 4.0 the frequency of oscillation shows a fairly
linear behaviour with Re, which is represented by a constant line when plotted non-
dimensionally as fD/U in figure 9. Interestingly, we know that as far as the separation
is concerned ∆Cy decreases with x0. However, when this effect is reflected into fw

it seems to cause only a small variation in the frequency of response, making all
frequency curves for different x0 collapse onto each other. A similar result was
observed in figure 4 for the response with springs, where, differently from the
displacement, f /f0 did not show much variation with x0.

Considering our smallest separation of x0/D = 4.0 we saw that the steady lift field
generates, to a first approximation, a wake stiffness effect proportional to ∆Cy = 0.65
(figure 7). Again we can plot fw from (6.6) associated with this steady field as
a dot-dashed line in figure 14(b). However, on moving the second cylinder farther
downstream in the wake we saw that ∆Cy is reduced. Considering the maximum

separation measured in the Cy map of figure 6 we can estimate a wake-stiffness effect
proportional to ∆Cy = 0.45 for x0/D = 6.0. If we then plot fw associated with this
weaker wake stiffness in figure 14(b) we are able to verify that the expected variation
of f between both separations is actually rather small. This is made even clearer when
the data are plotted in the non-dimensional form of fD/U in figure 15.

Turning back to our analysis of (6.3) regarding separation, we conclude that the
variation of fD/U versus x0 may be rather small and unlikely to dominate over other
non-dimensional groups, leaving us with the vortex-impulse term Ĉy sinφ that might
present some significant variation with x0.

As suggested above, the diffusion of vortices in the wake may be responsible for the
reduction of the wake stiffness effect observed in figure 6. But, since we argue that
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FIGURE 16. Fluctuating lift coefficient (a) and phase angle (b) for WIV responses without
springs at various x0 separations.

both wake-stiffness and vortex-impulse terms originate in the same phenomenon, we
believe that vortex diffusion may also be responsible for changes in Ĉy sinφ versus x0.

Figure 16 presents the variation of Ĉy and φ with both Re and x0. We have shown
that Ĉy has a small dependence on Re, resulting in a mildly decreasing slope for
x0/D = 4.0. However, as separation is increased in figure 16 we observe that not
only is the overall level of Ĉy reduced, but also that the negative slope with Re is
accentuated. On the other hand, figure 16(b) shows that although φ is roughly constant
with Re it is also reduced for larger x0. Now, depending on the combination of both
terms, Ĉy sinφ can show significant variation with x0, as much as to dominate over
fD/U and govern the behaviour of the response versus separation.

9. Conclusions
The experiment without springs was crucial in the understanding of the WIV

phenomenon. It not only revealed the existence of a dominant wake-stiffness effect
that can sustain vibrations even if springs are removed, but also helped to explain
different regimes of the response when springs are present. We proved that Cy towards
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the centreline not only provides some restoration for a quasi-static system but is in fact
responsible for the characteristic WIV response of a cylinder that is free to vibrate.

The wake-stiffness concept does not explain the excitation mechanism but it
predicts rather well the characteristic signature of the WIV response both in terms
of displacement and frequency. We can say that while unsteady vortex–structure
interactions provide the energy input to sustain the vibrations (Assi et al. 2010), it
is the wake-stiffness phenomenon that defines the character of the WIV response.

We conclude that the restoration force provided by wake stiffness is strong enough
to balance the flow excitation and produce oscillatory motion for a system without
structural stiffness. The cylinder was not observed to drift away from the centreline,
but presented WIV throughout the Re range of the experiments. The analytical
modelling for a system without springs revealed that the amplitude of response should
increase with Reynolds number. This was verified by experimental data. However, a
simple model that did not account for nonlinear effects in the fluid force was not
able to predict the correct level of amplitude. We found that the WIV response should
converge to an asymptotic value that depends on Re but not on reduced velocity.

As ŷ/D is increased beyond a certain limit, the cylinder starts to reach amplitudes
outside the wake interference region. The wake-stiffness effect cannot be represented
by a linear spring anymore, but the overall stiffness tends to be reduced. This effect
was in agreement with cases with and without springs and also with various x0

separations. A simple linear model was able to predict the frequency of response rather
well. It was confirmed that the cylinder without springs does not respond following
the vortex shedding frequency fs. Instead the response matches the frequency branch
fw associated with wake stiffness, which was well predicted by the model. A cylinder
with springs responds with a frequency that combines influences from fw and f0, yet is
different from both.

In our experiments we observed a gradual transition from an initial VIV regime to
a dominating WIV regime as flow speed was increased. The boundaries between them
were found to be related to two resonances: fs = f0 and fw = f0. The first regime has a
clear VIV character, with a local peak of displacement occurring at fs = f0. The wake
stiffness is still smaller than the spring stiffness, making U/Df0 a significant parameter.
The amplitude of the VIV peak is in agreement with the response curve for a single
cylinder and showed no noticeable dependence on Re for the range of the experiments.
The second regime is characterized by an established WIV response that experiences
no influence of VIV. Beyond fw = f0 the wake-stiffness effect is dominant over the
spring stiffness and reduced velocity becomes irrelevant.

During the transition between the regimes we find an intermediate condition in
which VIV is losing strength and WIV is taking control. Between the resonances
fs = f0 and fw = f0 the response leaves the VIV peak until it reaches a characteristic
value at fw = f0 that is dependent on Re. During the transition, reduced velocity
gradually loses its influence until the WIV response is only dominated by Re as it
enters the second regime. The total stiffness of the system is not only caused by either
the wake stiffness (kw) or the spring stiffness (k) alone, but it is a combination of
both; k is very relevant in the first regime, but kw becomes dominant in the second.
Nevertheless, both k and kw contribute in part to the characteristic displacement and
frequency responses.

As expected, the x0 separation between the two cylinders was confirmed to have
a significant effect on the response. We suggest this effect is related to an increase
in vortex diffusion and flow three-dimensionality as the gap is enlarged. The WIV
response changed as the second cylinder was moved farther downstream. The first VIV
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regime experienced no influence of x0 and the local resonance peak kept the same
level of displacement for all separations between 4D and 20D. On the other hand, the
second WIV regime showed a strong influence of the separation. The characteristic
WIV branch of response gradually disappeared with increasing x0 until the response
resembled only that of a typical VIV phenomenon. In contrast with the displacement,
the frequency of oscillation showed only a small variation with x0, with curves for all
separations collapsing onto the value predicted by the wake-stiffness effect, especially
for the case without springs. Such a strong x0 dependence was associated with the
fact that vortices from the upstream cylinder have more time to diffuse as they travel
to reach a cylinder located farther downstream. Together with that is the fact that
increasing three-dimensionality of the flow also weakens the coherent wake. Weaker
vortices induced weaker forces. Both the wake-stiffness effect (proportional to ∆Cy)

and the vortex-impulse term (related to Ĉy sinφ) are affected.
By modelling a second-order oscillator without springs but incorporating the

stiffness as a consequence of the fluid force (wake stiffness) we were able to predict
the frequency behaviour rather well. But no matter how good this approach was
in regard to the frequency response, the displacement response is somewhat more
complex and is not fully captured by this first approximation. We believe this is
due to the simplicity in modelling the term Ĉy sinφ. Even though in some analysis
we have considered Ĉy and φ to be independently related to the wake-stiffness and
vortex–impulse terms, we are fully aware that this decomposition is not ideal and must
overlook significant secondary effects.

A simple harmonic model such as the one we have employed cannot account
for nonlinear effects that might be important to the system. It will not be able,
for example, to predict the asymptotic effect that is limiting the displacement. The
complex interaction between body and wake causes ∆Cy and Ĉy sinφ to be coupled
in such a way that we cannot simply analyse them independently. Since we believe
both wake-stiffness and vortex-impulse terms originate in the same fluid-mechanic
phenomenon, we are not able to uncouple and isolate their effects into linear concepts.
We argue that an improved, nonlinear model is necessary to account for more complex
fluid-dynamic phenomena that we have identified to exist but were not considered in
our model.

In Assi et al. (2010) we have discussed the idea that WIV could not be predicted
by the classical galloping theory. Remember that, in the literature, WIV had been
referred to as a type of galloping mostly because the typical response presents a build-
up of amplitude for higher reduced velocities. But now we know that the response
is increasing due to the wake-stiffness effect as a function of Reynolds number.
We have argued that quasi-steady assumptions commonly employed by the classical
galloping theory would not fit the WIV phenomenon nor help to understand the real
flow–structure mechanism. For that reason we have insisted on a dissociation of WIV
from the classical galloping idea. In the present work we have shown that WIV is
indeed a wake-dependent type of flow-induced vibration. Remember that according
to the classical galloping theory the oscillations of the body are dependent on the
structural stiffness of the system to provide the restoration force, even more for the
wake-flutter phenomenon of interfering cylinders, where structural stiffness in 2-dof is
required. In our case, however, we showed that a body without any structural stiffness
can be excited into flow-induced vibration. If some stiffness is provided by the flow,
the body is able to be excited and sustained into oscillatory motion. The concept of
wake stiffness is a powerful one but it also requires the existence of an unsteady
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vortex wake present in the gap to generate the excitation. Therefore we continue to
propose that WIV is not to be understood as a type of classical galloping, but must be
interpreted as a wake-excited and wake-sustained FIV mechanism.
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