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We review the calculations of form factors and coupling constants in vertices with charm
mesons in the framework of QCD sum rules. We first discuss the motivation for this work,
describing possible applications of these form factors to heavy ion collisions and to B
decays.We then present an introduction to themethod of QCD sum rules and describe how
toworkwith the three-point function.Wegive special attention to the procedure employed
to extrapolate results obtained in the deep euclidean region to the poles of the particles,
located in the time-like region. We present a table of ready-to-use parametrizations of all
the form factors, which are relevant for the processes mentioned in the introduction. We
discuss the uncertainties in our results. We also give the coupling constants and compare
them with estimates obtained with other methods. Finally we apply our results to the
calculation of the cross section of the reaction J/ψ + π → D + D∗.
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1. Introduction

Form factors characterize the internal structure of composite particles. In several cases, they can be theoretically
calculated and experimentally measured. From the theoretical point of view form factors appear when we study the
interaction of a particle with an external probe (‘‘charge form factor’’) or when a particle is converted into another particle
because of the interaction (‘‘transition form factor’’). The best known example is the electromagnetic (charge) form factor
of the nucleon. The nucleon has two form factors, called electric GE and magnetic GM , which, a priori, are different. The
traditional way to access form factors in the space-like region, is the elastic scattering of electrons on hadrons e+h → e+h,
and in the time-like region, the annihilation processes e+

+ e−
→ p + p.

The unpolarized elastic ep cross section, in the one-photon exchange approximation, can be written as a function of the
electric and magnetic proton form factors. More specifically, when we write the electron–proton scattering cross section
using the Feynman rules of quantum electrodynamics (QED), we do not know how to write the interaction between the
photon and the proton when the latter is an extended and composite object. In order to organize and parametrize our
ignorancemaking use of general principles, such as charge conservation, we introduce functions of the involved kinematical
variables, which are called structure functions. After convenient redefinitions these functions become form factors. The final
cross sections, written in terms of form factors are then adjusted to data and, in this way, the form factors are measured.
In a particular reference frame, their Fourier transform gives the spacial distribution of charged matter in the proton. This
procedure gives a nice ‘‘picture’’ of the proton in space and the most accurate description of its ‘‘form’’. In lower energy
experiments, where also the four momentum transfer (q2) is low, it was possible to determine the electromagnetic form
factor (and the charge radius) of the nucleon [1–3].

With the advent of quantum chromodynamics (QCD) and the standard model the formalism discussed in the previous
paragraph was adapted to modern hadron physics. In particular they were introduced in the development of effective
theories to study interactions of charm particles. In contrast to the case of QED, the charm form factors discussed here are
to a large extent model dependent, since they depend on the form chosen for the effective Lagrangian. In this new context,
an interesting question is: which are the form factors of the charmmesons when probed by light particles such as photons,
pions and ρ mesons? Apart from their intrinsic value as fundamental knowledge about nature, these form factors can be
used in several calculations in hadron physics.

Vertices with three mesons where at least two of them carry charm appear in theories of the charmmeson interactions.
This kind of theory started to become popular in the late nineties [4], during the analysis of the CERN-SPS data on
charmonium production in heavy ion collisions. At that time it was believed that J/ψ suppression was a good signature
of quark gluon plasma formation (QGP) [5]. However a careful evaluation of the background was needed, in order to
isolate the signal. In this case the background was the charmonium absorption by light mesons within the hadronic
fireball formed at the late stage of these collisions. Since the center of mass energy of these collisions was of the order
of magnitude of the temperature, i.e. ≃100–200 MeV, the interaction regime was clearly non-perturbative and the best
tools were the effective Lagrangian models with charm mesons [4,6]. From these Lagrangians one can derive the Feynman
rules and compute scattering amplitudes. In order to avoid infinities one can introduce form factors in the vertices. In
phenomenological applications, these form factors contain a parameter Λ which plays the role of a cut-off. In fact, even
diagrams which give finite contributions to the cross sections must contain form factors. Otherwise the obtained cross
sections are unacceptably large. After the introduction of form factors the results for the charmonium interaction cross
section become quite reasonable. However these results depend too strongly on the choice of the cut-off parameter. In
QCD sum rules (QCDSR) we can calculate these form factors from first principles, eliminating the freedom in the choice of
parameters.

At this point one might argue that this program is futile for at least two reasons. In first place one might say that one can
compute cross sections such as, for example, J/ψ +π → D+D, directly from QCDSR [7] and it is not necessary to compute
form factors. This statement is in principle correct. In practice however, the direct calculation of cross sections with QCDSR
requires the use of the four-point function, which is much less precise than the three and two-point functions. It is not clear,
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for example, whether one should perform one, two or even three Borel transforms. In second place one might say that it is
more promising to develop a chiral perturbation theory for these interactions, where one eliminates form factors [8]. This
may indeed be the case, but for now this kind of theory is in a very preliminary stage. Moreover, in effective theories one
needs the coupling constants. In the case of the charm threemeson vertices these couplings (with the exception of theD∗Dπ
coupling constant) are not measurable. They can be calculated in QCDSR, as a by-product of the calculation of form factors.
In analogy with the electromagnetic interactions, the coupling constant represents the charge and it is a particular value of
the form factor when the probe is on-shell. In the case of the proton, for example, the electric form factor for an on-shell
photon is, using the standard definitions [3], GE(q2 = 0) = 1. This implies that the probe ‘‘sees’’ a charge e, which is the
coupling between the proton and the photon. The relation between form factors and coupling constants of charm particles
will be discussed in detail along this work.

The experimental study of interactions of charmed mesons with nucleons and also with light mesons will be one of the
main topics of the scientific program of the PANDA and CBM experiments at the future FAIR facility at GSI [9].

So far we have been emphasizing the usefulness of charm form factors in the calculation of charmonium interaction cross
sections. However, this is just one of the several applications of these form factors. Another context where they are needed
is in heavy meson decays. Since 2003, due to the precise measurements of B decays performed by BELLE, BES and BABAR,
charm form factors gained a new relevance. In B decays new particles have been observed, such as the DsJ(2317) and the
X(3872) [10,11].

The strong decay of these particles cannot yet be calculated from first principles (i.e., from lattice QCD) and we need to
use models either based on quark or hadron degrees of freedom. If we choose to work with hadron degrees of freedom we
may use effective Lagrangians and the corresponding field theories. Lagrangian models based on SU(4) flavor symmetry are
frequently used, although it is well known that this is not a good symmetry in QCD. In general, the use of models based on
field theories necessarily implies the occurrence of loop diagrams, in which the decaying particle goes first into a two body
state, which then undergoes final state interactions, with the exchange of one ormore virtual mesons [12]. As an example of
specific situation we may consider the decay X(3872) → J/ψ + ρ. This decay may proceed in two steps. First the X decays
into a D–D∗ intermediate state and then these two particles exchange a D∗ producing the final J/ψ and ρ [13]. Of course, in
the complete calculation all allowed two body intermediate states must be included. In order to compute the effect of these
interactions in the final decay rate we need the ρD∗D∗ and J/ψD∗D form factors.

Besides the decays, charm form factorsmay be needed to understand the structure of these newly observed charm states.
In [14–16] it has been suggested that some of these states are dynamically generated resonances from the vector–vector
mesonic interaction. Here we have box diagrams with virtual meson exchanges and vertices which need form factors.

In this article we review our works on charm form factors [17–25] calculated with QCD sum rules [10,26–28]. In doing so
we compare ourmethodwith other approaches, pointing out their virtues and shortcomings. The text is organized as follows.
In Section 2we present a brief introduction to the QCDSRmethod,wherewe emphasize themain concepts and the strategies
employed to calculate masses, decay constants, form factors and coupling constants. This introduction is intentionally
abstract and ‘‘clean’’. The subsequent Section 3 illustrates how to calculate numerically all desired quantities. This is where
the limitations of the method become clear and also where we show how to circumvent them. In this section we discuss
the quality of numerical results and establish certain conditions which must be fulfilled by reliable sum rules. After having
defined the method and the quality criteria, in Section 4 we present a sample of results obtained for the form factors. We
give special attention to one particular form factor and the respective vertex coupling constant: D∗Dπ . This vertex is special
because is the only one directly accessible to experiments. Its coupling constantwasmeasured and several calculationswere
performed, one of them with lattice QCD techniques. The D∗Dπ vertex provides the precision test for the different ways of
computing the coupling constant. A careful analysis of this vertex resulted in the formulation of a complementary technique
(the evaluation ofmeson loops in the vertex) used to improve the quality of the QCDSR calculations. In Section 5we show the
full compilation of all the already obtained charm form factors, with the corresponding parametrizations, which are ready
to be easily employed in phenomenological analyses of vertices with charmmesons. We also present a quantitative study of
the uncertainties in our results. In Section 6 we perform a comparison with the results obtained with other approaches. In
Section 7 we show an application of the charm form factors to the study of J/ψ production and absorption by light mesons.
Finally, in Section 8 we present a summary of our results.

2. QCD sum rules

The QCD sum rules, proposed by Shifman et al. in 1979 [26], are a powerful tool to extract qualitative and quantitative
information about hadron properties. The QCD sum rules have been discussed in many reviews [10,27–33] emphasizing
various aspects of the method. In this approach we start with a correlation function that is constructed in terms of hadronic
currents, which are chosen so as to have the quantum numbers of the hadrons in question. The basic idea of the formalism is
to approach the bound state problem in QCD from short distances andmove to larger distances, including non-perturbative
effects and using some approximate procedure to extract hadronicmasses and couplings. Althoughwe aremostly concerned
with the three-point correlation function, sometimes we also need two-point correlation functions. For this reason and
also in order to illustrate some basic procedures in QCDSR we devote the next subsections to the discussion of two-point
correlators.
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2.1. The two-point correlation functions

A generic two-point correlation function is usually written as:

Π(q) ≡ i


d4x eiq·x⟨0|T [j(x)jĎ(0)]|0⟩, (1)

where j(x) is a current with the quantum numbers of the hadron which we want to study.
In QCDSR we assume that the correlation functions may be written at both the quark and the hadron levels. Identifying

the hadronic representation with the corresponding representation in terms of quarks and gluons, we obtain the sum rule,
fromwhichwe can determine hadron properties. In the QCD sidewe proceedwith the calculation of the correlation function
using the operator product expansion (OPE), which is formulated with Wilson coefficients and local operators in terms of
the non-perturbative structure of the QCD vacuum. In order to apply this method to the correlation function (1), we have to
expand the product of two currents in a series of local operators:

ΠOPE(q2) = i


d4x eiq·x⟨0|T [j(x)jĎ(0)]|0⟩ =


n

Cn(q2)⟨0|Ôn|0⟩, (2)

where the set {Ôn} includes all local gauge invariant operators expressible in terms of light quark and gluon fields. By
construction the coefficients Cn(Q 2) (Q 2

= −q2) in Eq. (2) include only short-distance effects. Therefore, they can be
evaluated perturbatively. Non-perturbative long-distance effects are contained only in the local operators. In the OPE
expansion, the operators are ordered according to their dimension n. The lowest-dimension operator with n = 0 is the
unit operator associated with the perturbative contribution: C0(Q 2) = Πper(Q 2), Ô0 = 1. The QCD vacuum fields are
represented in (2) in the form of the so called vacuum condensates. The lowest dimension condensates are the quark
condensate of dimension three: ⟨0|Ô3|0⟩ = ⟨q̄q⟩, and the gluon condensate of dimension four: ⟨0|Ô4|0⟩ = ⟨g2G2

⟩. The
contributions of higher dimension condensates are suppressed by large powers ofΛ2

QCD/Q
2, whereΛQCD is the typical long-

distance scale. Therefore, even at intermediate Q 2
∼ 1 GeV2, the expansion in Eq. (2) can be safely truncated after a few

terms.

2.2. The spectral density

The calculation of the hadronic (or ‘‘phenomenological’’) representation of the correlation function in Eq. (1) proceeds
by inserting a complete set of intermediate hadronic states in the following way:

Πphen(q2) =


H

⟨0|j|H⟩⟨H|j|0⟩
M2

H − q2 − iϵ
. (3)

In order to calculate the Borel transform ofΠphen(q2) it is convenient to write Eq. (3) as a dispersion relation. Consider the
Cauchy integral formula:

Π(z0) =
1

2π i


dz

Π(z)
z − z0

. (4)

Using the fact thatΠphen(q2) has poles on the positive real axis atM2
h , we are allowed to writeΠ(z0) as

Π(q2) =
1

2π i


∞

0
dz


Π(z + iδ)
z − q2 + iδ

−
Π(z − iδ)
z − q2 − iδ


. (5)

According to Schwartz’s reflection principle we haveΠ(z + iδ)−Π(z − iδ) = 2iIm[Π(z)], and after this replacement we
obtain the dispersion relation:

Πphen(q2) =
1
π


∞

0
ds

Im[Πphen(s)]
s − q2 − iϵ

=


∞

0
ds

ρ(s)
s − q2 − iϵ

, (6)

where

ρ(s) =
1
π
Im[Πphen(s)] (7)
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is the spectral density. If the spectral density does not go to zero at infinity rapidly enough, integral (6) diverges. The cure
in this case is to subtract from Πphen the first few terms of its Taylor expansion at q2 = 0 [29]. If ρ(s) ∼ sn, then (n + 1)
subtractions are need. The final result is that ρ(s), still given by Eq. (7), is divided by sn+1 and the integral converges [33]:

Πphen(q2) = q2(n+1)


∞

0
ds

ρ(s)
sn+1(s − q2 − iϵ)

+ Pn(q2). (8)

In doing this, a polynomial Pn(q2) of degree n in q2, called ‘‘subtraction term’’, appears. An important property of the
subtraction scheme is that the Borel transform (whichwill be defined in the next section) gives the same result acting onboth
representations, Eq. (6) or (8). In other words, the subtractions are completely washed-out by the Borel transform, which
acts like a regulator over divergent integrals [32]. The evaluation of ρ(s) is simpler than the evaluation of the correlation
function itself, and the knowledge of ρ(s) allows one to recover the whole functionΠ(q2) through the integral in Eq. (6) or
Eq. (8). As it can be seenΠphen(q2) contains information not only about the low mass hadron of interest, but also about all
excited states with the same quantum numbers. When comparing a set of hadrons with the same quantum numbers, the
lowest resonance is often fairly narrow, whereas higher mass states are broader. We can therefore parametrize the spectral
density as a single sharp pole, representing the lowest resonance of massm, plus a smooth continuum, representing higher
mass states:

ρ(s) = λ2δ(s − m2)+ ρcont(s). (9)

In the above equation the parameter λ represents the coupling of the current to the low mass hadron H:

⟨0|j|H⟩ = λ. (10)

For simplicity, we often assume that the continuum contribution to the spectral density, ρcont(s) in Eq. (9), vanishes below
a certain continuum threshold s0. In order to keep the number of parameters as small as possible, assume that above s0,
the spectral density, is given by the result obtained with the OPE. This is a consequence of the so-called quark–hadron
duality [29], and can be implemented by the Ansatz proposed in [34]:

ρcont(s) = ρOPE(s)Θ(s − s0). (11)

2.3. The mass sum rule

The sum rule is obtained from the matching of the two descriptions of the correlator:

Πphen(Q 2) = ΠOPE(Q 2). (12)

However, such a matching is not yet practical. The phenomenological description is significantly dominated by the lowest
pole only for sufficiently small Q 2, or even better, timelike q2 near the pole. On the other hand, the OPE side is only valid at a
sufficiently large Q 2. In order to improve the overlap between the two sides of the sum rule, we apply the Borel transform:

BM2 [Π(q2)] = lim
−q2,n→∞

−q2/n=M2

(−q2)n+1

n!


d

dq2

n

Π(q2). (13)

It is interesting to notice that:

BM2


q2

n


= 0, n > 0. (14)

This means that all the subtractions terms in Eq. (8) are eliminated by the Borel transform. Another important feature of the
Borel transform is the fact that:

BM2


1

(m2 − q2)n


=

1
(n − 1)!

e−m2/M2

(M2)n−1
, n > 0. (15)

Therefore, the Borel transform exponentially suppresses the contribution from excited resonances and continuum states
in the phenomenological side. In the OPE side the Borel transform suppresses the contribution from higher dimension
condensates by a factorial term, improving the OPE convergence. After making a Borel transform on both sides of the sum
rule, and transferring the continuum contribution to the OPE side, the sum rule can be written as

λ2e−m2/M2
=

 s0

smin

ds e−s/M2
ρOPE(s). (16)
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Fig. 1. Diagrammatic representation of the first terms of the OPE series for a three-point function. (a) The partonic term. (b) The quark condensate. (c) The
gluon condensate.

Themass of the low-lying state,m, can be determined by taking the derivative of Eq. (16) with respect to 1/M2, and dividing
the result by Eq. (16). This gives:

m2
=

 s0
smin

ds e−s/M2
s ρOPE(s) s0

smin
ds e−s/M2

ρOPE(s)
. (17)

Since in the evaluation of both sides of the sum rule we have to make approximations, the value extracted from Eq. (16)
will be a function of M2. The Borel window is defined as the range of values of M2 where the two sides of the sum rule
have a good overlap and, therefore, information on the lowest resonance can be extracted. In general the Borel window is
determined by imposing two different criteria: the minimum value of the Borel mass is fixed by requiring the convergence
of the OPE and the maximum value of the Borel mass is determined by imposing the condition that the pole contribution
must be bigger than the continuum contribution [26].

2.4. The three-point function

The three-point function associated with a generic vertex of three mesonsM1,M2 and M3 is given by

Γ (p, p′) =


d4x d4y eip

′
·x e−i(p′

−p)·y
⟨0|T {j3(x)j

Ď
2(y)j

Ď
1(0)}|0⟩, (18)

where the current ji represents states with the quantum numbers of the meson i. As in the previous section, the correlation
function is evaluated in two ways. In the first one, we consider that the currents are composed by quarks and write them in
terms of their flavor and color content with the correct quantum numbers. This is the QCD description of the correlator and
it gives rise to the QCD side (or OPE side) of the sum rule. In the second way, we write the correlation function in terms of
matrix elements of hadronic stateswhich can be extracted fromexperiment, or calculatedwith latticeQCDor estimatedwith
effective Lagrangians. In this last approach we never talk about quarks and use all the available experimental information
concerning the masses and decay properties of the relevant mesons. This is the hadronic description of the correlator and it
is called the phenomenological side of the sum rule. After studying both sides separately, we identify one description with
the other and write the sum rule.

2.5. The OPE side

We start with the current, which has the general form:

ji = q̄Λ q, (19)

withΛ = 1, γµ, γ5, γµγ5 for a scalar, vector, pseudo-scalar and axial-vector meson, respectively. q is the quark spinor field.
Since the currents may carry Lorentz indices, so will the vertex function Γ . When we insert the three currents into Eq. (18)
we get the vacuum expectation value of the T product of six quark fields multiplied by Dirac matrices in different points.
In this expression we apply Wick’s theorem obtaining a series of terms, each of which being the product of contractions
(propagators) times a vacuum expectation value of normal ordered operators taken in the QCD vacuum. These latter, in the
local approximation, are the QCD condensates. This series is precisely (2) and its first terms are diagrammatically depicted
in Fig. 1. The first and leading one is the partonic term in Fig. 1(a). Fig. 1(b) and (c) show examples of terms with the quark
condensate and with the gluon condensate respectively.

The evaluation of (18) in lowest order leads to a loop diagram with three quark propagators. The first corrections to
the simple bubble (called the perturbative contribution in this work) come from diagrams where a quark line ‘‘dives’’ into
the vacuum and emerges from it. This contribution to the correlators appears multiplied by the quark condensate ⟨q̄q⟩.
Higher order corrections represent the interactions of the quark lines exchanging gluons among themselves (αs corrections)
and with the vacuum (gluon condensates and quark–gluon mixed condensates). An equivalent description is obtained
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performing first the contractions in (18), obtaining three quark propagators and then performing an operator product
expansion (OPE) of these propagators. For our purposes it is enough to consider only the first few terms of this expansion:

Sab(x) = ⟨0|T [qa(x)qb(0)]|0⟩ =
iδab

2π2x4
̸ x −

mqδab

4π2x2
−
δab

12
⟨qq⟩ +

iδab
48

mq⟨qq⟩ ̸ x

−
i

32π2x2
T A
abgsG

A
µν(̸ xσ

µν
+ σµν ̸ x)−

mq

32π2
T A
abgsG

A
µνσ

µν ln(−x2). (20)

In the above expression x is the four-vectorwhich defines the separation between the two quark fields,mq is the quarkmass,
T A
ab are the SU(3) generators, GA

µν is the gluon field tensor and σµν is the anticommutator of the Dirac matrices. For heavy
quarks, it is more convenient to work in the momentum space. In this case the expansion is given by:

Sab(p) = i
̸p + m
p2 − m2

δab −
i
4

tAabgG
A
µν[σ

µν(̸p + m)+ (̸p + m)σµν]

(p2 − m2)2

+
iδab
12

m⟨g2G2
⟩
p2 + m ̸p
(p2 − m2)4

. (21)

In (20) the first two terms are related to Fig. 1(a), the next two terms are related to Fig. 1(b) and the last two are related
to Fig. 1(c). After the contractions and the OPE expansion we arrive at an expression for Γ which has the generic form:

ΓOPE =


j

FOPE
j (p2, p′2, q2) Lj, (22)

where FOPE
j (p2, p′2, q2) are invariant functions of the momenta and Lj are the structures, i.e., products of Dirac matrices,

the metric tensor and the four momenta, carrying Lorentz indices. For each one of the invariant amplitudes appearing in
Eq. (22), we can write a double dispersion relation over the virtualities p2 and p′2:

FOPE
i = −

1
4π2


∞

smin

ds


∞

umin

du
ρOPE
i (s, u, q2)

(s − p2)(u − p′2)
, (23)

where ρOPE
i (s, u, q2) is the double discontinuity of the amplitude FOPE

i (p2, p′2, q2) and can be calculated using the Cutkosky
rules. We can work with any structure appearing in Eq. (22), but we must choose those which have less ambiguities in the
QCD sum rules approach, which means among other things, a weak influence from the higher dimension condensates. The
invariant amplitudes and thus the double discontinuities ρ, receive contributions from all terms in the OPE. The first one
(and dominating) of these contributions must come from the perturbative term.

2.6. Perturbative corrections

Perturbative corrections to the two-point functions, for light mesons or charmonium, were already considered in
Ref. [26]. The αs correction to a heavy–light two-point function was fully calculated for the first time in Ref. [35], keeping
the complete analytical dependences on both, the light and the heavy quark masses. Further details on the calculation can
also be found in Ref. [36]. αs corrections to the two-point function of light baryons have a long history and a summary
can be found in Ref. [37]. In the case of heavy baryons, αs corrections were presented only much later in 2008 [38]. In this
calculation [38] the authors conclude that the αs corrections are very big and that this could disqualify the sum rules. Similar
conclusion is reached in [39] where the authors found corrections in the heavy–light mesons two-point function to be of the
order of 30%. However, in Ref. [40], it was shown that the αs corrections are very strongly dependent on the renormalization
scheme.While in the quark polemass scheme they can be very big, they are under good theoretical control in theMS scheme.
Therefore, one can say that the size of the αs corrections of the two-point function is still under debate. As for the vertex
function, there are only αs corrections calculations with the light-cone sum rules, which is, as a matter of fact, a two-point
function calculation. The authors of Refs. [41,42] concluded that although the αs corrections are also large in the vertex
function, there is a cancellation of both large αs corrections to the vertex and to the meson decay constants, in such a way
that the coupling constant, or form-factor, is not sensitive to these αs corrections. Therefore, in this review we only present
calculations at leading order.

2.7. The phenomenological side

For the phenomenological side we formally repeat the steps mentioned above and find that, as before, the correlation
function can be written as a sum of contributions with different tensor structures, i.e.:

Γphen =


j

Fphen
j (p2, p′2, q2) Lj, (24)
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where Fphen
j (p2, p′2, q2) are invariant functions of the momenta and Lj are the structures. For each one of the invariant

amplitudes appearing in Eq. (24),we canwrite a double dispersion relation over the virtualities p2 and p′2, holdingQ 2
= −q2

fixed:

Fphen
i = −

1
4π2


∞

smin

ds


∞

umin

du
ρ
phen
i (s, u,Q 2)

(s − p2)(u − p′2)
, (25)

where ρphen
i (s, u,Q 2) is the double discontinuity of the amplitude Fphen

i (p2, p′2,Q 2). The function ρ can be generically
written as:

ρ
phen
i (s, u,Q 2) = a δ(s − m2

1) δ(u − m2
2)+ b δ(s − m2

1) θ(u − u0)+ c δ(u − m2
2) θ(s − s0)

+ ρcont
i (s, u,Q 2) [θ(s − smin) θ(u − u0)+ θ(s − s0) (θ(u − umin)θ(u0 − u))] , (26)

where s0 and u0 are the continuum threshold parameters. In the above equation the first term represents a kinematical
situation where the mesons M1 and M2 (with masses m1 and m2 respectively) are in the ground state and M3 is off-shell,
having an arbitrary Euclidean four momentum squared Q 2. The second term represents a situation where the meson M1 is
on-shell but the ground state of the mesonM2 is absent in the vertex, which contains only its excitations starting at u0. The
third term represents the inverse situation, where M2 is on-shell and it is accompanied in the vertex by the excitations of
M1 starting at s0. Finally, the last two terms represent the excitations ofM1 andM2, which start at s0 or u0 respectively. After
a double Borel transform in the variables p2 and p′2 the second and third terms are exponentially suppressed. One can then
safely assume quark–hadron duality and parametrize the continuum by the double discontinuity of the theoretical part:
ρcont
i (s, u,Q 2) = ρOPE

i (s, u,Q 2). This point is thoughtfully discussed in [43]. Inserting the above expression into (25) (and
neglecting the suppressed terms) we have:

Fphen
i = Λ

phen
i −

1
4π2


∞

smin

ds


∞

u0
du

ρOPE
i (s, u,Q 2)

(s − p2)(u − p′2)
+


∞

s0
ds

 u0

umin

du
ρOPE
i (s, u,Q 2)

(s − p2)(u − p′2)


, (27)

whereΛphen
i refers to the ground state (or pole) contribution in the structure i. In order to calculateΛphen

i we go back to (18)
and insert complete sets of hadronic states. After some algebra [31] we obtain:

Λ
phen
i =

fM1 fM2 fM3⟨M1M2M3⟩i

(p2 − m2
1)(p′2 − m2

2)(q2 − m2
3)
. (28)

The meson decay constants appearing in the above equation are defined by the following matrix elements:

⟨0|jVµ|V ⟩ = mV fV ϵµ, (29)

⟨0|jAµ|A⟩ = mAfA ϵµ, (30)

⟨0|j5|P⟩ =
m2

P

mq
fP , (31)

and

⟨0|jµA |P⟩ = ifP pµ, (32)

for vector, axial, pseudoscalar and axial currents respectively. In the above expressions ϵµ and pµ are the relevant
polarization vector and fourmomentumof the involvedmesons respectively. Eq. (32) refers to the casewhere a pseudoscalar
meson is represented by an axial current, andmq in Eq. (31) is the heaviest quark in the pseudoscalar meson P .

Since the higher states have been considered in the last two terms of (27), the amplitude ⟨M1M2M3⟩ appearing in (28)
refers to the ground states of twomesons, the third being off-shell withmomentum Q 2. For the ground states of themesons
M1,M2 andM3 the amplitude ⟨M1M2M3⟩ can be calculated with the help of an effective Lagrangian of the type:

LM1M2M3 = gM1M2M3


η1M11M2 M3 + hc


, (33)

where η = i or εµναβ ,∆ = 1 or ∂µ, hc stands for Hermitian conjugates and gM1M2M3 is the coupling constant. For an off-shell
M3 meson we generalize the above definition and define the form factor g(M3)

M1M2M3
(Q 2):

LM1M2M3 → g(M3)
M1M2M3

(Q 2)

η1M11M2 M3 + hc


. (34)
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The relation between the form-factor and the coupling constant in Eqs. (33) and (34) is given by:

g(M3)
M1M2M3

(Q 2
= −m2

3) = gM1M2M3 . (35)

The choices implied in η and∆ depend on the specific combination of mesons.

2.8. The sum rule

The sum rule is obtained from the identity:

Fiphen(p, p′, q) = FiOPE(p, p′, q), (36)

that gives

fM1 fM2 fM3⟨M1M2M3⟩i

(p2 − m2
1)(p′2 − m2

2)(q2 − m2
3)

= −
1

4π2

 s0

smin

ds
 u0

umin

du
ρOPE
i (s, u,Q 2)

(s − p2)(u − p′2)
, (37)

wherewe have used (23), (27) and (28) and have transferred the dispersion integral in the phenomenological side to the OPE
side. Notice that the integration limits are now finite. In order to improve the matching between the two sides of the sum
rule and also to suppress the pole–continuum transitions [43] we perform a double Borel transform (13) in the variables
P2

= −p2 → M2 and P ′2
= −p′2

→ M ′2, on both sides:

fM1 fM2 fM3⟨M1M2M3⟩i

(Q 2 + m2
3)

e−m2
1/M

2
e−m2

2/M
′2

=
1

4π2

 s0

smin

ds
 u0

umin

duρOPE
i (s, u,Q 2)e−s/M2

e−u/M ′2
. (38)

From (34) it is clear that the above equation canbe solved for the coupling gM1M2M3 . Since the squaredmomenta of themesons
M1 and M2 (p2 and p′2 respectively) have been replaced by the Borel masses M2 and M ′2 and then fixed, the coupling will
be a function only of the remaining Euclidean momentum Q 2, i.e., g(M3)

M1M2M3
= g(M3)

M1M2M3
(Q 2) and this is what we call a form

factor. The superscripts in parenthesis indicate that the meson M3 is off-shell. At the point Q 2
= −m2

3 the meson M3 is
on-shell and the form factor becomes the coupling constant. Of course one cannot use Q 2

= −m2
3 in Eq. (38) since the sum

rule is only valid for Q 2 > 0. Therefore, to obtain the coupling constant we will need to use some extrapolation procedure,
that will be discussed in Section 4.1.

In what was described above we have properly treated the excited states of M1 and M2 but the form factor (35) might
still contain some contribution from the higher states ofM3. One way to isolate them and obtain the coupling constant is to
start from (35) and introduce an additional dispersion relation in the q2 channel:

g(M3)
M1M2M3

(q2)

q2 − m2
3

=


dt
ρ(t)
q2 − t

. (39)

Now the spectral density contains the coupling constant and a sum over the excited states:

ρ(t) = gM1M2M3 δ(t − m2
3)+ ρcont(t) θ(t − t0). (40)

The function ρ(t) cannot be extracted from the OPE side and thus we have to make assumptions about its form. We must
introduce more parameters to be fixed and the method would loose predictive power. Because of this reason we prefer to
keep using the standard procedure of QCDSR as presented in Refs. [27,43]. We emphasize that, when extrapolating (35) to
the time-like region, we estimate the coupling constant at −Q 2

= q2 = m2
3. At this point the meson M3 is on-shell and,

because q2 = m2
3, we do not have enough invariant mass to have contamination from the excited states.

2.9. Effective Lagrangians

Since the pioneering work of Matinyan and Müller [4], there has been an intense discussion concerning the details and
properties of the effective Lagrangians which describe the interactions among charm mesons. An extensively used method
is to construct these Lagrangians by invoking a local SU(4) flavor symmetry with the vector mesons playing the role of
quasigauge bosons [4,6,44–48]. Of course, in this approach the SU(4) symmetry is badly broken due to the large value
of the charm quark mass. However, the idea behind using the SU(4) Lagrangians is to classify all the possible interaction
vertices among the meson multiplets [46]. In doing this, the symmetry breaking effects are totally absorbed in the physical
mass eigenstates, leaving the interaction completely symmetric from the beginning [48]. Moreover it turns out that the
SU(4) symmetry relations for the coupling constants are not totally meaningless (see Tables 1 and 8) [6,45]. Following
Refs. [45,46], we write down the SU(4) chiral Lagrangian in terms of the mesonic fields:

L0 = Tr

∂µPĎ∂µP


−

1
2
Tr


F ĎµνF

µν

, (41)
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Table 1
Coupling constants for the charmed three-meson vertices within the SU(4) scheme. α = g2

aNc/(16π2Fπ ).

Coupling Normal vertices

g/(4
√
3) ωD0D̄0, ωD+D−, ωD∗0 ¯D∗0, ωD∗+D∗−

ηD∗0 ¯D∗0, ηD±D∗∓

g/4 π0D0 ¯D∗0, π0D±D∗∓

ρ0D0D̄0, ρ0D+D−, ρ0D∗0 ¯D∗0, ρ0D∗+D∗−

g/(2
√
2) π+D0D∗−, π−D̄0D∗+, π+D−D∗0, π−D+ ¯D∗0

ρ+D0D−, ρ−D̄0D+, ρ+D∗0D∗−, ρ− ¯D∗0D∗+

g/
√
6 ηcD0 ¯D∗0, ηcD±D∗∓

J/ψD0D̄0, J/ψD+D−, J/ψD∗0 ¯D∗0, J/ψD∗±D∗∓

Anomalous vertices

α/(4
√
6) ηcρ

0ρ0, ηcρ
+ρ−, ηcωω

J/ψπ0ρ0, J/ψπ±ρ∓, J/ψηω

α/(4
√
3) ηωω, ηD∗0 ¯D∗0, ηD∗+D∗−, ωD0 ¯D∗0, ωD̄0D∗0, ωD±D∗∓

α/(2
√
6) ηcD∗0 ¯D∗0, ηcD∗+D∗−, ηc J/ψ J/ψ

J/ψD0 ¯D∗0, J/ψD̄0D∗0, J/ψD±D∗∓

α/4 π0D∗0 ¯D∗0, π0D∗+D∗−, ρ0D0 ¯D∗0, ρ0D̄0D∗0, ρ0D±D∗∓

α/(2
√
2) ρ+D0D∗−, ρ−D̄0D∗+, ρ+D−D∗0, ρ−D+ ¯D∗0

where Fµν = ∂µVν − ∂νVµ, and P and V denote respectively the properly normalized 4× 4 pseudoscalar and vector mesons
matrices in SU(4) given by:

P =
1

√
2



π0

√
2

+
η

√
6

+
ηc

√
12

π+ K+ D̄0

π−
−
π0

√
2

+
η

√
6

+
ηc

√
12

K 0 D−

K− K̄ 0 −


2
3
η +

ηc
√
12

D−

s

D0 D+ D+

s −
3ηc
√
12


, (42)

V =
1

√
2



ρ0

√
2

+
ω′

√
6

+
J/ψ
√
12

ρ+ K ∗+ ¯D∗0

ρ−
−
ρ0

√
2

+
ω′

√
6

+
J/ψ
√
12

K ∗0 D∗−

K ∗− ¯K ∗0 −


2
3
ω′

+
J/ψ
√
12

D∗−

s

D∗0 D∗+ D∗+

s −
3J/ψ
√
12
,


. (43)

In order to obtain the interaction Lagrangian we introduce the following minimal substitutions:

∂µP → ∂µP −
ig
2


Vµ, P


(44)

Fµν → ∂µVν − ∂νVµ −
ig
2


Vµ, Vν


. (45)

After using the Hermiticity of P and V the resulting Lagrangian reduces to:

L = L0 + igTr

∂µP


P, Vµ


−

g2

4
Tr


P, Vµ

2
+ igTr


∂µV ν


Vµ, Vν


+

g2

8
Tr


Vµ, Vν

2
. (46)



M.E. Bracco et al. / Progress in Particle and Nuclear Physics 67 (2012) 1019–1052 1029

The above Lagrangian accounts for vertices of the form PPV and VVV , where P and V denote pseudoscalar and vectormesons
respectively. In order to include the vertices of the form PVV , it is necessary to use the following anomalous three-particle
Lagrangian [46]:

La
int = −

g2
aNc

16π2Fπ
ϵµναβTr


∂µVν∂αVβP


. (47)

Eqs. (46) and (47) are used towrite the relevantmeson effective Lagrangians. For example, in the PPV (VVV ) case, we choose
two (none) mesons in (42) and one (three) meson in (43) and set all the other elements of these matrices to zero. We then
substitute the resulting Eqs. (42) and (43) into (46) and obtain the interaction Lagrangian for one specific three meson
interaction vertex. The coupling constants appearing in these Lagrangians are charge specific (for example: gD+D−J/ψ ) and
are functions of the universal SU(4) couplings g and ga, being thus connected to each other. They are listed in Table 1 and
their connection with g and ga is shown. Using a compact notation, the relevant Lagrangians are:

LπD∗D = igπD∗DD∗

µ(D̄∂
µπ − ∂µD̄π), (48)

LψD∗D = gψD∗Dϵ
µναβ∂µψν


∂αD∗

β D̄ + D∂αD̄∗
β


, (49)

LψDD = igψDDψ
µ


∂µDD̄ − D∂µD̄


, (50)

LπD∗D∗ = −gπD∗D∗ϵµναβ∂µD∗

νπ∂αD̄∗
β , (51)

LψD∗D∗ = igψD∗D∗


ψµ


∂µD∗ν D̄∗

ν − D∗ν∂µD̄∗
ν


,

+

∂µψνD∗ν

− ψν∂µD∗

ν


¯D∗µ + D∗µ


ψν∂µD̄∗

ν − ∂µψν ¯D∗ν

, (52)

LρDD = −igρDDρµ

∂µDD̄ − D∂µD̄


, (53)

LρD∗D∗ = igρD∗D∗


ρµ


∂µD∗ν D̄∗

ν − D∗ν∂µD̄∗
ν


,

+

∂µρνD∗ν

− ρν∂µD∗

ν


¯D∗µ + D∗µ


ρν∂µD̄∗

ν − ∂µρν ¯D∗ν

, (54)

LρD∗D = gρD∗Dϵ
µναβ∂µρν


∂αD∗

β D̄ + D∂αD̄∗
β


. (55)

For future applications we present below the following Lagrangians containing quartic vertices:

LψDDπ = igψDDπ ϵ
µναβψµ∂νD∂απ∂β D̄, (56)

LψD∗Dπ = −gψD∗Dπψ
µ


Dπ D̄∗

µ + D∗

µπ D̄

, (57)

LψD∗D∗π = igψD∗D∗π ϵ
µναβψµD∗

ν∂απ D̄∗
β + ihψD∗D∗π ϵ

µναβ∂µψνD∗

απD
∗
β , (58)

where it is understood that, when doing practical calculations, charges must be specified in the above expressions. As it
will be seen in the next section, after having calculated all specific coupling constants, we can, using some appropriate
convention, write them all in terms of generic coupling constants gM1M2M3 .

From the above Lagrangians we can derive the Feynman rule for the vertex (the amplitude ⟨M1M2M3⟩) which, as it can be
seen, depends on the relevant polarization vector, momenta and on the coupling gM1M2M3 . The latter is the unknown, which
will be determined by solving the sum rule. For example, for the D∗Dπ vertex we get:

⟨D∗(p)|π(q)D(p − q)⟩ = gD∗Dπ (q2)qµεµ(p), (59)

where the momentum assignment is specified in the brackets and εµ is the polarization vector of the D∗.

2.10. Couplings

Using the formulas developed in Section 2.9 we can write all the specific coupling constants in terms of the universal
couplings g and ga. The SU(4) scheme is shown in Table 1, with the help of which we can relate all the coupling constants of
charged states among themselves. Therefore, using one known coupling constant, such as, for example the experimentally
measured gD∗+D0π− , we can infer all the others. The couplings determined in this way are already enough to be used as input
in the Lagrangians (48)–(55), which are then used in calculations of phenomenological interest. However, in the literature,
one often finds a ‘‘generic’’ coupling constant, i.e. without any charge specification, such as, for example gD∗Dπ . The choice
of the generic gD∗Dπ (among the possible charged state couplings gD∗+D0π− , gD∗0D0π0 ,. . . etc.) is a matter of convention, as
mentioned explicitly in [4]. For the purpose of comparison we define the generic coupling as follows. If there is an isovector
meson in the vertex, the generic coupling is the one with a neutral isovector. For example:

gD∗Dπ = gD∗±D∓π0 = gD∗0D0π0 .
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Table 2
Parameters used in the calculation with their errors.

Parameter Value

mc (GeV) 1.27 ± 0.1
mD (GeV) 1.86
mD∗ (GeV) 2.01
mρ (GeV) 0.775
mψ (GeV) 3.1
fJ/ψ (GeV) 0.405 ± 0.015
fD∗ (GeV) 0.24 ± 0.02
fD (GeV) 0.18 ± 0.02
fρ (GeV) 0.160 ± 0.005
fπ (GeV) 0.131 ± 0.001
⟨q̄q⟩ (GeV)3 (−0.23 ± 0.01)3

⟨g2G2
⟩ (GeV)4 0.88 ± 0.3

From Table 1 the generic coupling can be obtained from the states with the charged isovector:

gD∗Dπ =
1

√
2
gD∗−D0π+ =

1
√
2
gD∗+D0π− .

If there is no isovector in the vertex, all the states have the same coupling and there is no ambiguity. Then, for example:

gJ/ψDD = gJ/ψD0D0 = gJ/ψD+D− .

All the calculations discussed throughout this review were performed for charged isovector currents.
In the next section we shall discuss in more detail the criteria which must be satisfied by the sum rules, in order to be

reliable.

3. Evaluation of the sum rules

3.1. Numerical inputs

In the following subsections we will present numerical results. In the quantitative aspect, QCDSR is not like a model
which contains free parameters to be adjusted by fitting experimental data. The inputs for numerical evaluations are the
following: (i) the vacuummatrix elements of composite operators involving quarks and gluonswhich appear in the operator
product expansion (2). These numbers, known as condensates, contain all the non-perturbative component of the approach.
They could, in principle, be calculated in lattice QCD. In practice they are estimated phenomenologically. They are universal
and, once adjusted to fit, for example, the mass of a particle, they must have always that same value. They are the analogue
for spectroscopy of the parton distribution functions in deep inelastic scattering; (ii) quarkmasses, which are extracted from
many different phenomenological analyses; (iii) the threshold parameter s0 is the energy (squared) which characterizes the
beginning of the continuum, as shown in (11). Typically the quantity

√
s0 − m (where m is the mass of the ground state

particle) is the energy needed to excite the particle to its first excited state with the same quantum numbers. This number
is not well known, but should lie between 0.3 and 0.8 GeV. If larger deviations from this interval are needed, the calculation
becomes suspicious. All in all, in QCDSR we do not have much freedom for choosing numbers. In the calculations discussed
belowwewill use the numerical inputs shown in Table 2. Themasses and decay constants are taken from the literature [49].
They might also be calculated with QCDSR as discussed in previous subsections.

In principle the quark masses, the QCD coupling constant αs and some of the condensates are renormalization scale
dependent quantities. In some QCDSR calculations this scale dependence is taken into account [50]. In the calculations
reviewed in this work we did not include the renormalization scale dependence because it is logarithmic and therefore
weak. We are restricted to a relatively small range of energies and our quantities do not have to ‘‘run’’ far away in energy
scales, as, for example, the coupling αs in typical high energy perturbative QCD calculations. Indeed, looking at the results
shown in [50], we notice that the variations in the final results due to changes in the scale dependent masses are not large,
being of the same order of the error in other inputs of the calculation.

3.2. Borel stability

As it was mentioned above we perform two Borel transforms introducing the two Borel masses M2 and M ′2. The sum
rules, expressing the interesting quantities as a function of the Borel parameters, must be as much independent of these
parameters as possible. An extensive check of this dependence has been carried out in [17–25]. For the sake of illustration
we present below some numerical analysis taking the vertex J/ψD∗D as working example. For the continuum thresholds
we have used s0 = (mψ + ∆s)

2 and u0 = (mD(D∗) + ∆u)
2 for the sum rule where D(D∗) is off-shell, and s0 = (mD∗ + ∆s)

2

and u0 = (mD + ∆u)
2 for the sum rule where J/ψ is off-shell. We take ∆s = ∆u = (0.5 ± 0.1) GeV. We first discuss the

J/ψDD∗ form factor with an off-shell D∗ meson. Fixing Q 2
= −q2 = 0 and∆s = ∆u = 0.5 GeV we show in Fig. 2 the Borel
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Fig. 2. M2 and M ′2 dependences of g(D
∗)

ψDD∗ (Q 2
= 0).

dependence of the form factor g(D
∗)

ψDD∗(0). We see that we get a very good stability for the form factor as a function of the two
independent Borel parameters in the considered Borel regions.

Since the dependence of the form factor onM2 andM ′2 is weak, there is no need to continue our analysis with these two
independent variables. We can relate one to another and use only one variable. One commonly used relation is:

M ′2

M2
=

m2
M1

m2
M2

, (60)

where M1 and M2 are the mesons with P2
= −p2 → M2 and P ′2

= −p′2
→ M ′2 respectively. If the meson M1 is light and

the mesonM2 is heavy, the above equation is replaced by:

M ′2

M2
=

m2
M1

(m2
M2

− m2
c )
. (61)

Other relations betweenM2 and M ′22 are possible, such as:

M ′2
= aM2

+ b. (62)

In [51] a comparative analysis was performed leading to the conclusion that all these forms are acceptable. In what follows
we will discuss results obtained with (60) and with (61). We show, in Fig. 3, the behavior of the form factors gJ/ψDD∗(Q 2) at
Q 2

= 2 GeV2 as a function of the Borel massM ′2. The solid line gives g(D
∗)

J/ψDD∗ at a fixed ratioM ′2/M2
= m2

D/m
2
ψ . The dashed

line gives g(D)J/ψDD∗ at a fixed ratio M ′2/M2
= m2

D∗/m2
ψ , and the dotted line gives g(J/ψ)J/ψDD∗ at a fixed ratio M ′2/M2

= m2
D/m

2
D∗ .

We can see that the QCDSR results for g(D
∗)

J/ψDD∗ and g(D)J/ψDD∗ are very stable in the interval 3 ≤ M ′2
≤ 6 GeV2. In the case of

g(J/ψ)J/ψDD∗ the stability is not as good as for the other form factors, but it is still acceptable.

3.3. OPE convergence

Asmentioned in the previous sections the operator product expansion should always be convergent. However sometimes
this convergence is not so fast. In this section we present some examples, encountered in our calculations, which illustrate
extreme cases ranging from a very fast convergence, where the second term is already negligible, to a slower convergence.
Fortunately, in these latter cases, the obtention of a very weak dependence of the form factor on the Borel mass (i.e., the
occurrence of a stability ‘‘plateau’’) indicates that the sum rule is still enough convergent.

In Fig. 4 we show the perturbative (dashed line) and the gluon condensate (dotted line) contributions to the form factor
g(D

∗)

J/ψDD∗(Q 2) at Q 2
= 2 GeV2 as a function of the Borel mass M ′2 at a fixed ratio M ′2/M2

= m2
D/m

2
ψ . The perturbative

contribution is obtained by using the first term in Eq. (20), for the light quark, and the first term in Eq. (21), for the heavy
quark, in the evaluation of the spectral density, and is represented in Fig. 1(a). The gluon condensate contribution is obtained
by using the fifth term in Eq. (20), and the second term in Eq. (21), for the light and heavy quarks respectively, and is
represented in Fig. 1(c). The line without the gluon in Fig. 1(c) is again represented by the first term in Eqs. (17) or (18)
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Fig. 3. M ′2 dependence of g(D
∗)

J/ψDD∗ (solid line), g(D)J/ψDD∗ (dashed line) and g(J/ψ)J/ψDD∗ (dotted line) for Q 2
= 2.0 GeV2 .

Fig. 4. M ′2 dependence of the perturbative contribution (dashed line) and the gluon condensate contribution (dotted line) to g(D
∗)

J/ψDD∗ at Q 2
= 2.0 GeV2 .

The solid line gives the final result for the form factor.

for the light or heavy quarks respectively. From this figure we see that the gluon condensate contribution is negligible,
when compared with the perturbative contribution. The same kind of stability is obtained for other values of Q 2 and for the
other two form factors [23,52]. In Fig. 5we show another example of OPE behavior, now in theD∗Dπ vertex. In this figurewe
study the D∗Dπ vertex, choosing the pion to be off-shell with Q 2

= 1 GeV2 and settingM ′2
= M2. The solid line shows the

sum of the first two relevant terms of the OPE, the perturbative term and the gluon condensate. It is reassuring to observe
that the former is much larger than the latter and also that their sum is very flat over a wide range of values ofM2. Although
here the dominance of the perturbative term over the gluon condensate is less pronounced, we observe an interesting
feature, namely, that the inclusion of the gluon condensate contributes to the Borel stability of the sum rule [17,20].
In Figs. 6 and 7 we show a comparison between the perturbative term and quark condensate term. They illustrate how
small (Fig. 6) and how large (Fig. 7) the effects of the quark condensate can be.

3.4. Pole versus continuum

In the study of the two-point function a crucial assumption is the form of the spectral density, Eq. (9). Moreover, it is
also crucial that the dispersion integral be dominated by the pole contribution and not by the continuum. In the case of the
two-point function, if this condition is not satisfied we cannot compute the mass of the particle. A similar condition must
hold for the three-point function. If it is not dominated by the pole contribution, this could be an indication that there is
more than one off-shell particle in the vertex. In the case of the two-point function the pole dominance can be tested with
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Fig. 5. D∗Dπ form factor as a function of the Borel mass M2 for an off-shell pion. Dotted, dashed and solid lines represent the contribution of the gluon
condensate, of the perturbative term and their sum (total) respectively.

Fig. 6. D∗D∗ρ form factor as a function of the Borel mass M2 for an off-shell D∗ . Dotted, dashed and solid lines represent the contribution of the quark
condensate, of the perturbative term and their sum (total) respectively.

the help of (6). The pole and continuum contributions are given by:

Π(q2)pole = −

 s0

smin

ds
ρOPE(s)

q2 − s + iϵ
, (63)

Π(q2)cont = −


∞

s0
ds

ρOPE(s)
q2 − s + iϵ

. (64)

We can perform a Borel transform in the above expressions and plot the relative contributions, which are given by:

Pole =
Π(M2)pole

Π(M2)pole +Π(M2)cont
, (65)

Continuum =
Π(M2)cont

Π(M2)pole +Π(M2)cont
. (66)
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Fig. 7. D∗D∗π form factor as a function of the Borel mass M2 for an off-shell D∗ . Dashed, dotted and solid lines represent the contribution of the quark
condensate, of the perturbative term and their sum (total) respectively.

.

.

.

.

.

.

.

.

.

.

.

Fig. 8. Pole (solid line) and continuum (dashed line) contributions to g(ρ)ρD∗D∗ (Q 2
= 1 GeV2), as a function of the Borel massM2 .

A similar analysis canbe carried out for the three-point function. Startingwith (23) and choosing oneof the i tensor structures
we can write:

FOPE
pole = −

1
4π2

 s0

smin

ds
 u0

umin

du
ρOPE(s, u,Q 2)

(s − p2)(u − p′2)
, (67)

FOPE
cont = −

1
4π2


∞

s0
ds


∞

u0
du

ρOPE(s, u,Q 2)

(s − p2)(u − p′2)
, (68)

and then, performing a double Borel transform and using (60) or (61), we write the two relative contributions as:

Pole =
FOPE(M2)pole

FOPE(M2)pole + FOPE(M2)cont
, (69)

Continuum =
FOPE(M2)cont

FOPE(M2)pole + FOPE(M2)cont
. (70)

In Figs. 8 and 9, we show the pole–continuum analysis for the D∗D∗ρ vertex [24]. In Fig. 8 the off-shell particle is the ρ,
with virtuality Q 2

= 1 GeV2. In Fig. 9 the off-shell particle is the D∗ with Q 2
= 1 GeV2. As it can be seen, for masses higher
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Fig. 9. Pole versus continuum contributions to g(D
∗)

ρD∗D∗ (Q 2
= 1 GeV2) as a function of the Borel massM2 .

Fig. 10. Continuum threshold dependence of the form factor g(D)ψDD∗ (Q 2). The dashed, solid and dotted lines give the parametrization of the QCDSR results
for ∆s = 0.4 GeV, 0.5 GeV and 0.6 GeV respectively. The lower, intermediate and upper set of curves show the results for ∆u = 0.4 GeV, 0.5 GeV and
0.6 GeV respectively.

than ≃2.5 GeV2 the sum rule is dominated by the continuum. This condition sets an upper limit for the Borel mass. A lower
limit comes from imposing the OPE convergence, as it can be inferred from Fig. 5. This interval is called the ‘‘Borel window’’
and it does not always exist. Changing the value of Q 2 may help or hinder the existence of the Borel window. In the next
sections we will present QCDSR results for the form factors. We will show curves of g(Q 2) as a function of Q 2 for a fixedM2.
The points where we have results are restricted to a certain region (sometimes relatively narrow) of the Q 2 axis. One of the
reasons for this limited range of applicability is the requirement of the pole dominance.

3.5. Continuum threshold effects

The results showed in Figs. 3–5, 8 and 9 were obtained using ∆s = ∆u = 0.5 GeV. In Fig. 10 we use the form factor
g(D)J/ψDD∗(Q 2) to illustrate the dependence of our results on the continuum thresholds. In the figure there are three sets of
three curves. They show fits of the QCD sum rule results. The lower, intermediate and upper sets were obtained using
∆u = 0.4 GeV, 0.5 GeV and 0.6 GeV respectively. The dashed, solid and dotted lines in each set were obtained using
∆s = 0.4GeV, 0.5GeV and 0.6GeV respectively. In this casewe can see that the dispersion in the region 0 ≤ Q 2

≤ 4.5GeV2,
where we have the QCDSR points, does not lead to a bigger dispersion at Q 2

= −m2
D, where the coupling constant is

extracted. As it will be discussed in the next subsection, the extrapolation procedure used here does not necessarily amplify
the uncertainties. In fact, in some cases the uncertainties can be evendamped aswemove to the time-like region. An example
of this damping is shown in Fig. 11, where we plot fits of the QCDSR results for the form factor of the D∗Dρ vertex. The two
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Fig. 11. Dependence of the D∗Dρ form factors on the continuum thresholds. The steeper lines correspond to ρ off-shell. The others are for D off-shell.

sets of lines correspond to a ρ off-shell (steeper lines) and to a D off-shell. Each line corresponds to a different choice of the
continuum threshold parameters. As it can be seen, this is one of the major sources of uncertainties.

3.6. Choice of the structure

As it was discussed in the previous sections, the explicit evaluation of the correlation functions both in the OPE and
in the phenomenological side leads to expressions written in terms of several tensor structures. We can write a sum rule
identifying the coefficients of each structure and hence we have as many sum rules as structures. In principle all the sum
rules are equivalent and should yield the same final results. In practice however, the truncation of the OPE affects different
structures (and the corresponding sum rules) in different ways. Consequently some structures lead to sum rules which are
more stable. In the simplest cases, such as in the D∗Dρ vertex, we have only one structure and, using the notation of (22)
and (24), the correlator (both in the phenomenological and the OPE descriptions) is written as:

Γµν(p, p′) = F(p2, p′2, q2) ϵαβµνpαp′β , (71)

and an analogous expression for the OPE side. In the most complicated cases, as in the ρD∗D∗ or J/ψD∗D∗ vertices, the
number of structures is fourteen and the correlators (both in the phenomenological and the OPE descriptions) have the
following tensor decomposition:

Γµνα(p, p′) = F1(p2, p′2, q2)gµνpα + F2(p2, p′2, q2)gµαpν + F3(p2, p′2, q2)gναpµ

+ F4(p2, p′2, q2)gµνp′

α + F5(p2, p′2, q2)gµαp′

ν + F6(p2, p′2, q2)gναp′

µ

+ F7(p2, p′2, q2)pµpνpα + F8(p2, p′2, q2)p′

µpνpα

+ F9(p2, p′2, q2)pµp′

νpα + F10(p2, p′2, q2)pµpνp′

α

+ F11(p2, p′2, q2)p′

µp
′

νpα + F12(p2, p′2, q2)p′

µpνp
′

α

+ F13(p2, p′2, q2)pµp′

νp
′

α + F14(p2, p′2, q2)p′

µp
′

νp
′

α. (72)

The above equation is themost general expression that can be written with three Lorentz indicesµ, ν and α. It makes use of
two independent four vectors, p and q, and themetric tensor. It contains fourteen Lorentz structures with fourteen invariant
functions Fi. Although all the Lorentz structures are independent, the fourteen invariant functions cannot be independent
due to current conservation. Enforcing current conservation reduces the number of independent invariant functions. Usually
we may take advantage of current conservation and write sum rules which are simpler. The best example is the two-point
function of the vector mesons ρ and J/ψ where, instead of studying separately the two possible independent structures gµν
and qµqν , we may use a combination of them which is manifestly conserved:

Πµν(q) = Π(q2)(−gµνq2 + qµqν), (73)
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Fig. 12. M ′2 dependence of the DDρ form factors at Q 2
= 1 GeV2 for ∆s = ∆u = 0.5 GeV. The dashed line gives the QCDSR result for g(ρ)DDρ(Q

2) and the

dot-dashed and solid lines give the QCDSR results for g(D)DDρ(Q
2) in the pµ and p′

µ structures respectively.

since qµΠµν = 0. The sum rule is thus written for the scalar functionΠ(q2). In spite of technical advantages of using (73),
we may still choose to work with one single structure, either gµν or qµqν . In the case of (72) current conservation yields
identities such as

pµΓναµ(p, p′) = 0, (74)
or

p′αΓναµ(p, p′) = 0, (75)
depending on the momentum of the J/ψ or ρ meson. With the help of expressions (74) or (75) we might rewrite the sum
rules in terms of combinations of different structures. However there is nothing wrong in working with individual Lorentz
structures, as done in [21,24].

In Fig. 12we show the typical difference between results obtainedwith different structures. In the figure we see the form
factors of the ρDD vertex, where we have only two structures pµ and p′

µ. The dashed line shows the case of an off-shell ρ
meson. In this case the two structures give the same result. The solid and dot-dashed lines refer to the case of an off-shell
D meson and they show the same quantity computed in the two different structures. We can observe a clear difference
between the two lines, especially in the low Borel mass region. Therefore the choice of structures deserves attention, since
it may be an additional source of uncertainties. In Fig. 13 we show the form factors of the J/ψD∗D∗ vertex for fixedM2 as a
function of Q 2. The dashed and dotted lines show results obtained with different structures.

3.7. Validity of the sum rule

A qualitative description of QCDSRwas given Section 2 and a description of howQCDSR can beworked out quantitatively
was presented in the above subsections. It is after this quantitative analysis of a particular sum rule and before the extraction
of the final form factors that we can judge whether or not the sum rule under consideration is valid.

Historically, in view of the uncertainties of the method, which are typically of 10%–20%, QCDSR were always used a
posteriori and not as a predictive tool. In recent years, for example, whenever a new particle was discovered, there was
a subsequent QCDSR analysis reproducing its properties and improving our understanding of that particle in terms of its
quark–gluon content. Although the interpretation of experimental data in terms of aQCDbased formalism is always relevant,
this attitude may give the impression that QCDSR ‘‘always work because we already know the answer’’. In fact this is not
true. The validity of a sum rule is established by internal, a priori, criteria and not because it reproduces known results. These
criteria are OPE convergence, pole dominance and Borel stability, as discussed in the Sections 3.3, 3.4 and 3.2. In some cases
the OPE convergence can be anticipated on the basis of scale arguments, but it must always be numerically checked. We
expect to find convergence when studying charm and bottom particles, as we do in this review, but it is not clear that the
OPE converges fastly enough in calculations in the strange sector. If it does not, then QCDSR are not reliable, even if they
give reasonable final results. Indeed, a preliminary calculation of the K ∗Kπ [53] vertex with QCDSR exhibited this kind of
bad behavior and was abandoned. Once the internal criteria are taken seriously, QCDSR gains ‘‘refutability power’’, which
has been so far underestimated by the community of practitioners. In spite of the lack of precision, in some cases we can
argue against the existence of certain states. As an example, in [54] it was shown that, due to the difficulty in satisfying
simultaneously the above mentioned criteria, it is very unlikely that the light scalar mesons are tetraquark states.
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Fig. 13. g(D
∗)

J/ψD∗D∗ (circles and squares) and g(J/ψ)J/ψD∗D∗ (triangles) form factors as a function ofQ 2 from theQCDRS calculation of thiswork. The solid and dashed
lines correspond to the monopole parametrization of the QCDSR data, using two different structures, and the dotted line corresponds to the exponential
parametrization.

4. Form factors

In the previous sectionwe have presented the conditionswhichmust be satisfied for a sum rule to be considered reliable.
In this section we discuss a difficulty inherent to the calculation of coupling constants with QCDSR. The solution of (38)
is numerical and restricted to a singularity-free region in the Q 2 axis, usually located in the space-like region. Therefore,
in order to reach the pole position, Q 2

= −m2
M3

, we must fit the solution, finding a function g(M3)
M1M2M3

(Q 2) which is
then extrapolated to the pole, yielding the coupling constant. In the following subsections we introduce an extrapolation
procedure and discuss how to improve it.

4.1. The extrapolation procedure

In order to minimize the uncertainties associated with the extrapolation procedure, for each vertex we perform the
calculation twice, putting first one meson and then another meson off-shell, obtaining two form factors g(M1)

M1M2M3
(Q 2)

and g(M2)
M1M2M3

(Q 2) and requiring that these two functions have the same value at the respective poles. The superscripts in
parenthesis indicate which meson is off-shell.

In order to yield reliable results the sum rule (37) must satisfy the quality criteria discussed in the previous subsections.
In first place (37) is a function of two Borel massesM2 andM ′2. A good sum rule is independent of the choice of thesemasses
(it is ‘‘Borel stable’’), showing a plateau when plotted as a function of M2 or M ′2. Moreover, the OPE side is a series which
must be convergent. We choose a value for M2 and plot (37) as a function of Q 2, as it is shown in Fig. 14. The squares and
circles show the result of the numerical evaluation of the form factor g(Q 2) as a function of Q 2 for the D∗Dπ vertex with a
pion (squares) and a D (circles) off-shell. As it can be seen, at a certain (low) value of Q 2 the calculation stops, because at this
point the stability and convergence criteria are no longer satisfied. From here on we have to extrapolate. In Fig. 14 we show
fits of the QCDSR results represented by the lines. As it is illustrated in the case of an off-shell pion, the numerical points
obtained with QCDSR can be fitted, with similar accuracy, by several forms which, when extrapolated to Q 2

= −m2
π , will

lead to very different points! This can be clearly seen by comparing the dashed and dash-dotted lines in Fig. 14. In order
to reduce the freedom in the extrapolation and constrain the form factor we calculate and fit simultaneously the values of
g(Q 2) of the same D∗Dπ vertex with the D off-shell. The results are shown in Fig. 14 with circles fitted by the solid line. We
perform the fits of the two sets of points (circles and squares) imposing the condition that the two resulting parametrizations,
when extrapolated to Q 2

= −m2
π and Q 2

= −m2
D go to the same value of gD∗Dπ (Q 2). This procedure is enough to reduce the

uncertainties and, imposing this requirement leads to gD∗Dπ = 14.0± 1.5, which is consistent with the experimental value
gD∗Dπ = 17.9 ± 0.3 ± 1.9.

As another interesting example, we consider the vertex J/ψDD∗. Here we try to improve the procedure described above,
calculating three form factors (one for each off-shell particle). This new procedure imposes a more stringent condition on
the parametrizations. Fixing M2 and M ′2 to the values of the incoming and outgoing meson masses we show, in Fig. 15,
the momentum dependence of the QCDSR results for the three form factors g(D)J/ψDD∗ , g(D

∗)

J/ψDD∗ and g(J/ψ)J/ψDD∗ through the circles,
squares and triangles respectively. Since our approach cannot be used at Q 2

≪ 0, in order to extract the gJ/ψDD∗ coupling
from the form factors we extrapolate the curves to the mass of the off-shell meson, shown as open circles in Fig. 15. In order
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Fig. 14. D∗Dπ form factor as a function of Q 2 for an off-shell pion (dashed and dot-dashed lines) and an off-shell D (solid line). Circles and squares are the
results of numerical calculations and the curves are their fits.

Fig. 15. Momentum dependence of the J/ψDD∗ form factors. The dotted, dashed and solid lines give the parametrization of the QCDSR results (triangles,
squares and circles).

to do this extrapolation we fit the QCDSR results with an analytical expression. We tried to fit our results to a monopole
form, since this is very often used for form factors, but the fit was only good for g(J/ψ)J/ψDD∗ . For g(D)J/ψDD∗ and g(D

∗)

J/ψDD∗ we obtained
good fits using a Gaussian form. These fits are also shown in Fig. 15 through the dotted, solid and dashed lines respectively.
From Fig. 15 we see that all three form factors lead to compatible values for the coupling constant when extrapolated to the
off-shell meson masses (open circles in Fig. 15).

From the parametrizations we can also extract the cut-off parameter, Λ, associated with the form factors. The general
expression for the Gaussian parametrization is:

A exp[−(Q 2
+ B)2/Λ4

] (76)

which givesΛ ∼ 4.5 GeV when the off-shell meson is D or D∗. For the monopole parametrization the general expression is:

g[(Λ2
− m2)/(Λ2

+ Q 2)]. (77)

Therefore, for an off-shell J/ψ we get Λ ∼ 7.5 GeV. It is very interesting to notice that the value of the cut-off is directly
associated with the mass of the off-shell meson in the vertex. We say that a form factor is harder than another when the
curve representing it as a function ofQ 2 is flatter. The use of theword hard is related to the numerical value of the parameter
Λ in Eqs. (76) and (77). From them it is easy to see that the larger (‘‘harder’’) is Λ, the flatter is the resulting curve. In our
analysis we find that the form factor is harder if the off-shell meson is heavier.
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Fig. 16. Meson loop contributions to theD∗Dπ form factor: ‘‘triangle’’ diagrams. In the internal triangles the solid, dashed, wavy and spring lines represent
a virtual D, π, ρ and D∗ respectively.

4.2. Hadronic loops

Coming back to the D∗Dπ vertex, we observe that, while the obtained number, gD∗Dπ = 14.0 ± 1.5, is not far from
the experimental value, there is still a discrepancy. The procedure of fitting the QCDSR points in the deep euclidean region
and extrapolating them to the time-like region contains systematic uncertainties associated to the analytical form chosen for
the parametrizations, i.e., monopole, exponential or Gaussian. We tried to reduce this systematic uncertainty performing a
double (and also a triple as in the case of the J/ψD∗D vertex) fit. However it would be desirable to have a more physical way
to reduce the systematic uncertainty.

In [55] the authors revisited this problem, employing hadronic loops, calculated by means of effective field theories
(EFT), in order to produce a better parametrization for D∗Dπ results calculated with QCDSR. Purely hadronic calculations
are independent of QCDSR and involve the choice of an effective Lagrangian, including the possible requirements of chiral
symmetry and/or SU(4). Beyond the tree level, one has to deal with the problems and uncertainties associated with
renormalization. As it was discussed in [55] a suitable combination of EFT and QCDSR results allows the reduction of
undesired indeterminacies of both approaches, improving their predictive power.

The full D∗Dπ vertex function in a hadronic approach involves the computation of several diagrams. Leading
contributions to this vertex come from both the tree level interaction and from the diagrams depicted in Fig. 16. Meson
loops are a necessary consequence of quantum field theory and do contribute to several hadronic observables. In practice,
due to problems associated with infinities, renormalization becomes unavoidable in the evaluation of loop corrections to
observables. Here the basic idea is to isolate the unknown loop parameters into some basic constants, in such a way that
they can be determined by matching the results of loop and QCDSR results.

Wenote that somediagrams, such as, for instance, that in Fig. 16(a), contain internal vertices involving theD∗Dπ coupling.
This suggests that the calculation is ‘‘cyclic’’, since one needs to use theD∗Dπ form factor in order to calculate theD∗Dπ form
factor. Actually, there are differences between the internal particles and the external ones. The former are always virtual,
whereas the latter may be either real or put on mass shell in the extraction of the coupling constant. In the framework of
perturbation theory, at leading order, internal particles are treated as elementary, without structure. They are assumed to
be point-like and the evaluation of leading terms does not require the use of internal form factors. Consistently, one must
use bare coupling constants for these interactions.

Since there are heavy mesons circulating in the loops shown in Fig. 16, one might argue that other states should also be
included.We do have, for example, fermion–antifermion components such as N̄N or Λ̄cΛc in the loops. An incoming positive
pion can split into a p plus a n̄, and so on. However, in a different context [56], it has been shown that this kind of splitting
is suppressed with respect to the pion → meson–meson splitting, by one order of magnitude. The neglect of this kind of
contribution seems therefore justified. The same holds for the possibility of strangeness circulating in the loop, associated
with virtual states such as Ds,D∗

s , K and K ∗. Using only π ’s, ρ’s, D’s and D∗’s the low and high Q 2 regions of the form factor
are covered. Thus it is enough to work with a simple effective theory. It is convenient to use the effective Lagrangian (48),
which is constrained by SU(2) flavor and chiral symmetries, as well as gauge invariance. The coupling constant appearing in
the Lagrangian is the bare one. The ρ couplings are assumed to be universal and are implemented by covariant derivatives
of the form Dµ

= ∂µ− igρ T ·ρµ , where gρ is the universal coupling constant and T is the isospin matrix suited to the field
upon which the derivative Dµ acts. With the proper Lagrangians it is possible to write and evaluate all the contributions to
the total vertex function.

The π(q) D(p) D∗
α(p

′) vertex function Γµ(p2) for an off-shell D is written as:

Γµ(p2) = − qµ g(D)D∗Dπ (p
2), (78)
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P2 (GeV2)

Fig. 17. The D∗Dπ form factor. Dots: QCDSR from [20]; solid, dash and dash-dotted lines are fits obtained with Eqs. (79), (81) and (82), respectively.

where g(D)D∗Dπ (p
2) is the form factor, such that the physical coupling constant is gD∗Dπ = g(D)D∗Dπ (m

2
D). In [55] two kinds of

loop corrections to this vertex were considered, containing pion and ρ intermediate states, denoted respectively by Fπ (p2)
and Fρ(p2). The perturbative evaluation of these functions gives rise to divergent integrals and g(D)D∗Dπ (p

2) can be determined
only up to yet unknown renormalization constants. The use of standard loop integration techniques, such as dimensional
regularization andMS subtraction of divergences, for all diagrams, allows one to write the form factor as:

g(D)D∗Dπ (p
2) = K + Cπ Fπ (p2)+ Cρ Fρ(p2), (79)

where K , Cπ and Cρ are constants. During the renormalization procedure we need to choose a scheme to subtract the
infinities. A very frequently used one is the MS scheme. At the same time, in this process an energy scale appears. This
is the renormalization scale, usually called µ, which must be fixed later with the imposition of a physical condition (the
renormalization condition). Usually the renormalization condition for three-point functions is the requirement that they
lead to some experimentally known coupling constant. In the present case we cannot do this because we do not know a
priori the physical coupling constant. What we do instead is to use the QCDSR points obtained for the space-like form factor
to define a renormalization condition. The calculation discussed in [55] shows that all the renormalization scheme (and
renormalization scale) dependence is contained in the three constants K , Cπ and Cρ , which are fixed by fitting the QCDSR
points. Using a different renormalization scheme would simply lead to different values of the constants, needed to make
the parametrization (79) pass through the QCDSR points. These latter might contain themselves some renormalization scale
dependence, but, as discussed in Section 3.1, in the present approach we do not take it into account.

The constants K , Cπ and Cρ incorporate the bare couplings, the usual parameters associated with renormalization and
here they are determined by comparing g(D)D∗Dπ (p

2) with the results from QCD sum rules. Keeping only the terms which
depend on p2 the explicit evaluation of the diagrams can be performed and the form factor as a function of p2, the D four-
momentum squared, can be obtained. At this stage, it still contains three unknown parameters, which are determined by
adjusting the function g(D)D∗Dπ (p

2) to the QCD sum rule points taken from [20]. Those results are displayed in Fig. 17, where
P2

= −p2, togetherwith the best fit (χ2
∼ 10−3) represented by the solid line. Computing the value of g(D)D∗Dπ (p

2) at p2 = m2
D,

one arrives at the following value for the coupling constant:

gD∗Dπ = 17.5 ± 1.5, (80)

in very good agreement with experiment. The errors quoted come from the QCDSR points, which contain a typical error
of ≃10%. In the same figure we can also see the results of the fits of the QCDSR points with two mixed monopole–dipole
structures with three free parameters, namely:

g I(p2) = C


Λ2

1 − m2
D

Λ2
1 − p2

+


Λ2

2 − m2
D

Λ2
2 − p2

2

, (81)

g II(p2) = C1
Λ2

− m2
D

Λ2 − p2
+ C2


Λ2

− m2
D

Λ2 − p2

2

, (82)

which yield χ2
I ∼ 10−3 (dashed line) and χ2

II ∼ 10−2 (dash-dotted line), respectively. Looking at Fig. 17 we learn that these
alternative structures, reasonable as they are, diverge significantly from the loop calculation in the region where the D is
not too off-shell, stressing the importance of a proper hadronic treatment of the form factor in that region.

As far as practical applications are concerned, our numerical results for the form factor gD∗Dπ (p2), in the whole range
−m2

D ≤ P2 < 5GeV2, are verywell described by themixedmonopole–dipole structure given by Eq. (81)with the parameters
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Table 3
Parameters used in (83)–(85). B and C are in GeV2 and A is either in GeV or GeV2 , depending on the vertex. All the isovector mesons π and ρ appearing in
the table are charged.

M1 M2 M3 Form M1 off Form M2off
A B A B C

DπD∗ (I) 126 11.9 (II) 15.5 1.48
J/ψDD∗ (I) 200 57 (III) 13 450 26
J/ψDD (I) 306 63 (III) 15 250 20
DρD (I) 37.5 12.1 (II) 2.5 0.98
J/ψD∗D∗ (I) 400 78.5 (II) 1.96 3.5
D∗ρD∗ (II) 4.9 13.3 (II) 5.2 2.7
D∗πD∗ (II) 4.8 6.8 (II) 8.5 3.4
DρD∗ (I) 234 44 (II) 5.1 4.3

Table 4
Coupling constants for neutral isovector mesons (π0 and ρ0).

M1 M2 M3 gM1 M2 M3

DπD∗ 9.9 ± 1.0
J/ψDD∗ 4.0 ± 0.6 GeV−1

J/ψDD 5.8 ± 0.9
DρD 3.0 ± 0.2
J/ψD∗D∗ 6.2 ± 0.9
D∗ρD∗ 4.7 ± 0.2
D∗πD∗ 6.1 ± 0.7 GeV−1

DρD∗ 4.3 ± 0.9 GeV−1

C = 8.7,Λ1 = 5.1 GeV and Λ2 = 2.9 GeV. These results suggest that the use of meson loops can reduce the uncertainty
in the extrapolation of form factors, computed in the space-like region by means of QCDSR, to the time-like region, with
the corresponding increase in the reliability of predictions for coupling constants. Apart from the approximations described
above, the procedure has no new source of errors.

To conclude this section, we have discussed a new method of improving QCDSR calculations of hadronic form factors,
which consists inmatching QCDSR results, validmainly in the deep euclidean region, tomeson loop calculations, valid when
the D is not too off-shell. This matching is well justified from the physical point of view, since in the intermediate and large
Q 2 regions the relevant degrees of freedom are the quarks and gluons, with non-perturbative corrections taken into account
through the QCD condensates. The opposite happens for low values ofQ 2, where sum rules calculations become less reliable
due to the lack of a large mass scale. At this point, the meson exchange dynamics becomes a valuable tool, but it depends
on unknown constants associated with the renormalization of the mesonic vertices. Although the exact frontier between
meson dynamics and QCDSR cannot be precisely known, the success of themethod in the example considered here supports
the view that the matching may become useful in increasing the predictive power of both procedures.

5. Results

5.1. Form factors and couplings

We have applied the procedure described in the previous sections to the following vertices D∗Dπ,D∗D∗π,DDρ,D∗Dρ,
D∗D∗ρ, J/ψDD, J/ψD∗D and J/ψD∗D∗. As mentioned above, for each vertex we obtain two sets of points, which have been
parametrized by the following forms:

(I) g(Mi)
M1M2M3

(Q 2) =
A

Q 2 + B
(83)

(II) g(Mi)
M1M2M3

(Q 2) = A exp[−(Q 2/B)] (84)

(III) g(Mi)
M1M2M3

(Q 2) = A exp[−(Q 2
+ C)2/B]. (85)

In Table 3 each line refers to the vertex indicated in the first column. In the second, third and fourth columns we present the
values of the parameters A and B for the case where a heavier meson in the vertex (M1) is off-shell, indicating also which
parametrization ((I), (II) or (III)) was employed. In the fifth, sixth, seventh and eighth columns we show the parameters
and type of parametrization used in the case where a lighter meson (M2) is off-shell. The numbers presented in Table 4
summarize our results. They contain uncertainties coming fromdifferent sources,whichwill be discussed in the next section.
The vertex coupling constants can be obtained from the form factors and they are presented in Table 4. A comparison with
other estimates is going to be done in Section 6.
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5.2. Uncertainties

We consider now, as an example, the vertex D∗Dρ and discuss, one by one, all the sources of uncertainties in the
calculation of the form factors. The sum rules for D, ρ and D∗ off-shell are given by:

C
g(D)D∗Dρ(Q

2)

(Q 2 + m2
D)

e
−

m2
ρ

M′2 e−
m2
D∗

M2 = −
1

4π2


ds


du ρ(D)(u, s, t) e−

s
M2 e

−
u

M′2 − ⟨q̄q⟩ e−m2
c /M

2
, (86)

C
g(ρ)D∗Dρ(Q

2)

(Q 2 + m2
ρ)

e
−

m2
D

M′2 e−
m2
D∗

M2 = −
1

4π2


ds


du ρ(ρ)(u, s, t) e−

s
M2 e

−
u

M′2 , (87)

and

C
g(D

∗)

D∗Dρ(Q
2)

(Q 2 + m2
D∗)

e
−

m2
D

M′2 e−
m2
ρ

M2 = −
1

4π2


ds


du ρ(D

∗)(u, s, t) e
−

s
M′2 e

−
u

M′2 + ⟨q̄q⟩ e−m2
c /M

′2
, (88)

where t = −Q 2 and the functions ρ(D), ρ(ρ) and ρ(D
∗) are the double discontinuities associated to the perturbative diagram

of the sum rules with an off-shell D, ρ and D∗ off-shell respectively. They are given by:

ρ(D)(u, s, t) =
3mc
√
λ


u(2m2

c − s − t + u)
λ


, (89)

with λ = (u + s − t)2 − 4us. The integration limits in (86) are:

0 < u <
m2

c (s + t − m2
c )− st

m2
c

,

and

m2
c < s < s0.

The perturbative contribution for the double discontinuity for an off-shell ρ meson is given by:

ρ(ρ)(u, s, t) =
3mc t
λ3/2


u + s − t − 2m2

c


, (90)

and the corresponding integration limits in (87) are:

m2
c (s − t − m2

c )

s − m2
c

< u < u0,

and

m2
c < s < s0.

The perturbative contribution for the double discontinuity for an off-shell D∗ meson is given by:

ρ(D
∗)(u, s, t) =

3mc

λ3/2


s(2m2

c + s − t − u)

. (91)

The integration limits in (88) are:

t < u <
m2

c (t − s − m2
c )

t − m2
c

,

and

0 < s < s0.

In the above expressions C is a constant defined as:

C =
m2

DfD
mc

mρ fρmD∗ fD∗ ,

where fD, fρ and fD∗ are the decay constants of the mesons D, ρ and D∗ respectively. The numerical evaluation of the above
expressions is done with the numerical inputs shown in Table 2 and the resulting points are shown in Fig. 18. The triangles,
squares and circles are the results for the g(ρ)D∗Dρ(Q

2), g(D)D∗Dρ(Q
2) and g(D

∗)

D∗Dρ(Q
2) form factors respectively. As indicated in
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Fig. 18. The D∗Dρ form factor. g(D)D∗Dρ (squares), g(ρ)D∗Dρ (triangles) and g(D
∗)

D∗Dρ (circles) form factors as a function of Q 2 . The dotted, solid and dashed lines
correspond to the parametrizations discussed in the text. The vertical bars show the theoretical errors in the coupling constants once all variations in the
parameters are taken into account, as explained in the text.

Table 3, in the case of an off-shell Dmeson, our numerical results can be fitted by the following monopolar parametrization
(shown by the dashed line in Fig. 18):

g(D)D∗Dρ(Q
2) =

234
Q 2 + 44

, (92)

where the function g(D)D∗Dρ(Q
2) has the units of GeV−1. Following the procedure discussed above, we define the coupling

constant as the value of the form factor at Q 2
= −m2

M , where mM is the mass of the meson M . Therefore, using Q 2
= −m2

D

in Eq. (92), the resulting coupling constant is g(D)D∗Dρ = 5.76 GeV−1. For an off-shell ρmeson our sum rule results can be fitted
by an exponential parametrization, which is represented by the solid line in Fig. 18:

g(ρ)D∗Dρ(Q
2) = 5.1 e−Q 2/4.3. (93)

Using Q 2
= −m2

ρ in Eq. (93) we get g(ρ)D∗Dρ = 5.89 GeV−1. In the case of an off-shell D∗ meson, our numerical results can be
fitted by the following monopolar parametrization (shown by the dotted line in Fig. 18):

g(D
∗)

D∗Dρ(Q
2) =

195.8
Q 2 + 33.5

. (94)

Evaluating this form factor at Q 2
= −m2

D∗ we find the coupling g(D
∗)

D∗Dρ = 6.65 GeV−1.
Looking at Fig. 18 we can observe that the D off-shell form factor is much harder than the ρ off-shell one. This agrees

with the behavior observed in Figs. 13–15: the heavier is the off-shell meson, the harder is its form factor. Following this
same trend, we would expect the D∗ off-shell form factor to be even harder than the D off-shell one. However, comparing
the dashed and dotted lines in Fig. 18, this seems not to be the case: the slope of the D∗ curve is slightly bigger than the
one of the D curve. Since their mass difference is relatively small (≃150 MeV) the two curves should have almost the same
slope. The observed difference is an indication of the limited precision of our method.

The form factors (92)–(94) and their extrapolations to the on-shell points leading to the coupling constants do not contain
error bars. In fact, a careful and systematic study of errors in QCDSR calculations is hard to find in the literature. We took
Ref. [30] as a guide. In Fig. 18 we can see the theoretical error bars at the endpoints of the three curves. In what follows
we describe how we obtain them. First, we compute the sum rules (86)–(88) taking into account the errors in the masses,
decay constants, condensates, choice of the Borel mass and continuum threshold parameters. In each computation all the
parameters are kept fixed, except one, which is changed according to its intrinsic error. The errors in the quark and gluon
condensates, in the masses and decay constants are listed in Table 2. The three Borel masses were chosen in the interval
2.7 ≤ M2

≤ 3.3 GeV2 for an off-shell ρ and an off-shell D∗ and in the interval 27 ≤ M2
≤ 33 GeV2 for an off-shell D. After

each round of calculation of the three sum rules, we obtain three sets of points which are then fitted and extrapolated to the
respective on-shell points. The sets of points are all fitted with the forms (92)–(94), but for each set the numerical constants
appearing in these forms are different.

Every extrapolation introduces some ambiguity in the final results, since we have the freedom to fit a set of points
with different parametrizations. In our case this freedom is strongly reduced because we require that all the three
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Table 5
Changes in g(ρ)D∗Dρ induced by changes in different quantities.

Quantity

g(ρ)D∗Dρ


σ σ (%)

∆ 5.86 0.08 1.4
fρ 5.89 0.01 0.1
fD 5.41 0.65 12.0
fD∗ 5.90 0.40 6.8
M2 5.90 0.10 1.7
mc 5.97 0.40 7.4

Table 6
Changes in g(D)D∗Dρ induced by changes in different quantities.

Quantity

g(D)D∗Dρ


σ σ (%)

∆ 5.95 0.87 14.7
fρ 5.76 0.01 0.1
fD 5.30 0.64 12.0
fD∗ 5.80 0.40 6.8
M2 5.76 0.05 0.8
mc 5.70 0.30 5.6
⟨q̄q⟩ 5.77 0.04 0.8

Table 7
Changes in g(D

∗)
D∗Dρ induced by changes in different quantities.

Quantity

g(D

∗)
D∗Dρ


σ σ (%)

∆ 7.00 1.00 14.3
fρ 6.61 0.07 1.1
fD 6.11 0.74 12.0
fD∗ 6.69 0.46 6.8
M2 6.65 0.19 2.8
mc 6.61 0.06 0.8
⟨q̄q⟩ 6.66 0.08 1.3

parametrizations lead to approximately the same coupling constant. In Fig. 18 this requirement forces the three endpoints
of (92)–(94), which are taken at the squared masses of the corresponding particles, to coincide, i.e., to have approximately
the same height in the figure. Of course, due to the approximations used, we cannot expect this matching to be perfect.
Once this procedure is completed and we determine the three coupling constants with an error corresponding solely to the
variation of one parameter, we move to the next parameter to be varied, keeping all others fixed and repeat the procedure.
In each step we can have an idea of how sensitive is each coupling constant to the parameter under consideration. In the
end, for each coupling constant we take the average of all encountered values and calculate also the global error, which is
shown in Fig. 18 as an error bar at the on-shell point. The final number is then obtained taking the average of the three
couplings found and the final error is also obtained from the errors of each coupling.

Among the sources of errors, one deserves a special discussion. Very often in QCDSR calculations, appreciable
uncertainties in the results come from the lack of knowledge on the continuum threshold parameters. In order to study
the dependence of our results on these parameters, we vary ∆s,u between 0.4 GeV ≤ ∆s,u ≤ 0.6 GeV in the sum
rule (87), between 0.4 GeV ≤ ∆s ≤ 0.6 GeV and 0.65 GeV ≤ ∆u ≤ 0.75 GeV in the sum rule (86) and between
0.65 GeV ≤ ∆s ≤ 0.75 GeV and 0.50 GeV ≤ ∆u ≤ 0.70 GeV in the sum rule (88). This variation produces new sets of
curves which are shown in Fig. 11 and give us an uncertainty range in the resulting coupling constants g(D)D∗Dρ and g(ρ)D∗Dρ . For

the sake of clarity we did not include the lines corresponding to the coupling g(D
∗)

D∗Dρ . Surprisingly, in the case of the form

factor g(ρ)D∗Dρ , we observe a convergence of the extrapolation lines, which reduces the final error. Due to this accident, the

continuum threshold parameters are not, in the g(ρ)D∗Dρ case, the ultimate source of error. Their contribution (denoted by ∆
in the tables) is still significant, as it can be seen in Tables 5–7, but now they have less impact on the final error than the
uncertainties in the decay constants fD and fD∗ and in the charm quark mass. In these tables we show in the first column
the quantity which was varied, in the second the average coupling constant resulting from that variation, in the third the
standard deviation and in the fourth the percentual significance of σ .

After scanning the space of reasonable values of all the parameters, we conclude that, in spite of the inherent
uncertainties, the sum rules really point to a value of the coupling constant! Of course, as in most of QCDSR calculations, the
lack of precision is due to the ‘‘usual suspects’’, i.e., continuum threshold parameters, decay constants, heavy quark masses
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Table 8
SU(4) relations between the coupling constants (on the left column) and their
violation (in percentage on the right column) found in QCDSR.

SU(4) relation Violation

gJ/ψDD = gJ/ψD∗D∗ (7%)

gρDD∗ =

√
6
2 gJ/ψDD∗ (12%)

gρDD =

√
6
4 gJ/ψDD (17%)

gπD∗D∗ =

√
6
2 gJ/ψDD∗ (20%)

gD∗D∗ρ =

√
6
4 gJ/ψD∗D∗ (20%)

gDDρ =

√
6
4 gJ/ψD∗D∗ (21%)

gρD∗D∗ =

√
6
4 gJ/ψDD (25%)

gπD∗D∗ = gρDD∗ (29%)
gρDD = gρD∗D∗ (36%)
gD∗Dπ = gD∗D∗ρ (52%)
gD∗Dπ =

√
6
4 gJ/ψD∗D∗ (62%)

gD∗Dπ =

√
6
4 gJ/ψDD (64%)

gD∗Dπ = gDDρ (70%)

and condensates. A comparison of the tables shows an intriguing aspect, namely that some of the input quantities affect
each of the three sum rules in a quite different way. This may be a signal that some of the sum rules are less reliable than
others. A deeper investigation of this question would involve several refinements, such as the calculation of αs corrections
and higher order terms in the OPE.

Considering the results presented in the tables, the couplings are:

g(D)D∗Dρ = 5.71 ± 0.62 GeV−1,

g(ρ)D∗Dρ = 5.87 ± 0.53 GeV−1,

and

g(D
∗)

D∗Dρ = 6.63 ± 0.73 GeV−1.

We can see that the three cases considered here, off-shell D, ρ and D∗, give compatible results for the coupling constant.
Considering all the uncertainties and taking the average between the obtained values we have:

gD∗Dρ =


6.1 ± 1.3


GeV−1. (95)

Our results were obtained for certain concrete choices of currents, which represent charged states. Consequently, the
obtained couplings are for charged states. As it will be discussed in the next section, from the coupling of charged states
we can get the coupling of neutral ρ states, which will be identified with the ‘‘generic coupling’’, through the relation:

gD∗Dρ = gD∗Dρ0 =
gρ+D0D∗+

√
2

=
gρ−D0D∗+

√
2

. (96)

Therefore the final value of the coupling constant listed in Table 4 is:

gD∗Dρ =


6.1 ± 1.3


/
√
2 =


4.3 ± 0.9


GeV−1.

To close this section we emphasize that, from the analysis of the tables we conclude that, in the present context, the average
error of our calculations is in the range from 10% to 15%.

6. Discussion

In this sectionwe compare our results with other QCDSR calculations, in particular with light-cone QCD sum rules (LCSR)
results, and also with results obtained with other techniques. Besides QCDSR, coupling constants can be estimated with the
vector meson dominance (VMD) model, with heavy quark effective theory (HQET), with SU(4) symmetry relations, with
effective models such as the constituent quark–meson model, with chiral models and with lattice QCD calculations (LQCD).

6.1. SU(4) and HQET

If SU(4) would be exact, several relations between the coupling constants should hold. Using the QCDSR results reported
in Table 4 we can check to what extent these relations are satisfied. The relevant relations and their deviation from our
results are shown in Table 8. They are ordered by increasing degree of violation. Remembering the typical uncertainties of
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Table 9
Summary of estimates for gD∗Dπ and gB∗Bπ . These couplings refer to charged mesons π± .

Approach gD∗Dπ gB∗Bπ

QCDSR [58] 9 ± 2 20 ± 4
QCDSR [58] 7 ± 2 15 ± 4
LCSR [59] 11 ± 2 28 ± 6
QCDSR [60] 6.3 ± 1.9 14 ± 4
LCSR [41] 10.5 ± 3 22 ± 9
QCDSR [20] 14.0 ± 1.5 42.5± 2.6
QCDSR plus meson loops [55] 17.5 ± 1.5 44.7± 1.0
LQCD [61] 20 ± 2
LQCD [62] 18.8+2.5

−3.0
Dispersive quark model [63] 18 ± 3 32 ± 5
Dyson–Schwinger equations [64] 15.8+2.1

−1.0 30.0+3.2
−1.4

10% to 15% in our calculations, we can conclude that the first seven SU(4) relations are reasonably satisfied whereas the
last six relations are badly violated. Although there is no rigorous systematics, we can clearly observe that violations occur
mostly when there is a pion in the vertex.

We can also check the heavy quark spin symmetry relations [57], which are presented below with their deviation from
our results (calculated with the values presented in Table 4 in parenthesis):

gρD∗D =
gρD∗D∗

mD∗

(45%) (97)

gJ/ψD∗D =
gJ/ψDD

mD
(22%). (98)

These relations come from HQET. Since charm is not heavy enough to ensure the validity of HQET, we would expect a
significant violation of the above relations. In fact, considering the error in our calculations (98) is still satisfied whereas
(97) is severely violated.

6.2. Light cone sum rules

In Table 9 we present a compilation of the estimates of the coupling constants gD∗Dπ and gB∗Bπ from distinct calculations.
From this table we see that our result in Ref. [20] is in a fair agreement with the LCSR calculation in Refs. [59,41], but is still
smaller than the experimental value [65]: gD∗Dπ = 17.9± 0.3± 1.9. However, using a better way to extrapolate the QCDSR
results based on ameson loop calculation, the result obtained in Ref. [55] is in an excellent agreementwith the experimental
value. From this table we also see that LQCD results are in a very good agreement with the experimental value.

The basic difference between the QCDSR, described here, and the LCSR is the fact that, instead of considering the three-
point function in Eq. (18), the central object in the LCSR is the correlation function of two meson currents between the
vacuum and one on-shell meson state [29]:

Γ (q, p) =


d4x eiq·x ⟨M1(p)|T {j3(x)j

Ď
2(0)}|0⟩. (99)

The idea is to expand the product of the currents near the light-cone x2 = 0. This expansion is different from the local
OPE expansion used in the QCDSR because it incorporates a summation of an infinite series of local operators [29]. In the
case thatM1 is the pion, the vacuum–pionmatrix elements are expressed via pion light-cone distribution amplitudes (DAs).
Since the pion DAs have a well defined twist, the LCSR can be written in terms of a twist expansion. On the other hand, if
M1 is not light, its DA does not have a well defined twist. If M1 is a heavy meson, like a B meson, the correlation function
can be systematically expanded in the limit of largemb in heavy quark effective theory [66]. However, for hadronic vertices
involving only charmed mesons there is no well defined expansion for the correlation function in the LCSR approach. An
attempt to use LCSR to calculate theD∗D∗ρ coupling constantwasperformed in [67]. The obtained value is quoted in Table 10.
It is closer to SU(4) and to VMD (see below) than the value found in [24]. However, a discussion of some potential sources
of uncertainties, such as the use of a relatively large value of the Borel mass and the possible continuum dominance, is still
missing in [67].

6.3. Vector meson dominance

In the VMDmodel [68] a virtual photonwith four-momentum q is emitted in the process eM → eM , whereM represents
any meson. The photon can be decomposed into a sum of all neutral vector mesons including both isospin 0 and isospin 1.
Then the vector meson couples with the external mesonM . At q2 = 0 one can write:

V=ρ,ω,φ,J/ψ,...

γV gVMM

m2
V

= e, (100)
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Table 10
Summary of estimates for gVD(∗)D(∗) . In the above couplings ρ stands for ρ0 .

Coupling QCDSR VMD Other models

gρDD 3.0 ± 0.2 [18] 2.52 [45]
gρD∗D (GeV−1) 4.3 ± 0.9 [25] 2.82[46] 4.17 ± 1.04 [70]
gρD∗D∗ 4.7 ± 0.2 [24] 2.52 [45] 1.8 ± 0.5 [67]
gωDD −2.9 [69] −2.84 [45]
gJ/ψDD 5.8 ± 0.9 [23] 7.64 [45] 8.0 ± 0.5 [57]
gJ/ψD∗D (GeV−1) 4.0 ± 0.6 [23] 8.0 ± 0.6 [46] 4.05 ± 0.25 [57]
gJ/ψD∗D∗ 6.2 ± 0.9 [21] 7.64 [45] 8.0 ± 0.5 [57]

Fig. 19. Diagrams which contribute to the process DD̄ → J/ψ + π .

Fig. 20. Diagrams which contribute to the process D∗D̄ → J/ψ + π .

where γV is the photon–vector-meson coupling that can be determined from the vector meson partial decay width to e+e−:

ΓV→ee =
αγ 2

V

3m3
V
. (101)

Using the VMD model the couplings gρDD, gρD∗D∗ , gJ/ψDD and gJ/ψD∗D∗ were estimated in Ref. [45]. The couplings gρD∗D
and gJ/ψD∗D were estimated in Ref. [46] by applying the VMD model to the radiative decay D∗

→ Dγ . The obtained values
are presented in the Table 10wherewe also present a summary of the predictions for the coupling constants in the VD(∗)D(∗)
vertex.

In our approach the coupling constant is given by the value of the form factor at Q 2
= −m2

M , where M is the off-shell
vector meson. In the case of J/ψ this corresponds to Q 2

= −9.6 GeV2 whereas for ρ0 the on-shell point is Q 2
= −0.6 GeV2.

In the VMDmodel the vector meson has Q 2
= 0 GeV2. Wewould then expect our results to present a reasonable agreement

with the VMD estimates of the ρ couplings and a significant disagreement with the VMD estimates of the J/ψ couplings.
This pattern is not so evident in Table 10, which shows the approximate expected behavior in some cases but also shows
discrepant behavior in other cases. All the form factors decrease as Q 2 goes from the time-like to the space-like region and
hence all the values shown in the left column of Table 10 will become smaller when calculated at Q 2

= 0 GeV2. This will
improve the agreement with the VMD estimates in the case of the light vector mesons and will increase the disagreement
with the heavy vector mesons. Since QCDSR are more reliable in the latter case, this comparison suggests that the use of
VMD for heavy mesons is dangerous.

7. J/ψ absorption and production

As an application of the form factors obtained above we address now the problem of J/ψ absorption and production in
hadronic matter. With the Lagrangians (48)–(58) we are able to compute the process DD̄ → J/ψ + π , which involves the
diagrams in Fig. 19, the process D∗D̄ → J/ψ + π , corresponding to the diagrams shown in Fig. 20 and also the process
D∗D̄∗ → J/ψ + π , corresponding to the diagrams in Fig. 21.

As extensively discussed in previous works, although the above Lagrangians and amplitudes are quite satisfactory from
the point of view of symmetry requirements, their straightforward application to the computation of cross sections leads
to unacceptably large results. This comes from the fact that the exchanged particles may be far off-shell and therefore they



M.E. Bracco et al. / Progress in Particle and Nuclear Physics 67 (2012) 1019–1052 1049

Fig. 21. Diagrams which contribute to the process D∗D̄∗ → J/ψ + π .

Fig. 22. J/ψ secondary production cross section without form factors.

enter (or leave) a vertex with a very different resolving power. In one extreme case, a virtual J/ψ probing a D meson, may
behave like a parton. Of course, when this happens, the compact J/ψ almost misses the large D and as a consequence the
cross section of the whole process drops significantly. This physics of spatial extension and resolving power is contained
in the form factors. It has been realized by many authors that calculations with and without form factors lead to results
differing by up to two orders of magnitude! Therefore we simply cannot ignore the form factors. We must include them in
order to obtain reliable results!

Looking at the diagrams in Figs. 19–21wenotice thatwe need the following form factors (and the corresponding coupling
constants): g(D

∗)

πDD∗(t), g(D)J/ψDD(t), g
(D∗)

J/ψDD∗(t), g(D)J/ψDD∗(t), g(D
∗)

J/ψD∗D∗(t) and g(D
∗)

πD∗D∗(t), where t is the usual momentum transfer
squared and in the superscript in parenthesis we denote the off-shell particle. This is an important distinction, because the
form factors in the same vertex, as we have seen, are very different when different particles are off-shell.

The cross sections for secondary J/ψ production is related to the annihilation through detailed balance. In Fig. 22 we
show the J/ψ secondary production cross section as a function of

√
s, without form factors. In all figures, the channels

DD̄ → J/ψ + π,DD̄∗ → J/ψ + π and D∗D̄∗ → J/ψ + π are represented by solid, dashed and dotted lines respectively. In
Fig. 23 we show the corresponding inverse reactions. As it can be seen, the cross sections have the same order of magnitude
in both directions. Figs. 24 and 25 are the analogues of 22 and 23 when we include the form factors in the calculations. Of
course, only these last two figures correspond to realistic numbers. The comparison of the two sets of figures is interesting
to estimate the effect of form factors. In previous studies doing the same kind of comparison, as for example in [46], the
introduction of form factors reduced the cross sections by factors ranging between 20 and 50 depending on the channel. In
that work the form factor was the same for all vertices and the cut-off, not known, was estimated to be between 1 and 2
GeV. Our study is much more detailed and not only each vertex has its own form factor, but, depending on which particle is
off-shell the form factor is different. The final effect of all these peculiarities is the reduction of the cross sections by a factor
around 7. Although significant, this reduction is smaller than previously expected.

Fig. 24 contains our main results. The plotted cross sections can be compared with the results of [71] and, more directly,
with [72]. In Fig. 2 of [71], although the variables in the plot are different, we can observe the same trend and relative
importance of the three channels. In that work, the results were obtained with the quark model of [73]. Our curves share
some features with the results of [72], such as, for example, the dominance of the DD∗ channel and the falling trend of the
DD∗ and D∗D∗ channels. The behavior of the DD channel is quite different. In the energy range of

√
s > 4.5 GeV our cross

sections are smaller by a factor of 2 (DD∗) or 5 (D∗D∗ and DD). These discrepancies are large but they are expected since
in [72] all channels include the final state J/ψ + ρ, which we did not include. In the model used by the Giessen group [72]
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Fig. 23. J/ψ absorption cross section obtained through detailed balance without form factors.

Fig. 24. J/ψ secondary production cross section with form factors.

Fig. 25. J/ψ absorption cross section obtained through detailed balance with form factors.

the cross sections for D + D̄ → J/ψ + π and D + D̄ → J/ψ + ρ are similar and the same conclusion holds for the other
initial state open charm mesons. If this would remain true in the effective Lagrangian approach, then our results including
both final states would come closer to those of [72], giving thus a more theoretical support to the model considered there.
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The exercise presented in this section was meant to illustrate the use of the charm form factors discussed in this
review. The ultimate computation of charmonium interactions in a hot and dense medium should include other effects,
not mentioned here. For recent works on the subject see, for example, [74,75].

8. Summary

We have studied the form factors of vertices with charm mesons. They are relevant to understand data from heavy ion
collisions at RHIC and LHC, from B decays at BELLE and BABAR and, in the future, charm production at PANDA. We have
described how to calculate them with QCDSR and presented the results of our calculations. The comparison of the obtained
coupling constants with those obtained with other methods shows that all the numbers have the same order of magnitude
and the discrepancies between them go from a few percent to a factor two. In every approach there are improvements to be
made andmore accurate results are expected in the future. There are still verticeswhich have not been studied, such as those
with ηc . With the already available charm form factors it is possible to address a number of problems of phenomenological
interest. One of them, namely, the production and absorption of J/ψ in nuclear matter was discussed here and the huge
effect of form factors was shown in detail. Moreover some of these form factors have been used in [14] to study resonances
formed through meson exchange interactions.

Most of the calculations follow standard procedures in QCDSR but the extrapolation techniques to compute the coupling
constant were developed by our group. We calculated two form factors for two off-shell mesons in the considered vertex.
The simultaneous extrapolation of these form factors allowed the determination of the coupling constant. While this
requirement proved to be crucial for finding the coupling, the inclusion of a third form factor, obtained by putting the
third meson off the mass shell, with the subsequent triple extrapolation to obtain the coupling, did not bring any significant
improvement in the results.

The extrapolation method used in our works has a systematic error which comes from the choice of the analytic form of
the extrapolating functions. We considered only monopole, exponential and Gaussian parametrizations. However there is
no physical reason for choosing these forms. Using the D∗Dπ vertex for an exploratory study, we calculated the form factor
computing the relevant hadronic loops. In this way there is no need to guess a particular form for the form factor. Since
the hadronic loop calculation contains non-perturbative physics it should be reliable in low Q 2 domain. The introduction of
hadronic loops improved a lot our quantitative analysis of the D∗Dπ vertex. However we think that it would be premature
to include it as an obligatory complement to the QCDSR formalism. Some loop diagrams were neglected because they were
assumed to be less important but this must still be proven. Moreover the effective Lagrangian theories for other mesons and
for baryons are less well known.

The disagreement between some of our results and the SU(4) predictions has still to be clarified, but in a first analysis
could be traced to the strongly broken SU(4) symmetry due to the largely different meson masses involved in the vertex.
The same is true for the estimates made with the help of light cone sum rules, heavy quark symmetry and vector meson
dominance. From the perspective of QCDSR there is still room for improvements, as, for example, the inclusion of αs
corrections and higher order condensates. An important extension of our program will be to systematically study vertices
with charm and strange mesons. Some of them were already considered in Refs. [76–80].

Beyond individual technical improvements, we believe that the QCDSR community should make a joint effort dedicated
to systematically compare results andmethods and arrive at a consensus on the present status of the calculation of coupling
constants. With this review we wish to take a step in this direction.
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