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Abstract. In this article, we study the scalar one-dimensional nonlocal
quasilinear problem of the form

ut = a(∥ux∥2)uxx + νf(u),

with Dirichlet boundary conditions on the interval [0, π], where a : R+ →
[m,M ] ⊂ (0,+∞) and f : R → R are continuous functions that satisfy
suitable additional conditions. We give a complete characterization of
the bifurcations and hyperbolicity for the corresponding equilibria. With
respect to bifurcation, the existing result requires that the function a(·)
be non-decreasing and shows that bifurcations are pitchfork supercritical
bifurcations from zero. We extend these results to the case of a general
smooth nonlocal diffusion function a(·) and show that bifurcations may
be pitchfork or saddle-node, both subcritical or supercritical. Concern-
ing hyperbolicity, we specifying necessary and sufficient conditions for
its occurrence. We also explore some examples to exhibit the variety
of possibilities, depending on the choice of the function a(·), that may
occur as the parameter ν varies.
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1. Introduction

This paper is dedicated to the study of the stationary solutions of the
following nonlocal quasilinear parabolic problem

ut = a(∥ux∥2)uxx + νf(u), x ∈ (0, π), t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(·, 0) = u0(·) ∈ H1
0 (0, π),

(1.1)

where ν > 0 is a parameter, a : R+ → [m,M ] ⊂ (0,+∞) is a continuously
differentiable function, f ∈ C2(R), with

f(0) = 0, f ′(0) = 1, f ′′(u)u < 0, ∀u ̸= 0, and (1.2)

lim sup
|u|→+∞

f(u)

u
< 0.

Here, ∥ · ∥ denotes the usual norm in L2(0, π).
We analyze the bifurcation and hyperbolicity of the stationary solutions

of (1.1). This analysis has been carried out in [8, 3] for the particular case
when a is increasing and f is odd (see also [2] for the study of the bifurcation
when f is not necessarily odd). These two conditions considerably simplify
the structure of the bifurcations. Indeed, in that case, bifurcations only
occur from zero and they are all supercritical pitchfork bifurcations, just
like the local case a =const. Here, we prove hyperbolicity and identify the
bifurcations in the general case when a is not necessarily increasing and
f is not necessarily odd. We will see that, in this general case, besides
the supercritical pitchfork bifurcations, subcritical pitchfork bifurcations and
saddle-node (subcritical and supercritical) bifurcations may occur.

The proof of hyperbolicity presented here is rather simple compared with
the one in [3]. Nonetheless, an important part of the analysis is dependent on
the analysis done in [3], where it was established a way to view the quasilinear
nonlocal problem (1.1) as a semilinear nonlocal problem. We briefly recall
this analysis to take advantage of it.

Consider the auxiliary semilinear nonlocal parabolic problem
wτ = wxx +

νf(w)
a(∥wx∥2) , x ∈ (0, π), τ > 0,

w(0, τ) = w(π, τ) = 0, τ ≥ 0,

w(·, 0) = u0(·) ∈ H1
0 (0, π).

(1.3)

Proceeding as in [3, 8], it can be shown that (1.3) is locally well-posed and the
solutions are jointly continuous with respect to time and initial conditions.
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Given a solution w(x, τ) of (1.3), changing the scale of time to

t =

∫ τ

0
a(∥wx(·, θ)∥2)−1dθ,

we have that u(x, t) = w(x, τ) is the unique solution of (1.1). As a conse-
quence, (1.1) is globally well-posed. If we define

S(t) : H1
0 (0, π)→ H1

0 (0, π)

by
S(t)u0 = u(t, u0), t ≥ 0,

where u(·, u0) : R+ → H1
0 (0, π) is the solution of (1.1), then {S(t) : t ≥ 0} is

a semigroup that has a global attractor A. We say that a continuous function
v : R 7→ H1

0 (0, π) is a global solution for the semigroup {S(t) : t ≥ 0} if it
satisfies v(t + s) = S(t)v(s) for all t ≥ 0 and for all s ∈ R. The global
attractor can be characterized (see [7]) in terms of the global solutions in the
following way

A={v(0) : v : R→H1
0 (0, π) is a global bounded solution for {S(t) : t ≥ 0}}.

In addition, the semigroup {S(t) : t ≥ 0} is gradient with Lyapunov function
given by

V (u) =
1

2

∫ ∥ux∥2

0
a(s)ds− ν

∫ π

0

∫ u(x)

0
f(s)ds dx. (1.4)

Denote by E the set of equilibria of (1.1), that is, the set of solutions of{
a(∥φx∥2)φxx + νf(φ) = 0, x ∈ (0, π),

φ(0) = φ(π) = 0.
(1.5)

Then (see [7]), for each u0 ∈ H1
0 (0, π), S(t)u0

t→+∞−→ E and

A =W u(E)

=
{
u ∈ H1

0 (0, π) : there exists a global solution ξ : R→ H1
0 (0, π)

satisfying ξ(0) = u and inf
φ∈E
∥ξ(t)− φ∥H1

0 (0,π)
t→−∞−→ 0

}
.

In particular, if E is finite

A =
⋃
ϕ∈E

W u(ϕ). (1.6)

Additionally, for any u0 ∈ H1
0 (0, π) there is a ϕ ∈ E such that

S(t)u0
t→+∞−→ ϕ
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and, for any bounded global solution v : R→ H1
0 (0, π) there are ϕ−, ϕ+ ∈ E

such that
ϕ−

t→−∞←− ξ(t)
t→+∞−→ ϕ+.

Let us recall the definitions of local stable and unstable manifolds and the
notion of hyperbolicity (see [3]) which applies to (1.1).

Definition 1.1. Given a neighborhood

Vδ(ϕ) = {u ∈ H1
0 (0, π) : ∥u− ϕ∥H1

0 (0,π)
< δ}

of ϕ, the local stable and unstable sets of ϕ associated to Vδ(ϕ), are given by

W s,δ
loc (ϕ) ={u ∈ H

1
0 (0, π) : S(t)u ∈ Vδ for all t ≥ 0, and S(t)u t→+∞−→ ϕ},

W u,δ
loc (ϕ) ={u ∈ H

1
0 (0, π) : there exists a global solution v of {S(t) : t ≥ 0}

with v(0) = u, v(t) ∈ Vδ for all t ≤ 0 and v(t) t→−∞−→ ϕ}.

When ϕ is a maximal invariant set in a neighborhood of itself and

W u,δ
loc (ϕ) = {ϕ},

it is asymptotically stable; otherwise it is unstable. In this case, all solutions
that remain in Vδ(ϕ) for all t ≥ 0 (t ≤ 0) must converge forwards (backwards)
to ϕ. We refer to this property as topological hyperbolicity (see [1]).

Definition 1.2 (Strict Hyperbolicity, [3]). An equilibrium ϕ of (1.1) is said
to be hyperbolic if there are closed linear subspaces Xu and Xs of H1

0 (0, π)
with H1

0 (0, π) = Xu ⊕Xs such that
• {ϕ} is topologically hyperbolic.
• The local stable and unstable sets are given as graphs of Lipschitz

maps θu : Xu → Xs and θs : Xs → Xu, with Lipschitz constants Ls,
Lu in (0, 1) and such that θu(0) = θs(0) = 0, and there exists δ0 > 0
such that, given 0 < δ < δ0, there are 0 < δ′′ < δ′ < δ such that

{ϕ+ (xu, θu(xu)) : xu ∈ Xu, ∥xu∥H1
0
< δ′′}

⊂W u,δ′

loc (ϕ) ⊂ {ϕ+ (xu, θu(xu)) : xu ∈ Xu, ∥xu∥H1
0
< δ},

{ϕ+ (θs(xs), xs) : xs ∈ Xs, ∥xs∥H1
0
< δ′′}

⊂W s,δ′

loc (ϕ) ⊂ {ϕ+ (θs(xs), xs) : xs ∈ Xs, ∥xs∥H1
0
< δ}.

Proceeding as in [3], we will show strict hyperbolicity of equilibria for (1.1)
in the following way. First, we note that the equilibria of (1.1) and (1.3) are
the same. Then we consider the linearization around an equilibrium for the
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semilinear problem (1.3) and prove its hyperbolicity (showing that zero is not
in the spectrum of the linearized self-adjoint nonlocal operator). Then we
use the solution dependent change of time scale to conclude the hyperbolicity
of equilibria for (1.1).

In [2, 8, 3], the authors proved the following:

Theorem 1.3. Assume that the function a(·) is increasing and that f is odd.
If

a(0)N2 < ν ≤ a(0)(N + 1)2,

then there are 2N + 1 equilibria of the equation (1.1);

{0} ∪ {ϕ±j : j = 1, . . . , N},

where ϕ+j and ϕ−j have j − 1 zeros in (0, π) and ϕ−j (x) = −ϕ+j (x), for all
x ∈ [0, π], and ϕ+j (x) > 0, for all x ∈ (0, πj ). The sequence of bifurcation
given above satisfies:

Stability: If ν ≤ a(0), 0 is the only equilibrium of (1.1) and it is stable.
If ν > a(0), the positive equilibrium ϕ+1 and the negative equilibrium ϕ−1 are
stable and any other equilibrium is unstable.

Hyperbolicity: For all ν > 0, the equilibria are hyperbolic with the exception
of 0 in the cases ν = a(0)N2, for N ∈ N.

Our main result in this paper is inspired by [4] and aims to show that the
nonlocal diffusion brings many new interesting features to the bifurcation
problem.

Consider the one-dimensional scalar local semilinear problem
ut = uxx + λf(u), x ∈ (0, π), t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,

u(·, 0) = u0(·) ∈ H1
0 (0, π),

(1.7)

where λ > 0 is a parameter, f ∈ C2(R) satisfying (1.2).
Note that any equilibrium ψ of (1.1) is also an equilibrium of (1.7) with

λ =
ν

a(∥ψx∥2)
.

To proceed, we need to establish and recall a few properties of the equilibria
of (1.7) and define an auxiliary function which precisely relates the equilibria
of (1.1) and the equilibria of (1.7).

It is well-known (see [4]) that, for each

N2 < λ ⩽ (N + 1)2, N ∈ N,
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problem (1.7) has exactly 2N + 1 stationary solutions,

{0} ∪ {ϕ+j,λ, ϕ
−
j,λ : j = 1, . . . , N},

where ϕ±j,λ has j − 1 zeros in (0, π) and

±(ϕ±j,λ)
′(0) > 0, 1 ⩽ j ⩽ N.

The following result is proved in Section 2.

Theorem 1.4. For j ∈ N and λ ∈ (j2,∞), let ϕ±j,λ be the two equilibria of
(1.7). The functions

(j2,+∞) ∋ λ 7→ ∥(ϕ±j,λ)x∥
2 ∈ (0,+∞)

are C1, strictly increasing and

0
λ→j2←− ∥(ϕ±j,λ)x∥

2 λ→+∞−→ +∞.

Definition 1.5. For each j ∈ N and r ⩾ 0, let λ±j,r ∈ [j2,+∞) be the unique
λ such that ∥(ϕ±j,λ)x∥

2 = r. Let c±j : [0,+∞)→ (0, 1
j2
] be the function defined

by c±j (r) =
1
λ±j,r

, for each r ⩾ 0.

The functions c±j (·) are strictly decreasing and continuously differentiable
with

lim
r→0

c±j (r) =
1

j2
.

With this functions, we rewrite{
(ϕ±j,λ)xx + λf(ϕ±j,λ) = 0,

ϕ±j,λ(0) = ϕ±j,λ(π) = 0,
(1.8)

as the following ‘nonlocal’ problem{
νc±j (∥(ϕ

±
j,λ)x∥

2)(ϕ±j,λ)xx + νf(ϕ±j,λ) = 0,

ϕ±j,λ(0) = ϕ±j,λ(π) = 0.
(1.9)

Theorem 1.6. For each j ∈ N, consider c+j and c−j as the functions defined
above. For ν > 0 and r > 0, (1.1) has an equilibrium ϕ, with j−1 zeros in the
interval (0, π), such that ϕx(0) > 0 (resp. ϕx(0) < 0) and ∥ϕx∥2 = r if and
only if νc+j (r) = a(r) (resp. νc−j (r) = a(r)). Furthermore, the equilibrium is
hyperbolic if and only if, a′(r) ̸= ν(c+j )

′(r) (resp. a′(r) ̸= ν(c−j )
′(r)).
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Remark 1.7. Note that, Theorem 1.6 characterizes all equilibria of (1.1).
Also, it is only required for the function a : R+ → [m,M ] ⊂ (0,+∞) to be
continuously differentiable, that is, a(·) is not necessarily increasing.

The study of the existence of equilibria requires only the continuity of
a(·). The differentiability of a(·) is used to analyze the behavior near the
equilibria.

Assuming only that f and a are continuous, a(s) ≥ m, for all s ∈ R+ and
that

lim sup
|s|→+∞

f(s)

s
= β < +∞,

it has been proved in [2] that there exists a solution of (1.1) for each u0(·) ∈
H1

0 (0, π), defined for all t ≥ 0, and that (1.1) defines a multivalued semiflow.
In addition, if a is either non-decreasing or bounded above and f satisfies
some growth and dissipativity conditions, the authors show that the multi-
valued semiflow has a global attractor which is characterized as the unstable
set of the equilibria. Under some additional assumptions, it is also proved
in [2] that the set of equilibria has at least 2N + 1 points if λ > a(0)N2 and
exactly 2N + 1 if a is non-decreasing and

a(0)(N + 1)2 ⩾ λ > a(0)N2.

In this paper, our focus is on the bifurcation and hyperbolicity of equilibria
assuming that a and f are smooth and that the function a(·) is not necessarily
increasing.

Observe that the diffusion coefficient a(∥ux∥2) in (1.1) depends on the L2

norm of the gradient of the solution. This means that, roughly speaking,
if the function a(·) is increasing, then states with large gradients will have
large diffusion coefficient and in some sense, the diffusion mechanism is more
efficient in trying to smooth out the solution and definitely in stabilizing
the system. Therefore, the dynamics, at least in terms of stability of positive
equilibria, is expected to be similar to the classical case in which the diffusion
does not depend on the state, see [3]. On the other hand, if the function a(·)
is decreasing for some range of the parameter, it is possible that the system
favors states with large gradients and it may destabilize the system. This
is what actually may occur and, as we will see, we may have situations in
which some non-sign-changing equilibria may become unstable, see Theorem
4.3 below.

This paper is organized as follows. In Section 2, we study fine properties of
the solutions of the Chafee-Infante model (1.7). In Section 3, we explain how
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solutions of (1.1) can be retrieved from the solutions of (1.7). In Section 4, we
give a full characterization of the bifurcations as a function of the parameter
λ and of the function a. We also characterize the exact points where we may
lose hyperbolicity of equilibria. Finally, in Section 5, we show some examples
to exhibit the variety of behaviors one may identify for different functions a.

2. Properties of equilibria for the Chafee-Infante model

Problem (1.7) is known as the Chafee-Infante problem and is a very well-
studied nonlinear dynamical system. In fact, we can say that it is the best
understood example in the literature referring to the characterization of a
non-trivial attractor of an infinite dimensional problem. Chafee and Infante
started the description of the attractor of (1.7) in [5, 4] by showing that the
problem admits only a finite number of equilibria which bifurcate from zero
as the parameter λ > 0 increases. Also, these equilibria are all hyperbolic,
with the exception of the zero equilibrium for λ = N2, for N ∈ N.

Remark 2.1. The dissipativity condition (1.2) can be relaxed (with very
little changes) to include the possibility that inequality is not strict. We
chose to keep the analysis as simple as possible.

Theorem 2.2. For each λ ∈ (N2,+∞), N ∈ N, problem (1.7) admits exactly
two equilibria ϕ+N,λ and ϕ−N,λ that vanish exactly N − 1 times in the interval
(0, π) and such that

(ϕ+N,λ)
′(0) > 0 and (ϕ−N,λ)

′(0) < 0.

Hence, if λ ∈ (N2, (N + 1)2], then (1.7) admits exactly the following 2N + 1
equilibria:

{0} ∪ {ϕ+j,λ, ϕ
−
j,λ : j = 1, . . . , N}.

For each 1 ≤ j ≤ N , the linear operator

Lλ,±j : H2(0, π) ∩H1
0 (0, π) ⊂ L2(0, π)→ L2(0, π)

defined by

Lλ,±j u = uxx + λf ′(ϕ±j,λ)u, u ∈ H2(0, π) ∩H1
0 (0, π),

is a self-adjoint unbounded operator with compact resolvent. All eigenvalues
of Lλ,±j are simple, zero is not an eigenvalue and exactly j − 1 eigenvalues
are positive, j = 1, . . . , N .
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If j is a positive integer, many properties of the equilibrium ϕ±j,λ of (1.7)
are proved using the properties of the time maps, which we briefly recall for
later use.

Since, for λ ∈ (j2,+∞), ϕ±j,λ are the solutions of (1.7) with j − 1 zeros in
the interval (0, π) and

i(ϕij,λ)
′(0) > 0, i ∈ {+,−},

they are solutions of the initial value problem
uxx + λf(u) = 0, x > 0,

u(0) = 0, u′(0) = v0,
(2.1)

where v0 > 0 is suitably chosen in such a way that u(π) = 0. For a given v0,
let

λE =
v20
2
∈ [0,min{F (z+), F (z−)}],

where
F (u) =

∫ u

0
f(s)ds,

z+ (resp. z−) is the positive (resp. negative) zero of f , and note that a
solution of (2.1) must satisfy

u′(x)2

2
+ λF (u) = λE.

Let U+(E) > 0 and U−(E) < 0 be defined as the unique numbers in [0, z+]
and [z−, 0], respectively, with F (U±(E)) = E. Then, if

τ iλ(E) = i

(
2

λ

) 1
2
∫ U i(E)

0
(E − F (u))−

1
2du, i ∈ {+,−}, (2.2)

we have, for j odd,

T +
λ (E) =

j + 1

2
τ+λ (E) +

j − 1

2
τ−λ (E),

T −
λ (E) =

j + 1

2
τ−λ (E) +

j − 1

2
τ+λ (E)

or, for j even,

T ±
λ (E) =

j

2
τ+λ (E) +

j

2
τ−λ (E).

The choices of E that gives us the solutions ϕ+j,λ are T +
λ (E+

j (λ)) = π.
For completeness we give a simple proof that the equilibria of the Chafee-

Infante equation (1.7) are all hyperbolic (see [9, Section 24F]) with the only
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exception being the equilibrium ϕ0 ≡ 0 and exactly when λ = N2, N a
positive integer. This shows, in particular, that bifurcations only occur from
the ϕ0.

We prove only the hyperbolicity of ϕ+j,λ, the other case is similar. We
consider the family u(·, E) of solutions of the problem

u′′(x) + λf(u(x)) = 0,

u(0, E) = 0, u′(0, E) =
√
2λE and u(τ+λ (E)) = 0.

(2.3)

Consequently, η = (ϕ+j,λ)x and ψ = ∂u
∂E (x,E)

∣∣
E=E+

j (λ)
are solutions of

v′′(x) + λf ′(ϕ+j,λ)v(x) = 0 (2.4)

with

η(0) ̸= 0, η′(0) = 0 ψ(0) = 0, ψ′(0) =

√
λ√

2E+
j (λ)

̸= 0.

This proves that η and ψ are linearly independent and any solution of (2.4)
must be of the form

ω = c1η + c2ψ, for c1, c2 ∈ R.
Let us show that if

ω(0) = ω(T +
λ (E+

j (λ))) = 0,

then, necessarily, w ≡ 0. In fact, ψ(0) = 0, η(0) ̸= 0 and c1η(0)+ c2ψ(0) = 0
implies c1 = 0. Now, since u(T +

λ (E), E) = 0 for all E, we have that

0 =
∂u

∂x
(T +
λ (E), E)(T +

λ (E))′(E) +
∂u

∂E
(T +
λ (E), E).

It is clear that
∂u

∂x
(T +
λ (E), E) ̸= 0

and since that (T +
λ (E))′(E) ̸= 0 (see [4]), we have that

ψ(T +
λ (E+

j (λ))) =
∂u

∂E
(T +
λ (E+

j (λ), E
+
j (λ)) ̸= 0.

Hence, we also have that c2 = 0 and the only solution ω of (2.4) which
satisfies ω(0) = ω(π) = 0 is ω ≡ 0. This proves that 0 is not in the spectrum
of the linearization around ϕ.

Now, we study the properties of the functions

(j2,+∞) ∋ λ 7→ ϕ±j,λ ∈ H
1
0 (0, π), j = 1, 2, 3 · · · ,

proving Theorem 1.4.
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Proof of Theorem 1.4. Consider i ∈ {+,−}. To show that

(j2,+∞) ∋ λ 7→ ϕij,λ ∈ H1
0 (0, π)

is continuously differentiable at a point λ0 ∈ (j2,+∞), we recall that, for
each λ ∈ (j2,+∞), we already know that ϕij,λ is hyperbolic. Hence, for λ
near λ0, ϕij,λ = ϕij,λ0 + v, where v is the only fixed point of the map

T ij,λv := −ϕij,λ0 − (Lλ0,ij )−1
(
λf(v + ϕij,λ0)− λ0f

′(ϕij,λ0)v − λ0f
′(ϕij,λ0)ϕ

i
j,λ0

)
in a small neighborhood of zero in H1

0 (0, π). Now, since

(j2,+∞) ∋ λ 7→ T ij,λ ∈ C(H1
0 (0, π))

is continuously differentiable, we have that

(j2,+∞) ∋ λ 7→ ϕij,λ ∈ H1
0 (0, π)

is continuously differentiable and the result follows.
The proof that

(j2,+∞) ∋ λ 7→ ∥(ϕij,λ)x∥2 ∈ (0,+∞)

is strictly increasing and that ∥(ϕij,λ)x∥2
λ→+∞−→ +∞ follows from the results

in [2, Lemma 5] and from the analysis done next.
It has been shown in [4] that the time maps τ±λ (·), defined in (2.2), are

strictly increasing functions. Clearly, for a fixed E, the functions λ 7→ τ±λ (E)

are strictly decreasing. Since T iλ(Eij(λ)) = π, we must have that iU i(Eij(λ))
is strictly increasing, i ∈ {+,−}.

It follows that

g(λ) :=

∫ τ+λ (E±
j (λ))

0
((ϕ±j,λ)x)

2dx =
√
2λ

∫ U+(E±
j (λ))

0

√
E±
j (λ)− F (v)dv

and ∫ U+(E±
j (λ))

0

√
E±
j (λ)− F (v)dv

is a strictly increasing function of λ. Consequently, g(λ) λ→+∞−→ +∞ and we
must have that ∥(ϕij,λ)x∥2

λ→+∞−→ +∞, completing the proof. □

Let us consider an alternative simple direct proof of this theorem with-
out using the differentiability results for fixed points. First, we show that
(j2,+∞) ∋ λ 7→ ϕij,λ ∈ H1

0 (0, π) is continuous in H1
0 (0, π) (or C1(0, π)). For

simplicity of notation, we will write ϕλ for ϕij,λ.
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Let us show that if λn → λ0 ∈ (j2,+∞), we must have ∥ϕλn−ϕλ0∥H1
0 (0,π)

→
0. Since

(ϕλ)xx(r) + λf(ϕλ) = 0 (2.5)
and using the dissipativity condition in (1.2), we have that there is a constant
M > 0 such that ∫ π

0
((ϕλ)x)

2dx = λ

∫ π

0
f(ϕλ)ϕλdx ≤ λM.

Therefore, the function (j2,+∞) ∋ λ 7→ ϕλ ∈ H1
0 (0, π) is bounded in

bounded subsets of (j2,+∞) and, since H1
0 (0, π) ↪→ C([0, π]), the function

(j2,+∞) ∋ λ 7→ ϕλ ∈ C([0, π]) is bounded in bounded subsets of (j2,+∞).
From the continuity of f , the same is true for (j2,+∞) ∋ λ 7→ f ◦ ϕλ ∈
C([0, π]) and, using (2.5), for (j2,+∞) ∋ λ 7→ (ϕλ)xx ∈ C([0, π]).

It follows from the compact embedding ofH2(0, π) intoH1
0 (0, π) that there

is a subsequence {λnk
}k∈N of {λn}n∈N such that ϕλnk

k→+∞−→ w in H1
0 (0, π).

Now, since ∫ π

0
(ϕλnk

)xvxdx = λn

∫ π

0
f(ϕλnk

)vdx,

for all v ∈ H1
0 (0, π), passing to the limit as k → +∞, we have that∫ π

0
wxvxdx = λ0

∫ π

0
f(w)vdx,

and w is a weak solution of (2.5). Hence, since w also converges in the
C1(0, π) norm, w ≡ 0 or w = ϕλ0 . To see that w ̸≡ 0, we recall that

(j2,+∞) ∋ λ 7→
∫ π

0
((ϕλ)x)

2

is a strictly increasing function of λ. This shows the continuity of the function
(j2,+∞) ∋ λ 7→ ϕλ ∈ H1

0 (0, π).
Let us now prove that

(j2,+∞) ∋ λ 7→ ϕλ ∈ H1
0 (0, π) or C1

0 (0, π)

is continuously differentiable. Fix λ ∈ (j2,+∞) and consider δ > 0 such that
λ+ h ∈ (j2,+∞), for all h ∈ (−δ, δ). Denote w(h) = ϕλ+h−ϕλ

h .
Now,

w(h)xx + f(ϕλ+h) + λ
(f(ϕλ+h)− f(ϕλ)

h

)
= w(h)xx + f(ϕλ+h) + λf ′(θϕλ+h + (1− θ)ϕλ)w(h) = 0
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and
∥w(h)x∥2 ≤ C∥w(h)∥2 + C.

Proceeding as before, we show that {w(h) : h ∈ (0, 1]} is uniformly bounded
in H1

0 (0, π) and so it is in L2(0, π) and C(0, π).
Hence, using that f ∈ C2(R), h ∈ (0, δ], we must have that

sup
h∈(0,δ]

sup
y∈[0,π]

|w(h)xx(y)| < +∞.

Therefore, the sequence {w(h) : h ∈ (0, 1]} is uniformly bounded in H2(0, π).
Hence, we may assume that w(h)→ w̄ in H1

0 (0, π) (so as C1[0, π]) as h→ 0.
Since, for all v ∈ H1

0 (0, π), h ∈ (0, δ), we have∫ π

0
w(h)xvx =

∫ π

0
f(ϕλ+h)v + λ

∫ π

0
λf ′(θϕλ+h + (1− θ)ϕλ)w(h)v

we find, using the continuity of the function

(j2,+∞) ∋ λ 7→ ϕλ ∈ H1
0 (0, π),

that
−⟨w̄x, vx⟩+ λ

〈
f ′(ϕλ)w̄, v

〉
+ ⟨f(ϕλ), v⟩ = 0, (2.6)

for all v ∈ H1
0 (0, π). That is, w̄ is the only solution of{

uxx + λf ′(ϕλ)u+ f(ϕλ) = 0

u(0) = u(π) = 0.

From this, we have the differentiability of the function

(j2,+∞) ∋ λ 7→ ϕλ ∈ H1
0 (0, π).

Remark 2.3. The same reasoning can be used to show that (j2,+∞) ∋ λ 7→
ϕλ ∈ H1

0 (0, π) is twice continuously differentiable.

Having proved Theorem 1.4, we obtain that the functions c±j : [0,+∞)→
(0, 1

j2
] given in Definition 1.5 are continuously differentiable, strictly decreas-

ing functions with

lim
r→0

c±j (r) =
1

j2
.

For simplicity of notation, we will write c(·) to denote one of the two
functions c±j (·) and ϕλ to denote ϕ±j,λ. Rewriting (1.9) as[ϕλ]xx +

1

cj(∥[ϕλ]x∥2)
f(ϕλ) = 0,

ϕλ(0) = ϕλ(π) = 0.

(2.7)
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Observe that (see Definition 1.5), for r > 0,
• ∥[ϕλr ]x∥2 = r;
• [ϕλr ]xx +

f(ϕλr )
c(r) = 0.

Making ψ(r) = ϕλr , differentiating with respect to r, and representing
dψ(r)
dr = ψ̇(r), we find

ψ̇xx(r) +
f ′(ψ(r))ψ̇(r)

c(∥(ψ(r))x∥2)
− f(ψ(r))c′(∥(ψ(r))x∥2)

[c(∥(ψ(r))x∥2)]2
d

dr
∥(ψ(r))x∥2 = 0.

Now, since
d

dr
∥(ψ(r))x∥2 = 2

〈
(ψ(r))x, (ψ̇(r))x

〉
= −2

〈
(ψ(r))xx, ψ̇(r)

〉
=

2

c(∥(ψ(r))x∥2)

〈
f(ψ(r)), ψ̇(r)

〉
we may write

ψ̇xx(r) +
f ′(ψ(r))ψ̇(r)

c(∥(ψ(r))x∥2)
− 2c′(∥(ψ(r))x∥2)
c(∥(ψ(r))x∥2)3

f(ψ(r))
〈
f(ψ(r)), ψ̇(r)

〉
= 0.

Now, if Lc : D(Lc) ⊂ L2(0, π)→ L2(0, π) is given by

D(Lc) = H2(0, π) ∩H1
0 (0, π)

and

Lcv = v′′ +
f ′(ψ(r))

c(∥(ψ(r))x∥2)
v − 2c′(∥(ψ(r))x∥2)

c(∥(ψ(r))x∥2)3
f(ψ(r))

∫ π

0
f(ψ(r))v,

v ∈ D(Lc), we have that Lcψ̇(r) = 0 and, since ψ̇(r) ∈ H2(0, π) ∩H1
0 (0, π),

it follows that 0 ∈ σ(Lc).

3. Identifying the equilibria of the nonlocal problem

Let us study the sequence of bifurcations for the nonlocal problem (1.1).

Theorem 3.1. For each positive integer j, consider c+j (·) and c−j (·), the two
maps defined above. For ν > 0 and r > 0, (1.1) has an equilibrium ψ, with
j − 1 zeros in the interval (0, π) such that (ψ)x(0) > 0 (resp. (ψ)x(0) < 0)
and ∥ψx∥2 = r if and only if νc+j (r) = a(r) (resp. νc−j (r) = a(r)).

Proof. If ψ is an equilibrium of (1.1), with j − 1 zeros in the interval (0, π)
such that ψx(0) > 0 and ∥ψx∥2 = r, then

ψ = ϕ+
j,λ+j,r

and νc+j (r) = a(r).
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On the other hand, since ϕ+
j,λ+j,r

is a solution of (1.9) with ∥(ϕ+
j,λ+j,r

)x∥2 = r

and since νc+j (r) = a(r), ψ = ϕ+
j,λ+j,r

is an equilibrium of (1.1). A similar

argument is used for c−j . □

Remark 3.2. For each positive integer k, if ν > k2a(0) there are at least 2k+
1 equilibria of the non-local problem (1.1). That is an immediate consequence
of the fact that the functions

c±j : [0,+∞)→ (0,
1

j2
]

are continuous,

νc±j (0) =
ν

j2
> a(0), c±j (r)

r→+∞−→ 0,

1 ≤ j ≤ k, and a : [0,+∞) → [m,M ] is continuous. In particular, if a is
non-decreasing we have exactly 2k + 1 equilibria of (1.1).

4. The hyperbolicity and Morse Index of equilibria

Consider the auxiliary initial boundary value problem (1.3) related to (1.1)
by a solution dependent change of the time scale. As we have mentioned
before, both problems have exactly the same equilibria and, as in [3], the
spectral analysis of the self-adjoint operator associated to the linearization
of (1.3) around an equilibrium ψ will determine its stability and hyperbolicity
properties.

The linearization of (1.3) around an equilibrium ψ is given by the equation

vt = Lv,

where D(L) = H2(0, π) ∩H1
0 (0, π) and

Lv = v′′ +
νf ′(ψ)

a(∥ψx∥2)
v − 2ν2a′(∥ψx∥2)

a(∥ψx∥2)3
f(ψ)

∫ π

0
f(ψ)v, v ∈ D(L).

Given an equilibrium ψ ̸= 0 of (1.3), let r = ∥ψx∥2 and let k be the positive
integer such that ψ vanishes k − 1 times in the interval (0, π). If ψx(0) > 0
and we consider

λ+k,r = (c+k (r))
−1,

then ψ = ϕ+
k,λ+k,r

. Similarly, if ψx(0) < 0 and we consider

λ−k,r = (c−k (r))
−1,
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then ψ = ϕ−
k,λ−k,r

. For simplicity of notation, we will write c(·) instead of

c±k (·), λr instead of λ±k,r and ϕλr instead of ϕ±
k,λ±k,r

for the remainder of this

section.

4.1. Hyperbolicity. This section is concerned with the characterization of
hyperbolicity for the equilibria of (1.3) given by the theorem below.

Theorem 4.1. With the notation above, the equilibrium ψ of (1.3) is not
hyperbolic if, and only if,

a′(∥ψx∥2) = νc′(∥ψx∥2).

Proof. (⇐) Suppose initially that

a′(∥ψx∥2) = νc′(∥ψx∥2).
Let r = ∥ψx∥2. In the notation above, we have that ψ = ϕλr .

Recall that, as we have seen at the end of Section 2, v = d
drϕλr satisfies

vxx +
f ′(ϕλr)

c(r)
v − 2c′(r)

c(r)3
f(ϕλr)

∫ π

0
f(ϕλr)v = 0.

From Theorem 3.1, we have that a(r) = νc(r). Since, ∥ψx∥2 = r, ψ = ϕλr
and a′(r) = νc′(r), we have

vxx +
νf ′(ψ)

a(∥ψx∥2)
v − 2ν2a′(∥ψx∥2)

a(∥ψx∥2)3
f(ψ)

∫ π

0
f(ψ)v = 0.

Therefore, 0 is an eigenvalue of L, which implies that ψ is not a hyperbolic
equilibrium.

(⇒) Assume that we find a 0 ̸= u ∈ H2(0, π) ∩H1
0 (0, π) satisfying

uxx +
νf ′(ψ)

a(∥ψx∥2)
u− 2ν2αa′(∥ψx∥2)

a(∥ψx∥2)3
f(ψ) = 0

for
α =

∫ π

0
f(ψ(s))u(s)ds.

Now, since a(r) = νc(r) and ϕλr = ψ, v = d
drϕλr satisfies

vxx +
νf ′(ψ)

a(∥ψx∥2)
v − 2ν3βc′(∥ψx∥2)

a(∥ψx∥2)3
f(ψ) = 0,

for
β =

∫ π

0
f(ψ(s))v(s)ds.
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Consequently, w = βνc′(r)u− αa′(r)v is the solution ofwxx +
νf ′(ϕλr)

a(∥ϕλr∥2)
w = 0 or wxx + λrf

′(ϕλr)w = 0,

w(0) = w(π) = 0,

(4.1)

which means w ≡ 0. Thus,

βνc′(r)u− αa′(r)v = 0

and, by multiplying both sides of equality by f(ϕ) and integrating from 0 to
π, we find

αβνc′(r) = αβa′(r).

Clearly, αβ ̸= 0. Otherwise, either u or v should be a solution of (4.1), that
is, either u = 0 or v = 0, which would be a contradiction.

Therefore, we conclude that a′(r) = νc′(r). □

4.2. Morse Index. Now, we analyze what happens to the dimension of the
unstable manifolds for the equilibria of (1.3) as they bifurcate.

For ε ∈ R, define the operator

Lε : H
2(0, π) ∩H1

0 (0, π) ⊂ L2(0, π)→ L2(0, π)

by

Lεu(x) = u′′ + p(x)u+ εq(x)

∫ π

0
q(s)u(s)ds,

where p, q : [0, π]→ R are continuous functions with q ̸≡ 0.
When ε = 0, L0u = u′′ + p(x)u is a Sturm-Liouville operator. Hence,

L0 is a self-adjoint with compact resolvent and its spectrum consists of a
decreasing sequence of simple eigenvalues, that is,

σ(L0) = {γj : j = 1, 2, 3 · · · }

with, γj > γj+1 and γj −→ −∞ as j → +∞.
Note that, for all ε ∈ R, we can decompose Lε as a sum of two operators:

Lεu = L0u+ εBu,

where

Bu = q(x)

∫ π

0
q(s)u(s)ds,

for all u ∈ H2(0, π) ∩ H1
0 (0, π), is a bounded operator with rank one. It is

easy to see that Lε is also self-adjoint with compact resolvent.
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Then, we write {µj(ε) : j = 1, 2, 3, · · · } to represent the eigenvalues of Lε,
ordered in such a way that, for j = 1, 2, 3, · · · , the function R ∋ ε 7→ µj(ε) ∈
R satisfies µj(0) = γj .

Throughout this paper, we will use, in an essential way, Theorems 3.4 and
4.5 of [6], which are summarized in the next result.

Theorem 4.2. Let Lε and {µj(ε) : j = 1, 2, 3, · · · } be as above. The follow-
ing holds:

i) For all j = 1, 2, 3, · · · , the function R ∋ ε 7→ µj(ε) ∈ R is non-
decreasing.

ii) If for some j = 1, 2, 3 · · · , and ε ∈ R, µj(ε) /∈ {γk : k = 1, 2, 3, · · · },
then µj(ε) is a simple eigenvalue of Lε.

We wish to determine the Morse Index of the equilibria of (1.3) by look-
ing carefully to the points where the graphs of the functions a(·) and νc(·)
intercept, that is, depending on how these curves intersect, we will be able to
determine the Morse Index of the equilibria. Recall that the function c(·) is in
fact c+j (·) or c−j (·) which is associated to an equilibrium ϕ+

j,λ+r
or ϕ−

j,λ−r
which

change sign j − 1 times in the interval (0, π). The intersection of the graphs
of a(·) and νc±j (·) necessarily gives rise to an equilibrium that changes sign
j − 1 times for (1.1). Hence, as ν increases, if the first intersection between
the graphs of a(·) and νc±j (·) happens with a value of r ̸= 0 and before the
intersection with r = 0, we must have at least one saddle-node bifurcation
that precedes the pitchfork bifurcation from zero (see, for instance, Example
5.3).

This is the main result of this section:

Theorem 4.3. Suppose that ψ is an equilibrium of (1.3) with k− 1 zeros in
(0, π) for some positive integer k. Let r = ∥ψx∥2 and λr such that ψ = ϕ+k,λr
(resp. ψ = ϕ−k,λr). If we denote c±k (·) by c(·), then

(i) If
a′(∥ψx∥2) > νc′(∥ψx∥2),

then ψ is hyperbolic and its Morse index is k − 1.
(ii) If

a′(∥ψx∥2) < νc′(∥ψx∥2),
then ψ is hyperbolic and its Morse index is k.

Proof. The hyperbolicity follows from Theorem 4.1. Define the operator

Lεv = v′′ +
νf ′(ψ)

a(∥ψ′∥2)
v + εf(ψ)

∫ π

0
f(ψ)v,
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v ∈ D(Lε) = H2(0, π) ∩H1
0 (0, π), for each ε > 0.

Figure 1. Spectrum of Lϵ

Note that L0 is the linearization of (1.7) at ψ for the parameter

ν0 =
ν

a(∥ψx∥2)
.

The spectrum of L0 is given by an unbounded ordered sequence {µj(0)}j∈N
of simple eigenvalues, that is,

µ1(0) > µ2(0) > · · · > µk−1(0) > µk(0) > µk+1(0) > . . .

Since 0 /∈ σ(L0), we may have that 0 > µj(0), for all j = 1, 2, 3 · · · , or there
is a positive integer k such that µk−1(0) > 0 > µk(0).

For

ε̃ = −2c′(∥ψx∥2)
c(∥ψx∥2)3

= −2ν3c′(∥ψx∥2)
a(∥ψx∥2)3

,

we have 0 ∈ σ(Lε̃) and 0 is a simple eigenvalue, by Theorem 4.2. Using the
same reasoning applied in the proof of the second part of Theorem 4.1, we
can show that if 0 ∈ σ(Lε), then ε = ε̃.

Using Theorem 4.2, part i), we deduce that µj(ε) > 0, j = 1, · · · , k − 1,
for all ε ≥ 0. Since 0 ∈ σ(Lε) if and only if ε = ε̃ > 0, we must have
that µj(ε) > 0, j = 1, · · · , k − 1, for all ε < 0. That means at least k − 1
eigenvalues are positive, for all ε ∈ R.
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Also, since µk(0) > µj(0), for all j > k, µk(·) is increasing and L0 does
not have an eigenvalue in the interval (µk(0), 0] we have that µk(ε̃) = 0.
Otherwise µj(ε) = µk(ε) ∈ (µk(0), 0], for some j > k and ε ∈ (0, ε̃], which
is not possible by Theorem 4.2, part ii). Since 0 /∈ σ(L0), µj(ε) < 0 for all
ε ∈ R and j > k.

As a consequence, the number of positive eigenvalues of Lε is k−1 if ε < ε̃
and k if ε > ε̃ (see Figure 1).

Let

ε0 = −
2ν2a′(∥ψx∥2)
a(∥ψx∥2)3

.

Then, if
a′(∥ψx∥2) > νc′(∥ψx∥2),

we have that ε0 < ε̃ and Lε0 has exactly k − 1 positive eigenvalues and
0 /∈ σ(Lε0). On the other hand, if a′(∥ψx∥2) < νc′(∥ψx∥2), we have ε0 > ε̃
and Lε0 has exactly k positive eigenvalues and 0 /∈ σ(Lε0). □

5. Analyzing the attractor for a few examples

Denote by cLj,±(·), L > 0, j ∈ N, the function c±j (·) related to the equilibria
that have j − 1 zeros in (0, π) of the problem{

uxx + λf(u) = 0, x ∈ (0, L),

u(0) = u(L) = 0,
(5.1)

for λ > 0 a parameter.
Recall that the following holds.

Lemma 5.1. Consider f ∈ C2(R) satisfying (1.2). If j ∈ N, j ≥ 2, and ϕj
is an equilibrium of (1.7) with j − 1 zeros in (0, π), then ϕ2j is π

j periodic.
In addition, if f is odd, then

ϕj(
π

j
+ x) = −ϕj(

π

j
− x), for x ∈ [0,

π

j
].

Proposition 5.2. If f ∈ C2(R) and satisfies (1.2), then

(i) cLj,±(r) =
(
L
π

)2
cπj,±(

Lr
π ), for all r ∈ R+, j = 1, 2, 3 · · · .

(ii) For all r ∈ R+, cπ2j,±(r) =
1
j2
cπ2,±(

r
j2
).

If we also assume that f is odd, then
(iii) cLj,+(·) = cLj,−(·) and cπj,±(r) = c

π
j

1,±(
r
j ), for all r ∈ R+ and j ∈ N.

(iv) cπj,±(r) =
1
j2
cπ1,±(

r
j2
), for all r ∈ R+ and j ∈ N.
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Proof. The proof follows by a simple change of variables.
(i) Let r ∈ R+. In what follows, we fix one of the symbols + or − and

omit it in the notation. If cLj (r) = 1
λr

, then there is a ϕ ∈ C2(0, L), with
∥ϕx∥2 = r, such that ϕ ̸= 0 in (0, π) and satisfies (5.1) with λ replaced by λr.

For x ∈ [0, π], define ψ(x) = ϕ(Lxπ ). Then ψ satisfies

ψxx(s) =
(L
π

)2
ϕxx

(Ls
π

)
= −

(L
π

)2
λrf

(
ϕ
(Ls
π

))
.

In other words, ψ is a solution of (5.1) with L replaced by π and λ replaced
by

(
L
π

)2
λr. Also,

∥ψx∥2 =
∫ π

0
(ψx(s))

2ds =

∫ π

0

(L
π

)2(
ϕx

(Ls
π

))2
ds

=
L

π

∫ L

0
(ϕx(u))

2du =
Lr

π
.

Hence, by definition of cπj , we conclude that

cπj

(Lr
π

)
=

(π
L

)2 1

λr
.

Therefore,

cLj (r) =
1

λr
=

(L
π

)2
cπj (

Lr

π
).

Since r ∈ R+ is arbitrary, the result follows.
(ii) Once again, we fix one of the symbols + or − and omit it in the

notation. Let r > 0 and j ∈ N, j ≥ 2. By the definition, cπ2j(r) =
1
λr

implies
that there is a ϕ, with 2j − 1 zeros in (0, π), an equilibrium of (1.7) when
λ = λr and satisfying ∥ϕx∥2 = r.

By Lemma 5.1, we have

r =

∫ π

0
(ϕx(s))

2ds = j

∫ π
j

0
(ϕx(s))

2ds.

Hence, ψ = ϕ
∣∣
[0,π

j
]

is the solution of (5.1) that changes sing one time for

L = π
j and ∥ψx∥2L2(0,π

2
) =

r
j . Therefore,

c
π
j

2 (
r

j
) =

1

λr
= cπ2j(r).

By the previous item, the desired result follows.
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(iii) Assume that f is odd. In this case, if ϕ is an equilibrium (5.1), then
−ϕ is an equilibrium (5.1), for the same parameter λ > 0 and having the
same norm.

Fix j ∈ N and r ∈ R+. If cπj (r) =
1
λr

, then there is ϕ ∈ C2(0, π) with j− 1

zeros in (0, π), with ∥ϕx∥2 = r, and satisfying (1.7). Since f is odd, ϕ has a
lot of symmetries and

r =

∫ π

0
(ϕx(s))

2ds = j

∫ π
j

0
(ϕx(s))

2ds.

Consider ψ = ϕ
∣∣
[0,π

j
]
. Then, we have ψ > 0 in (0, πj ), ∥ψx∥

2
L2(0,π

j
) =

r
j , and

ψ satisfies (5.1), for L = π
j and λ = λr. Hence, by the definition of c

π
j

1 , we
find

c
π
j

1 (
r

j
) =

1

λr
= cπj (r).

(iv) It follows from the previous items. □

Figure 2. Graphs of a1 (in gray) and νc±1 (in blue) for
different choices of ν

The result from Proposition 5.2 provides a very good understanding of
the bifurcations of equilibria for (1.1) with particular emphasis to the case of
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suitably large j ∈ N. We remark that, if f is odd, for large values of j, the
functions j2c±j are very slowly decreasing.

Next, we exhibit a few pictorial examples of possible bifurcations that will
happen depending on our choice of the functions a and f .

Example 5.3. Consider in this example the function a = a1 as in Figure 2:
In that case, the bifurcation from zero is a supercritical pitchfork bifurca-

tion and four other saddle-node bifurcations occur, two subcritical and two
supercritical. The bifurcation curve looks like this:

Example 5.4. Consider in this example the function a = a2, with graph
pictured in gray, in Figure 3:

In that case, the bifurcation from zero is a subcritical pitchfork bifurcation
and three other saddle-node bifurcations occur, two supercritical and one
subcritical. The bifurcation curve looks like this:

Example 5.5. Consider the function given by a = a3, with graph pictured
in gray, as in Figure 5.

The first bifurcation from zero is a supercritical pitchfork bifurcation and
the second bifurcation from zero is a subcritical pitchfork bifurcation.

Between the two bifurcations from zero occurs saddle-node bifurcations.
Suppose that ν3 ∈ (ν1, ν5) is the moment for which the saddle-node bifur-

cation of the equilibria that change sign one time in (0, π) appears. In this
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Figure 3. Graphs of a2 and νc±1 (in blue) for different
choices of ν

case, if f is odd, a pictorial representation of the global attractor is given in
Figure 4.

For ν ∈ (ν3, ν5), it is also expected that the two more unstable equilibria
collapses at 0 as ν approaches 4a(0).
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Figure 4. Expected structure of the attractor, when
ν ∈ (ν3, ν5).
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