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Abstract. We consider a discrete time population model for which each indi-
vidual alive at time n survives independently of everybody else at time n +1 with
probability βn . The sequence (βn) is i.i.d. and constitutes our random envir-
onment. Moreover, at every time n we add Z n individuals to the population.
The sequence (Zn) is also i.i.d. We find sufficient conditions for null recurrence
and transience (positive recurrence has been addressed by Neuts 1994 J. Appl.
Probab. 31 48–58). We apply our results to a particular (Zn) distribution and
deterministic β. This particular case shows a rather unusual phase transition in
β in the sense that the Markov chain goes from transience to null recurrence
without ever reaching positive recurrence.
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1. The model and the results

Consider a sequence of independent identically distributed (i.i.d. in short) random vec-
tors, (β1,Z1),(β2,Z2), . . . The Z distribution is discrete with support on the set of natural
numbers N. The β distribution is continuous or discrete with support on (0,1). Assume
that,

µ= E(− lnβ) ∈ (0,+∞). (1)

To ensure that this Markov chain is irreducible we also assume that

P (β ∈ (0,1)) = 1 and P (Z ⩾ 2)> 0.

For n⩾ 1, let Fn be the σ-algebra by (β1,Z1) . . .(βn,Zn).
Let (Xn) be a Markov chain defined as follows. Set X0 = 1 and B0 = 0. For n⩾ 1,

Xn =Bn−1+Zn,

where the conditional distribution of Bn given Fn+1 is distributed according to a bino-
mial distribution with parameters X n and βn+1.

We may think of X n as the size of a population at time n. At any time n we sample a
βn+1 (the random environment) from a fixed distribution. Each individual alive at time
n survives to time n +1 independently of everybody else with probability βn+1 (the
binomial catastrophe). The population Xn+1 at time n +1 is made up of the survivors
from time n and of an influx of Z n new individuals.

The next two results state sufficient conditions for recurrence and transience under
additional hypotheses.
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Figure 1. This is a simulation of the Markov chain (Xn) for 1⩽ n⩽ 105. The
distribution of β is uniform on (0,1) and the distribution of Z is given by P (Z =
k) = C/k2 for k ⩾ 1. Hence, E(Z) = +∞ and E(lnZ)<+∞. The chain is positive
recurrent. The average of X n over all n in the range is 14.45. The maximum of X n

is 39 388.

Hypothesis 1. If β1 and Z 1 are independent then the sequences (βi)i⩾1 and (Zi)i⩾1 are
independent.

Theorem 1. Assume that hypothesis 1 holds. If

limsup
t→∞

tP (ln Z > t)< µ (2)

then the Markov chain (Xn) is recurrent.

Hypothesis 2. Assume that E(β−θ)<+∞ for some θ > 0.

Theorem 2. Assume that hypothesis 2 holds. If

liminf
t→∞

tP (ln Z > t)> µ (3)

then the Markov chain (Xn) is transient.

We now give a necessary and sufficient condition for positive recurrence.

Theorem 3. The Markov chain (Xn) is positive recurrent if and only if

E(lnZ)<+∞.

Even when the chain is positive recurrent the paths of the chain can have huge
fluctuations. See the simulation in figure 1.
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2. An example

For this example we will assume that β has a point mass distribution. This constant is
also denoted by β. Let the distribution of Z be given by

P (Z = k) =
C

k(lnk)a+1
,

for all k ⩾ 2. The parameter a is strictly positive and C > 0 only depends on a. The
Markov chain (Xn) exhibits three different behaviors.

• If a > 1 the chain (Xn) is positive recurrent for all β in (0,1).

• If a < 1 the chain (Xn) is transient for all β in (0,1).

• If a =1 then there exists a critical value βc ∈ (0,1) such that if β < βc then (Xn) is
transient while if β > βc the chain is null recurrent.

Note that the case a =1 gives a (rare?) example of a phase transition from transience
to null recurrence without ever reaching positive recurrence. This example requires
E(lnZ) = +∞ which seems like an extreme hypothesis for a population model. However,
the main point of this example is conceptual. Based on classical examples one may
wrongly believe that null recurrence is a fleeting phenomenon. For instance, the simple
random walk exhibits null recurrence for a single point in the parameter space. For our
model, however, null recurrence can occur for a whole interval in the parameter space.

We now justify our claims. An easy comparison with an integral shows that

lim
t→∞

tP (ln Z > t)

C/(ata−1)
= 1.

Using this limit with theorems 1 and 2 yields the behavior of the chain for a < 1 and
a > 1.

Turning to a =1 we see that E(lnZ) =∞. In this case the chain is positive recurrent
for no β in (0,1). The limit above becomes

lim
t→∞

tP (ln Z > t) = C.

Let βc = exp(−C). Since β is deterministic µ=− lnβ. By theorem 1, if β < βc the
chain is recurrent and therefore null recurrent. On the other hand if β > βc by theorem
2 the chain is transient.

3. Literature

Catastrophe models of the type we study in this paper go back to at least the 1980’s,
see for instance [2, 3]. These models are also related to branching processes with immig-
ration, see for instance [6, 8, 9].
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Neuts in [7] introduced several models for catastrophes including the following
Markov chain (Yn) which is closely related to our model. Let p and β be paramet-
ers in (0,1). Let (Zn) be a sequence of i.i.d. random variables with support on the
positive integers. Given Y0 ⩾ 0, for n⩾ 1,

• With probability p, Yn =Bn, where given Yn−1, Bn is a binomial random variable with
parameters Yn−1 and β.

• With probability 1− p, Yn = Yn−1+Zn.

A necessary and sufficient condition for positive recurrence is given in [7]. One can
show that this condition is equivalent to our theorem 3 in the particular case when β
is a fixed constant. In fact, in the last section of this paper we will provide a coupling
showing that theorems 1–3 hold true for Neut’s model.

Recently, the chain (Yn) has been studied in [1, 5]. These articles concentrate mainly
on properties of the stationary probability distribution in the positive recurrent case.
We believe the present paper to be the first to address null recurrence and transience
for binomial catastrophes.

4. Proofs

We first give a construction of the process. Let {ξi,n : n⩾ 0, i⩾ 1} be a collection of
independent Bernoulli random variables such that for all n⩾ 0 and i⩾ 1, P (ξi,n = 1) =
βn. Let B0 = 0 and given X1, . . . ,Xn, let

Bn =
Xn∑
i=1

ξi,n+1.

Then,

Xn+1 =Bn+Zn+1.

Next we give a useful representation formula for the distribution of (Xn).

Lemma 4. For n⩾ 1,

Xn
d
=

n∑
i=1

Bi,n,

where given Fn, Bi,n is a binomial random variable with parameters Zi and
∏n

j=i+1βj

for 1⩽ i⩽ n. Moreover, for fixed n⩾ 1, B1,n, . . . ,Bn,n are independent.

By convention we set
∏n

j=n+1βj = 1. Therefore, Bn,n = Zn.

https://doi.org/10.1088/1742-5468/acbc23 5
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Proof. We prove the lemma by induction on n. Recall that X1 =B0+Z1, since B0 = 0,
X1 = Z1 which has the same distribution as B1,1. Hence the lemma holds for n =1.
Assume now that the lemma holds for n = k. By construction,

Xk+1 =Bk +Zk+1 =

Xk∑
i=1

ξi,k+1+Zk+1,

with X k independent of (ξi,k+1)i⩾1. Thus, B1,k, . . . ,Bk,k are independent and independent

of Zk+1, ξ1,k+1, ξ2,k+1, . . . Let S0,k = 0 and Sj,k =
∑j

i=1Bi,k for 1⩽ j ⩽ k. Note that

Xk+1
d
=

Sk,k∑
i=1

ξi,k+1+Zk+1.

Define,

B̃ℓ,k =

Sℓ,k∑
i=Sℓ−1,k+1

ξi,k.

Hence,

Sk,k∑
i=1

ξi,k =
k∑

ℓ=1

B̃ℓ,k,

where B̃1,k, . . . , B̃k,k are independent. Moreover,

B̃ℓ,k
d
=

Bℓ,k∑
i=1

ξi,k+1.

Therefore,

Xk+1
d
=

Sk,k∑
i=1

ξi,k +Zk+1

d
=

k∑
ℓ=1

B̃ℓ,k +Zk+1.

To conclude the proof of the lemma we show that B̃ℓ,k
d
=Bℓ,k+1. This comes from the

following elementary fact. Assume thatX is a binomial random variable with parameters
N and p and that X is independent of the i.i.d. sequence (ξi)i⩾1 of Bernoulli random
variables with parameter f. Then,

X∑
i=1

ξi

is a binomial random variable with parameters N and pf.

https://doi.org/10.1088/1742-5468/acbc23 6
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We will prove theorems 1 and 2 by using the following classical recurrence criterion for
Markov chains. State 1 is recurrent for the Markov chain (Xn) if and only if∑

n⩾1

P (Xn = 1|X0 = 1) = +∞.

Let p1 = P (Z = 1) and assume for simplicity that p1 > 0. Using lemma 4,

P (Xn = 1|Fn) =
n∏

i=1

P (Bi,n = 0) = p1

n−1∏
i=1

1−
n∏

j=i+1

βj

Zi

= p1 exp

n−1∑
i=1

Zi ln

1−
n∏

j=i+1

βj


Using now that the sequence ((Zn,βn))n⩾0 is exchangeable,

exp

n−1∑
i=1

Zi ln

1−
n∏

j=i+1

βj

 d
= exp

n−1∑
i=1

Zn−i ln

1−
n∏

j=i+1

βn−j

 .

We do the changes of indices, n− i= ℓ and n− j =m to get,

exp

n−1∑
i=1

Zi ln

1−
n∏

j=i+1

βj

 d
= exp

(
n−1∑
ℓ=1

Zℓ ln
(
1−

ℓ−1∏
m=0

βj

))

d
= exp

(
n−1∑
ℓ=1

Zℓ+1 ln
(
1−

ℓ∏
m=1

βj

))
.

For n⩾ 1, let

In = E

exp

 n∑
i=1

Zi+1 ln

1−
i∏

j=1

βj

 .
Then,

P (Xn = 1) = p1In−1, (4)

4.1. Proof of theorem 1

Proof. For j ⩾ 1, let Wj =− lnβj and

W i =
1

i

j∑
i=1

Wi.

https://doi.org/10.1088/1742-5468/acbc23 7
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Recall that E(W1) = µ <+∞. Hence, for every ϵ in (0,µ), there exists α> 0 such
that for all i⩾ 1,

P (W i < µ− ϵ)⩽ e−αi (5)

Define the event

AN = {W i ⩾ µ− ϵ∀i > N}.

Choose a natural number N such that P (AN )> 0. Let

Sn =
N∑
i=1

Zi+1 ln

1−
i∏

j=1

βj

 .

From (4) we have for n >N,

In ⩾ E

[
exp(SN )exp

(
n∑

i=N+1

Zi+1 ln
(
1− e−i(µ−ϵ)

))
;AN

]
.

By hypothesis 1,
∑n

i=N+1Zi+1 ln
(
1− e−i(µ−ϵ)

)
is independent of AN and of∑N

i=1Zi+1 ln
(
1−

∏i
j=1βj

)
. Hence,

E

[
exp(SN )exp

(
n∑

i=N+1

Zi+1 ln
(
1− e−i(µ−ϵ)

))
;AN

]

= E [exp(SN ) ;AN ]E

[
exp

(
n∑

i=N+1

Zi+1 ln
(
1− e−i(µ−ϵ)

))]
.

By the Harris-FKG inequality (see for instance (2.4) in [4]),

E [exp(SN ) ;AN ]⩾ E [exp(SN )]P (AN )

For fixed N the r.h.s. is just a constant K(N)> 0. Hence,

In ⩾K(N)E

[
exp

(
n∑

i=N+1

Zi+1 ln
(
1− e−i(µ−ϵ)

))]
.

We now turn to,

E

[
exp

(
n∑

i=N+1

Zi+1 ln
(
1− e−i(µ−ϵ)

))]
⩾

E

[
exp

(
−(1+ ϵ)

n∑
i=N+1

Zi+1e
−i(µ−ϵ)

)]
⩾

E

[
exp

(
−(1+ ϵ)

n∑
i=1

Zi+1e
−i(µ−ϵ)

)]
≡ Ln

https://doi.org/10.1088/1742-5468/acbc23 8
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where we use that ln(1−x)⩾−(1+ ϵ)x for x small enough. We take N large enough
so that this inequality holds for x= e−i(µ−ϵ) for all i >N.

Hence, to show recurrence it is enough to show that the series with general term Ln

is infinite. In fact this will be a consequence of∑
n⩾1

L̃n =+∞,

where

L̃n = E

(
exp

(
−

n∑
i=1

ciZi

))
=

n∏
i=1

E(exp(−ciZi)),

where 0< c < 1.
To estimate L̃n we start with the following lemma.

Lemma 5. Let Z be a random variable with support on the positive integers. Then, for
λ> 0,

E(e−λZ) = 1− (eλ− 1)
∑
k⩾1

e−λkP (Z ⩾ k).

Proof.

E(e−λZ) =
∑
k⩾0

e−λkP (Z = k) =
∑
k⩾0

e−λk (P (Z ⩾ k)−P (Z ⩾ k+1))

=
∑
k⩾0

e−λkP (Z ⩾ k)−
∑
k⩾1

e−λ(k−1)P (Z ⩾ k)

= 1− (eλ− 1)
∑
k⩾1

e−λkP (Z ⩾ k).

Using lemma 5 with λ= ci,

E(e−ciZi) = 1− (ec
i − 1)

∑
k⩾1

e−cikP (Z ⩾ k)

We now use that

limsup
k→∞

kP (lnZ > k)< µ.

For ϵ> 0 small enough there is an integer k 0 such that for all k ⩾ k0,

P (lnZ ⩾ lnk)⩽ µ− ϵ

lnk .

Hence,

E(e−ciZ)⩾ 1− (ec
i − 1)

k0∑
k=1

e−cikP (Z ⩾ k)− (µ− ϵ)(ec
i − 1)

∑
k⩾k0+1

1

lnke
−cik (6)

https://doi.org/10.1088/1742-5468/acbc23 9
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We first bound the finite sum,

(ec
i − 1)

k0∑
k=1

e−cikP (Z ⩾ k)⩽ (ec
i − 1)

k0∑
k=1

e−cik = (ec
i − 1)e−ci 1− e−cik0

1− e−ci
= 1− e−cik0

Using this bound in equation (6),

E(e−ciZ)⩾ 1− (1− e−cik0)− (µ− ϵ)(ec
i − 1)

∑
k⩾k0+1

1

lnke
−cik. (7)

Observe that for any δ > 0 there exists a γ > 0 such that if |x|< γ then

ex− 1⩽ (1+ δ)x.

Hence, there exists i0 such that if i⩾ i0 then

E(e−ciZ)⩾ 1− (1− e−cik0)− (1+ δ)ci

(
(µ− ϵ)

∑
k⩾k0+1

1

lnke
−cik

)
. (8)

The following elementary lemma estimates the tail of the series in equation (8).

Lemma 6. Let 0< c < 1, d= 1/c and i⩾ 1 then

ci
∑
k⩾di

1

lnke
−cik ⩽ k1

i lnd,

where k1 =
e−1

1−e−1 .

Proof.

ci
∑
k⩾di

1

lnke
−cik = ci

∞∑
ℓ=1

(ℓ+1)di−1∑
k=ℓdi

1

lnke
−cik ⩽ ci

∞∑
ℓ=1

die−ciℓdi 1

ln(ℓdi)

⩽
∞∑
ℓ=1

e−ℓ 1

i lnd =
1

i

e−1

(1− e−1) lnd.

Let c= e−(µ−ϵ) and therefore, lnd= µ− ϵ. Using lemma 6 in equation (8),

E(e−ciZ)⩾ 1− (1− e−cik0)− (1+ δ)
k1
i
.

Thus,

L̃n =
n∏

i=1

E(e−ciZi)⩾
i0∏
i=1

E(e−ciZi)
n∏

i=i0+1

(
1− (1− e−cik0)− (1+ δ)

k1
i

)
For i0 large enough and i⩾ i0,

ln
(
1− (1− e−cik0)− (1+ δ)

k1
i

)
∼−(1− e−cik0)− (1+ δ)

k1
i
.
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Observe that the series with general term (1− e−cik0) converges and that

n∑
i=1

1

i
∼ lnn.

Thus, for n large enough

L̃n ⩾
k2
nα

,

where k 2 is a strictly positive constant and

α= (1+ δ)k1.

By taking δ > 0 small enough we get α< 1. Therefore, the series with general term
L̃n diverges. We let c= e−(µ−ϵ) in L̃n. By Jensen’s inequality,

L̃1+ϵ
n ⩽ Ln.

Hence, the series with general term Ln diverges provided ϵ> 0 is taken small enough.
This completes the proof of theorem 1.

4.2. Proof of theorem 2

Recall that for n⩾ 1,

In = E

exp

 n∑
i=1

Zi+1 ln

1−
i∏

j=1

βj

 .
and P (Xn = 1) = p1In−1. Let

Bn =

{
−1

i

j∑
i=1

lnβj ⩽ µ+ ϵ ∀i > K lnn
}
,

for some fixed K > 0. Note that on Bn ,

ln

1−
i∏

j=1

βj

⩽ ln
(
1− e−i(µ+ϵ)

)
⩽−e−i(µ+ϵ).

Therefore,

In ⩽ E

[
exp

(
−

n∑
i=K lnn

Zi+1e
−i(µ+ϵ)

)]
+P (Bc

n).
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It follows from hypothesis 2 that for any ϵ> 0 there exists an α> 0 such that for all
i⩾ 1,

P (W i > µ+ ϵ)⩽ e−αi.

Hence,

P (Bc
n)⩽

1

(1− e−α)nαK
.

Thus, by taking K such that αK > 1 the series with general term P (Bc
n) converges.

Therefore, to show transience it is enough to prove that∑
n⩾1

Un <+∞,

where

Un = E

[
exp

(
−

n∑
i=K lnn

Zi+1e
−i(µ+ϵ)

)]
.

Using that the sequence (Zn) is i.i.d.

Un =
n∏

i=K lnn

E
[
exp

(
−e−i(µ+ϵ)Z

)]
.

Let

vi =− lnE[exp(−λiZ)]

where λi = e−i(µ+ϵ) and

Vn =
n∑

i=K lnn

vi.

Then, Un = exp(−Vn). Using lemma 5,

vi =− ln
[
1− (eλi − 1)

∑
k⩾1

e−λikP (Z ⩾ k)

]
⩾ (eλi − 1)

∑
k⩾1

e−λikP (Z ⩾ k).

Let

µ′ =
1

2

(
liminf

k
kP (lnZ > k)+µ

)
.
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Using that liminfk kP (lnZ > k)> µ, there exists k 3 such that for k ⩾ k3,

P (lnZ ⩾ lnk)⩾ µ′

lnk .

Let B = eµ+ϵ and δ > 0. For i large enough,

vi ⩾ µ′λi

∑
k⩾δBi

e−λik

lnk .

We estimate this series using an integral and the fact that λiB
i = 1.

vi ⩾ µ′λi

ˆ ∞

δBi

e−λix

lnx dx= µ′λiB
i

ˆ ∞

δ

e−x

lnx+ i lnBdx=
µ′

i lnB

ˆ ∞

δ

i lnB
lnx+ i lnBe−xdx.

By the monotone convergence theorem,

lim
i→∞

ˆ ∞

δ

i lnB
lnx+ i lnBe−xdx=

ˆ ∞

δ

e−xdx= e−δ.

Let N 1 such that for i⩾N1,ˆ ∞

δ

i lnB
lnx+ i lnBe−(1−ϵ)xdx⩾ e−δ − ϵ⩾ 1− δ− ϵ= 1− 2ϵ,

where we let δ = ϵ. Hence, for i large enough,

vi ⩾
µ′

i lnB (1− 2ϵ) =
µ′

µ+ ϵ
(1− 2ϵ)

1

i
.

Let

k4 =
µ′

µ+ ϵ
(1− 2ϵ).

Since µ ′ > µ, by taking ϵ> 0 small enough we get k4 > 1. Finally, for n large enough

Vn =
n∑

i=K lnn

vi ⩾
n∑

i=K lnn

k4
i
⩾ k4 (lnn− ln(K lnn))− ϵ.

Hence,

Un ⩽ exp(−Vn)⩽ exp(−k4 (lnn− ln(K lnn))+ ϵ) = eϵ
( n

K lnn

)−k4
.

This shows that the series with general term U n converges and completes the proof
of theorem 2.
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4.3. Proof of theorem 3

Define for 1⩽ i⩽ n,

βi,n =
n∏

j=i+1

βj.

By convention βn,n is set to be 1. Let 0< s < 1 and for 1⩽ i⩽ n,

si = 1− (1− s)βi,n.

Note that sn = s. Recall that

Xn =Bn−1+Zn.

Given Fn, Bn−1 is a binomial random variable with parameters Xn−1 and βn . Thus,

E(sXn
n |Fn) = sZn

n E
[
(1−βn)

Xn−1 |Fn

]
= sZn

n E
[
s
Xn−1

n−1 |Fn

]
.

Iterating the preceding equality we get,

E(sXn
n |Fn) = sZn

n s
Zn−1

n−1 E
[
s
Xn−2

n−2 |Fn

]
= sZn

n s
Zn−1

n−1 . . .sZ1
1 .

Hence,

E(sXn) = E

[
exp

(
n∑

i=1

Zi ln(1−βi,n(1− s))

)]
= E

[
exp

(
n∑

i=1

Zi ln(1−β1,i(1− s))

)]
.

We now prove the direct implication in theorem 3. That is, if E(lnZ)<+∞ then
the process (Xn) is positive recurrent.

Note that β1,i converges to 0 a.s. as i goes to infinity. Hence, to show convergence of∑n
i=1Zi ln(1−β1,i(1− s)) it is enough to show convergence of Sn ≡

∑n
i=1Ziβ1,i. Let FZ

be the σ-algebra generated by the sequence (Zn). Then,

E (Sn|FZ) =
n∑

i=1

ZiE(β1,i) =
n∑

i=1

ZiE(β)i−1.

Since (Sn) is an increasing sequence,

lim
n→∞

E (Sn|FZ) = E
(

lim
n→∞

Sn|FZ

)
=

∞∑
i=1

ZiE(β)i−1.

Thus, in order to prove that (Sn) converges a.s. we will show that the series∑
i⩾1Zib

i−1 converges for any 0< b < 1.
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Lemma 7. Let (Zi) be an i.i.d. sequence with support in N. The series∑
i⩾1

Zib
i

converges almost surely for all b in (0,1) if and only if E(lnZ)<+∞.

Proof. Assume that E(lnZ)<+∞. Then, for any constant c> 0

∞∑
i=1

P (lnZi > ci)<∞.

Hence, by Borel–Cantelli lemma

P (lnZi > cii.o.) = 0.

Since ∑
i⩾1

Zib
i =
∑
i⩾1

exp(lnZi+ i lnb),

we see that
∑

i⩾1Zib
i <+∞ for all 0< b < 1.

Conversely, assume that E(lnZ) = +∞. Then, for any b in (0,1),∑
i⩾1

P (lnZi ⩾−i lnb) = +∞.

Hence, by the second Borel–Cantelli lemma,

P (lnZi ⩾−i lnbi.o.) = 1.

Thus,
∑n

i=1 b
iZi =+∞. This concludes the proof of the lemma and of the direct

implication in theorem 3.
We now turn to the converse in theorem 3. Assume that E(lnZ) = +∞. We will

show that for 0< s < 1, E(sXn) converges to 0. This is enough to show that (Xn) is not
positive recurrent. Recall that

E(sXn) = E

[
exp

(
n∑

i=1

Zi ln(1−β1,i(1− s))

)]
.

Note that −
∑n

i=1Zi ln(1−β1,i(1− s)) = +∞ if and only if
∑n

i=1Ziβ1,i =+∞. For
i⩾ 1, let

Wi =
i∑

j=1

− lnβj.

For N ⩾ 1, let

BN = {Wi ⩽ i(µ+1)for all i⩾N},
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where µ= E(− lnβ). For n⩾N ,

n∑
i=1

Ziβ1,i =
n∑

i=1

Zi exp(−Wi)⩾
n∑

i=N

Zi exp(−Wi)⩾ 1BN

n∑
i=N

Zi exp(−i(µ+1)).

Note that 1BN
converges to 1 as N goes to infinity. By lemma 7 we know that

n∑
i=1

biZi =+∞,

for any 0< b < 1. Hence,
∑n

i=1Ziβ1,i =+∞ a.s. and E(sXn) converges to 0 as n goes to
infinity for any 0< s < 1. This completes the proof of theorem 3.

5. Neuts’ model

In this section we show that theorems 1–3 are true for Neuts’ model. Actually, the
Markov chain (Yn) that we construct below generalizes Neut’s model in that the sequence
(βi) is i.i.d.

Let (Gn) be an i.i.d. sequence of random variables with support on N and such that
P (G> k) = pk−1 for all k ∈ N. For k ⩾ 1, let

Tk =
k∑

i=1

Gi.

Let (βi)i⩾1 be a sequence of i.i.d. random variables with support in (0,1). For i⩾ 1
let (ξi,j)j⩾1 be a sequence of independent Bernoulli random variables with parameter
βi . All these sequences (for different i ’s) are independent of each other. Let (Zn) be a
sequence of i.i.d. random variables with support in N. We define the process (Yn) as
follows. By convention, in what follows any sum from k to ℓ where k > ℓ is set to 0.

• Y0 = Z0.

• If n= Tk for some k ⩾ 1 and if Yn−1 ⩾ 1,

Yn =

Yn−1∑
j=1

ξn,j.

• If n ̸= Tk for all k ⩾ 1 then

Yn = Yn−1+Zn.

We now construct a Markov chain (X ′
n) on the same probability space. For n⩾ 1,

let T ′
n = Tn− 1 and define

X ′
n = YT ′

n
.
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Let

Z ′
n =

Tn−1∑
k=Tn−1+1

Zk.

Then,

X ′
n =

Xn−1∑
j=1

ξn,j +Z ′
n.

Note that (Z ′
n) is an i.i.d. sequence for which Z ′ has the same distribution as

G′∑
i=1

Zi,

where P (G ′ ⩾ k) = pk for k ⩾ 0. Observe now that the conditions on the distribution
of Z in theorems 1–3 are equivalent to the conditions on the distribution of Z

′
. Hence,

theorems 1–3 apply to the chain (X ′
n). Since X ′

n = YT ′
n
, these theorems apply to Neut’s

chain (Yn) as well.

Acknowledgment

We thank two anonymous referees for their careful reading and constructive suggestions.
F M was partially supported by CNPq (303699/2018-3) and Fapesp (17/10555-0). L R F
was partially supported by CNPq (307884/2019-8) and Fapesp (2017/10555-0). R B S’
visit to the University of São Paulo was supported by Fapesp (17/10555-0).

References

[1] Ben-Ari I, Roitershtein A and Schinazi R B 2019 A random walk with catastrophes Electron. J. Probab. 24 1–21
[2] Brockwell P J 1986 The extinction time of a general birth and death process with catastrophes J. Appl. Probab.

23 851–8
[3] Brockwell P J, Gani J and Resnick S I 1982 Birth, immigration and catastrophe processes Adv. Appl. Probab.

14 709–31
[4] Grimmett G 1989 Percolation (Berlin: Springer)
[5] Goncalves B and Huillet T 2021 A generating function approach to Markov chains undergoing binomial cata-

strophes J. Stat. Mech. 033402
[6] Heyde C C and Leslie J R 1971 Improved classical limit analogues for Galton–Watson processes with or without

immigration Bull. Aust. Math. Soc. 5 145–55
[7] Neuts M F 1994 An interesting random walk on the non-negative integers J. Appl. Probab. 31 48–58
[8] Pakes A G 1971 Branching processes with immigration J. Appl. Probab. 8 32–42
[9] Seneta E 1970 An explicit-limit theorem for the critical Galton–Watson process with immigration J. R. Stat. Soc.

B 32 149–52

https://doi.org/10.1088/1742-5468/acbc23 17

https://doi.org/10.1214/19-EJP282
https://doi.org/10.1214/19-EJP282
https://doi.org/10.2307/3214459
https://doi.org/10.2307/3214459
https://doi.org/10.2307/1427020
https://doi.org/10.2307/1427020
https://doi.org/10.1088/1742-5468/abdfcb
https://doi.org/10.1017/S0004972700047018
https://doi.org/10.1017/S0004972700047018
https://doi.org/10.2307/3215234
https://doi.org/10.2307/3215234
https://doi.org/10.2307/3211835
https://doi.org/10.2307/3211835
https://doi.org/10.1111/j.2517-6161.1970.tb00826.x
https://doi.org/10.1111/j.2517-6161.1970.tb00826.x
https://doi.org/10.1088/1742-5468/acbc23

	Null recurrence and transience for a binomial catastrophe model in random environment
	1. The model and the results
	2. An example
	3. Literature
	4. Proofs
	4.1. Proof of theorem 1
	4.2. Proof of theorem 2
	4.3. Proof of theorem 3

	5. Neuts' model
	References


