
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=geno20

Engineering Optimization

ISSN: 0305-215X (Print) 1029-0273 (Online) Journal homepage: https://www.tandfonline.com/loi/geno20

High-performing heuristics to minimize flowtime
in no-idle permutation flowshop

Marcelo Seido Nagano, Fernando Luis Rossi & Nádia Junqueira Martarelli

To cite this article: Marcelo Seido Nagano, Fernando Luis Rossi & Nádia Junqueira Martarelli
(2019) High-performing heuristics to minimize flowtime in no-idle permutation flowshop,
Engineering Optimization, 51:2, 185-198, DOI: 10.1080/0305215X.2018.1444163

To link to this article: https://doi.org/10.1080/0305215X.2018.1444163

View supplementary material

Published online: 14 Mar 2018.

Submit your article to this journal

Article views: 506

View related articles

View Crossmark data

Citing articles: 9 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=geno20
https://www.tandfonline.com/loi/geno20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0305215X.2018.1444163
https://doi.org/10.1080/0305215X.2018.1444163
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2018.1444163
https://www.tandfonline.com/doi/suppl/10.1080/0305215X.2018.1444163
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=geno20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2018.1444163
https://www.tandfonline.com/doi/mlt/10.1080/0305215X.2018.1444163
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2018.1444163&domain=pdf&date_stamp=2018-03-14
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2018.1444163&domain=pdf&date_stamp=2018-03-14
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2018.1444163#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0305215X.2018.1444163#tabModule

ENGINEERING OPTIMIZATION
2019, VOL. 51, NO. 2, 185–198
https://doi.org/10.1080/0305215X.2018.1444163

High-performing heuristics to minimize flowtime in no-idle
permutation flowshop

Marcelo Seido Nagano a, Fernando Luis Rossib and Nádia Junqueira Martarellia

aDepartment of Industrial Engineering, São Carlos School of Engineering, University of São Paulo, Brazil;
bManagement Department, Federal Institute of São Paulo, Brazil

ABSTRACT
In this article, the issue of production scheduling in a no-idle flowshop envi-
ronment is addressed. An extensive literature review has shown that there
are no heuristics specifically proposed for this problem, especially when it
comes to constructive heuristic methods. In this context, this article pro-
poses a highly efficient simple constructive heuristic to minimize the total
flowtime criterion. The proposed heuristic was embedded in the high per-
formance iterated greedy algorithm. Computational results and statistical
analysis show that the proposed heuristic overperformed the main con-
structive methods found up to now. In addition, it is observed that the
integration of the proposed heuristic with the iterated greedy algorithm
provides the most efficient metaheuristic for the problem.

ARTICLE HISTORY
Received 21 August 2017
Accepted 17 February 2018

KEYWORDS
Scheduling; no-idle
flowshop; heuristics; total
flowtime

1. Introduction

Production environments, which are conditioned to high setup times or upraised operation costs,
do not allow the existence of idle machines after a job sequence begins. There are also cases in
which the no-idle restriction appears due to technological restrictions, for instance the production
of integrated circuits by means of photolithography or in ceramic production (Pan and Ruiz 2014),
fibreglass processing (Kalczynski and Kamburowski 2005) and foundry operations (Saadani, Guinet,
and Moalla 2005).

In this sense, research has been done to find a good production sequence which results in the
minimization ormaximization of an objective function (Pan and Ruiz 2014). One of these is the Total
FlowTime minimization (TFT), which is a significant criterion in current production environments
due to the fact that it is directly related to the minimization of an in-process inventory (Liu and
Reeves 2001).

The no-idle flowshop with a TFT criterion is technically denoted as Fm|no − idle|∑Cj (Graham
et al. 1979), in which Fm means the number of machines in flowshop, in this case, m; no-idle is a
restriction that does not allow the machines to be stopped after beginning the jobs and the

∑
Cj

means the sum of job j’s completion time. A sequence (π) of n jobs that must be processed by a set
ofm different machines is also defined, in the same order. A job j in a given sequence, in the position
k, may be denoted by πk. The processing time of jobs j in the machine i is represented by pi,j, where
i = {1, 2, . . . ,m} and j = {1, 2, . . . , n}. Let Ci,j be the completion time of job j in machine i, the TFT
criterion is the sum of the last machine job completion times,

∑n
j=1 Cm,j.

CONTACT Marcelo Seido Nagano drnagano@usp.br

Supplemental data for this article can be accessed at https://doi.org/10.1080/0305215X.2018.1444163

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/0305215X.2018.1444163&domain=pdf
http://orcid.org/0000-0002-0239-1725
mailto:drnagano@usp.br
https://doi.org/10.1080/0305215X.2018.1444163

186 M. S. NAGANO ET AL.

Although the afore-stated issue is of practical importance, it has not been attracting attention in
the literature, whereas most studies currently aim to minimize the makespan (total time from start to
finish) Fm|no − idle|Cmax or the total tardiness Fm|no − idle|∑Tj, as described in the work by Rad,
Ruiz, and Boroojerdian (2009), Tasgetiren et al. (2011), Deng and Gu (2012), Pan and Ruiz (2014),
Zhou, Chen, and Zhou (2014), Nagano, Rossi, and Tomazella (2017), and Shao, Pi, and Shao (2017).

In addition, the no-idle problem has attracted attention in some other problem variations.
Lu (2016) considers no-idle flowshop scheduling with a time-dependent learning effect and deterio-
rating jobs with makespan and total flowtime minimization. Ying et al. (2017) proposes an Iterated
Reference Greedy (IRG) algorithm for the distributed no-idle permutation flowshop scheduling
problem with a makespan objective.

One of the first no-idle studies has been proposed by Adiri and Pohoryles (1982), who devel-
oped a polynomial-time algorithm for F2|prmu, no − idle|∑Cj, where prmu means that the same
job sequence is maintained in each machine. Observing some limitations in the work by Adiri and
Pohoryles (1982), Čepek, Okada, and Vlach (2000) improved it.

Recently, Narain and Bagga (2005) contributed to this area by proposing a branch and bound
method for the most general problem, Fm|no − idle|∑Cj. However, only small cases could be
efficiently and optimally solved since it is an NP-complete problem, to date.

This problem type requires an extreme central processing unit (CPU) time if resulted by exact
algorithms, even for moderate-scale problems. Therefore, metaheuristics, or heuristics, are used to
seek optimal or near-optimal solutions in a reasonable time, especially for large-scale production
problems in industry.

Regarding metaheuristics, Tasgetiren et al. (2013) proposed an approach called Iterated Greedy
(IG), with Differential Evolution (vIG DE), to solve the Fm|no − idle|Cmax and Fm|no − idle|∑Cj
problems. The proposed algorithm outperformed the metaheuristics from Pan and Wang (2008a),
Pan and Wang (2008b), and Deng and Gu (2012).

Framinan, Gupta, and Leisten (2004) divides a heuristic into three steps, namely index devel-
opment, solution construction, and solution improvement. A heuristic may use one or all of these
phases. From this concept, Framinan, Leisten, and Ruiz-Usano (2005) classifies a heuristic as sim-
ple and composite. Composite heuristics use a simple heuristic in one of the three above mentioned
phases. A simple heuristic does not use another heuristic within any of the three phases.

There is another way to classify a heuristic. It is known that a constructive heuristic obtains a
solution directly and uses a procedure to construct the solution sequence for each job by priority
index. It is also known that an improvement heuristic works with a provided initial solution, making
this kind ofmethod search for a better solution, for example, using neighbourhood search procedures
(Nagano and Moccellin 2002).

Even with these advances, no constructive heuristics have been proposed for the problem so far,
which is noteworthy, as heuristics are widely applied to other problems to obtain high-quality solu-
tions in large size problems in short times (see Ponnambalam, Aravindan, and Chandrasekaran 2001;
Liu and Reeves 2001; Nagano and Moccellin 2002; Framinan, Leisten, and Ruiz-Usano 2002; Fram-
inan and Leisten 2003; Kalczynski and Kamburowski 2007; Li, Wang, and Wu 2008; Kalczynski and
Kamburowski 2008; Dong, Huang, and Chen 2008; Rad, Ruiz, and Boroojerdian 2009; Kalczynski
andKamburowski 2009; Laha and Sarin 2009; Ribas, Companys, and Tort-Martorell 2010; Kalczynski
and Kamburowski 2011; Pan and Ruiz 2013; Fernandez-Viagas and Framinan 2014 2015; Benavides
and Ritt 2016; Zheng et al. 2016; Fernandez-Viagas, Leisten, and Framinan 2016; Rossi, Nagano, and
Tavares Neto 2016; Liu, Jin, and Price 2016; Rossi, Nagano, and Sagawa 2017; Ribas, Companys, and
Tort-Martorell 2017; Liu, Jin, and Price 2017; Huang et al. 2017).

Aware of the area gap, this article proposes a new simple constructive heuristic for no-idle flow-
shop environment Fm|no − idle|∑Cj, besides an adaptation from some main simple heuristics
identified in the literature, whichwere found from an extensive literature review. This searchwas con-
ducted to identify the best simple heuristic in term of performance proposed to the Fm|prmu|∑Cj

ENGINEERING OPTIMIZATION 187

problem. Aiming for a deeper contribution, a modification in the vIG DE algorithm from Tasgetiren
et al. (2013) has also been proposed using the proposed heuristic.

This article is organized as follows. Section 2 presents the main simple heuristics for the
Fm|prmu|∑Cj problem, selected to be adapted to the Fm|no − idle|∑Cj problem. Section 3 shows
a new simple heuristic method. Section 4 brings the computational results and statistical analysis.
Finally, Section 5 displays the conclusions.

2. Simple heuristics

Some main simple heuristics available for the problem Fm|prmu|∑Cj are presented. They were
extracted from works by Pan and Ruiz (2013) and Fernandez-Viagas and Framinan (2015), who
conducted an extensive comparison between simple and composite methods for minimizing total
flowtime.

Woo and Yim (1998) developed a simple heuristic, calledWY, which did not apply an initial order
in the first step but allows jobs that were not scheduled to be inserted in every possible position of
the partial sequence, selecting the sequence with the best total flowtime.

The simple heuristic LR(x), developed by Liu and Reeves (2001), initially orders jobs j according
to the index ξj,k(k = 0), which considers the machines idle time and the effects of job insertion in the
conclusion times of the subsequent jobs, resulting in a jobs list α = α1, . . . ,αn. The lowest value job
ξj,k(k = 0) is placed in the first position of the sequence and the value of ξj,k(k = 0) (Equation (1)) is
calculated for each unscheduled (U) job j, where U is the unscheduled jobs set. The lowest value
job, ξi,k(k = 0), is placed in the last position of the sequence. It ends when every job has been
sequenced.

The LR(x) heuristic generates x different sequences. It follows the job α2, instead of the α1 job, in
the first sequence position as far as x sequences are generated:

ξj,k = (n − k − 2) ∗ ITj,k + ATj,k (1)

The ITj,k and ATj,k values are obtained by

ITj,k =
m∑
i=2

(
m ∗ max{Ci−1,j − Ci,[k], 0}

i + k∗(m−i)
n−2

)
(2)

and

ATj,k = Cm,j + Cm,u (3)

respectively.
As the no-idle issue does not allow idleness in the machines, Equation (2) results in max{Ci−1 −

Ci,[k], 0} = 0, consequently ITj,k = 0, transforming Equation (1) into

ξj,k = ATj,k = Cm,j + Cm,u (4)

whereCm,j means the completion time of job j to be added in the last position of the current sequence
and Cm,u is the completion time of the artificial job u in the last machine. The artificial job is defined
as an average calculated by the processing time of all the jobs in U − {j} on each machine, where j is
the job added in the last position. Therefore, this average is considered the artificial processing time
from the artificial job.

The artificial times p′
i are calculated as follows:

p′
i =

∑U−{j}
k=1 pi,k

|U − {j}| (i = 1, 2, . . . ,m) (5)

The relationship illustration between the completion times, Cm,j and Cm,u, is in Figure 1.

188 M. S. NAGANO ET AL.

Figure 1. Relationship between completion times Cm,j and Cm,u .

Algorithm 1 LR-NEH(x) heuristic. Adapted from Pan and Ruiz (2013)
Calculate the values of ξj,0 (Equation (4))
Order jobs in non-descending order of ξj,0, obtaining α = (α1, . . . ,αn)

d = 3n
4

for l = 1 to x do
π l = αl
U = U − αl
for k = 2 to d do

Select the job j with the lowest ξj,k ∈ U value. Place it at the end of π l

U = U − j
end for
Calculate Pj = ∑m

i=1 pi,j ∀j ∈ U
Order the jobs in non-descending order of Pj, obtaining β = β1, . . . ,βn−d
for k = 1 to n − d do

Test job βk in all positions of π l

Insert job βk, searching for a position which minimizes the
∑

Ci value
end for

end for
return sequence π ∈ {π1,π2, . . . ,πx} with the lowest value of

∑
Ci

The FL-LS heuristic, developed by Laha and Sarin (2009), is a modification of the Framinan and
Leisten (2003) heuristic. It uses an iterative job insertion, similar to the NEH Nawaz, Enscore, and
Ham (1983) heuristic, where the job, after it is inserted in the best possible position, is reinserted in
the current sequence. The authors proved that this modification improves the performance of the
Framinan and Leisten (2003) heuristic, significantly. The FL-LS heuristic also outperformed the WY
method.

LR-NEH(x), developed by Pan and Ruiz (2013), minimizes the total flowtime problem, using the
LR(x) heuristic to generate a partial sequence of d jobs and the NEH heuristic to insert n−d jobs in
the partial sequence. The relative position of the jobs does not change while the sequence is being
constructed.

The authors affirm that the FL-LS heuristic, from Laha and Sarin (2009), is the best regarding
solution quality but not in terms of CPU time. They concluded that the LR-NEH(x) heuristic offers
a good balance between CPU time and solution quality. LR-NEH(x) pseudocode is presented in
Algorithm 1.

FF(x), developed by Fernandez-Viagas and Framinan (2015), is similar to LR(x), with regards to
addition jobs. The jobs are inserted one by one at the end of the sequence according to the index ξ ′

j,k,

ENGINEERING OPTIMIZATION 189

which is based on the inserted job idle time and the completion time. This method proved to bemore
efficient than LR(x). Fernandez-Viagas and Framinan (2015) also integrated the procedure to several
other heuristics, replacing the LR(x) with the new proposal of jobs prioritization. The index ξ ′

j,k is
calculated as follows:

ξ ′
j,k =

(
n − k − 2

α

)
∗ IT′

j,k + AT′
j,k (6)

The values of AT′
j,k and IT′

j,k are calculated in

AT′
j,k = Cm,j (7)

and

IT′
j,k =

m∑
i=2

⎛
⎝m ∗ max{Ci−1,j − Ci,[k], 0}

i − b + k ∗
(
m−i+b
n−2

)
⎞
⎠ (8)

where IT′ is the weighted total machine idle-time between the processing of the kth position job of
the sequence and job j, and AT′ is the job j completion time in the last machine.

Afresh, IT′
j,k = 0. Hence, only the element AT′

j,k will be presented in index ξ ′
j,k, resulting in

ξ ′
j,k = Cm,j (9)

The index in Equation (9) chooses the shortest completion time job j in the last machinem. There-
fore, the difference between Equations (4) and (9) is the artificial job, which is not considered in
Equation (9).

3. A new simple heuristic method

The proposed heuristic, namely Proposed(x,y), was based on the LR-NEH(x) heuristic from the work
by Pan and Ruiz (2013), where x and y are the number of generated sequences by the heuristic and
the maximum number of reinsertions to be performed, respectively.

To solve the Fm|no − idle|∑Cj problem, a partial solution is generated with d jobs using LR(x)
and the remaining n−d jobs are inserted in the sequence using a NEH heuristic. The proposal in this
article uses amodified version of the FL-LS heuristic instead of theNEHmethod. Other changes were
made, such as the reinsertion of y selected jobs rather than reinserting all of them in the sequence
after each iteration ofNEH. The aim is to optimize the partial sequences generated byNEH efficiently.
While reinsertion improves the partial sequences, which results in better final solutions, the selection
of a limited number of jobs for reinsertion ensures the heuristic maintains its efficiency.

The jobs are selected in line with a selection procedure, which is based on two main components.
The first consists of defining a weight function that prioritizes jobs in ascending order regarding the
indexWj,

Wj = TFT(π − {j}) for j = 1, . . . , k (10)

where j is the job removed from a sequence π with k jobs. TFT is the sum of the last machine job
completion times,

∑n
j=1 Cmj. The job to be prioritized for reinsertion is the one that results in the

lowest total flow timewhen removed from the current sequence. Thus, the insertion procedure avoids
jobs that have little relevance in the total flowtime solution.

The secondmain component is comprised of the selection procedure to prevent the jobs that were
already selected in previous reinsertion iterations to be selected again. This is necessary because the
method only selects the job by theWj index, therefore, the reinsertion neighbourhood will be similar
since the reinsertion will select similar job sets.

190 M. S. NAGANO ET AL.

Algorithm 2 Proposed(x,y) heuristic
Calculate the values of ξj,0, (Equation 4)
Order the jobs in non-descending order of ξj,0, obtaining α = {α1,α2, . . . ,αn}
Calculate Pj = ∑m

i=1 pi,j ∀j,∈ U
Order the jobs in non-descending order of Pj, obtaining β = β1, . . . ,βn
for l=1 to x do

π l = {αl}
U = U − {αl}
for k=2 to d do

Select the job j with the ξj,k(lowestvalue) ∈ U. Place it at the end of π l

U = U − j
end for
Order the jobs in U according to the list β , obtaining δ = {δ1, δ2, . . . , δn−d}
R = ∅
for k=1 to n − d do

Insert job δk in π l in the position that results in the lowest value of
∑

Cj
L = job selection (π l, R, L, k) (Algorithm 3)
for q=1 tomin{(n − d) + k, y} do

π = π l

Reinsert the job Lq, searching a position in π which minimizes the
∑

Cj
value
Insert Lq in the front of list R. If |R| ≥ |A|, remove the last job of R
if TFT(π) < TFT(π l) then

π l = π

end if
end for

end for
end for
return the sequence π l ∈ {π1,π2, . . . ,πx} with the lowest value of

∑
Cj

Consider L as a given reinsertion list, |L| is the size of the list L, R is the list of jobs that are not
allowed to be reinserted,A is the limit for the number of jobs inR and y is a heuristic parameter which
defines the maximum number of reinsertions to be performed.

A list L is generated using the index Wj. In the reinsertion step, the jobs from L are placed in
the list R, from the top to the bottom. If the list size is greater than A, the jobs of the last positions
of R are removed until R has only A jobs. The list L will be composed by the jobs in the current
sequence that are not listed in R, based on the ascending order of theWj index. When |L| is smaller
than y ,the remaining positions of the list L are filled by the following indexWj, provided that there
are no repeated jobs in the list L. An example for the proposed heuristic is provided in the online
supplementary material.

In the next section, computational experiments and the statistical analysis is presented. Besides, a
comparison is done regarding solution quality and computational effort. The Proposed(x,y) heuris-
tic pseudocode is shown in Algorithm 2, as the selection procedure pseudocode is illustrated in
Algorithm 3.

4. Computational and statistical experiments

All methods were run in C++, in an i7 4770 3.9 GHz processor, with 8 GB RAM. To test the
proposed heuristics, the benchmark of no-idle permutation flowshop problem instances has been

ENGINEERING OPTIMIZATION 191

Algorithm 3 Job selection procedure for reinsertion.
L=∅
CalculateWj = TFT(π l − j), ∀j ∈ π l

OrderWj in ascending order, obtaining γ = {γ1, γ2, . . . , γ(n−d)+k)}
u=1
while |L| ≤ min{(n − d) + k, y)} and u ≤ {(n − d) + k} do

if (γu is not in R)
L = L + γu

end if
u = u + 1

end while
u = 1
while |L| ≤ min{(n − d) + k, y}

if (γu is not in L)
L = L + γu

end if
u = u + 1

end while
return list L = {L1, L2, ł . . . , Lmin{(n−d)+k,y}}

used, proposed by Ruiz, Vallada, and Fernández-Martínez (2009). This test contains 250 instances
with combinations of n = 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 andm = 10, 20, 30, 40, 50. To
accelerate the procedures, a method developed by Tasgetiren et al. (2013) was applied.

Some necessary adaptations were done for statistical and computational evaluation, such as chang-
ing the heuristics for the flowshop scheduling problem followed by the minimization total flowtime
criterion and the no-idle restriction. The IG algorithm (vIG DE) has also been compared with the
work by Tasgetiren et al. (2013) with the variation proposed in this article. The compared heuristics,
authors, and implemented adaptations are presented in Table 1.

The Proposed(x,y) heuristic was evaluated regarding different internal parameters, that are: d,
which defines the size of the partial sequence resulting from the application of the method LR(x),
and A, which defines the size of the jobs list which is not allowed for reinsertion, R.

To find a good combination of the d and A parameters, computational experiments with d =
(3n4 ,

n
2 ,

n
4) and A = (3n4 ,

n
2 ,

n
4) were performed, considering x= 5 and y= 15, that is, Proposed(5,15).

The parameter values were obtained experimentally. Only the best ones were selected. Average
relative percentage deviation (ARPD) was used to measure the heuristics performance, as well as to

Table 1. Heuristics compared, authors and adaptations.

Heuristic Author Adaptation

NEH Nawaz, Enscore, and Ham (1983) Objective function
Initial order changed from the longest processing
time (LPT) to the shortest processing time (SPT)

WY Woo and Yim (1998) Objective function
LR(x) Liu and Reeves (2001) Objective function

Modification of the priority index ξj,k (Equation (4))
FL-LS Laha and Sarin (2009) Objective function.
LR-NEH(x) Pan and Ruiz (2013) Objective function

Modification of the priority index ξj,k (Equation (4))
FF(x) Fernandez-Viagas and Framinan (2015) Objective function

Modification of the priority index ξ ′
j,k (Equation (9)).

vIG DE Tasgetiren et al. (2013) No adaptation required

192 M. S. NAGANO ET AL.

compare the heuristics regarding solution quality,

ARPD(TFT(πh)) = 1
N

∑(
TFT(πh) − TFT∗

TFT∗ ∗ 100

)
(11)

where TFT(πh) is the total flowtime of the πh sequence, generated by heuristic h, and TFT∗ is the
best solution found among all the heuristics compared.

Complete results of parameter variation, ARPD, and CPU time are shown in the online supple-
mentary material. Figure 2 summarizes these results graphically. The best solution is highlighted in
grey, while the others are in black.

Heuristic performance is affected significantly when d assumes the values 3n
4 and n

2 , since the best
result is obtained by d = 3n

4 and the worst is assigned to d = n
2 . The d values also interfere in the

CPU time, as small d values are related to the greatest CPU time. This shows a benefit of using the LR
method to construct part of the sequence (n × d jobs), because fewer steps are needed in the main
loop and the Proposed(x,y) gains speed.

The best results were found for d = 3n
4 and A = n

4 . Thus, this combination was adopted in the
subsequent experiments.

The x and y variables are defined for every heuristic: (i) LR(x) and FF(x) assume x = { n
10 , n

}
; (ii)

LR-NEH(x) with x = 5, 10, 15; (iii) Proposed(x,y) is tested with x = 5, 10 and y = 15, 20.
The results of simple heuristics evaluation considering all problems are presented in Table 2.

Complete results are available in the online supplementary material.
The FF(n

10) heuristic showed worse (ARPD= 22.73) than the LR(n
10) (22.08), meaning that the

artificial job considered in the index ξj,k (Equation (4)) contributed to better results. These heuristics

Figure 2. ARPD and CPU time average for the tested parameters combinations. The Pareto dominating combination is depicted in
grey.

ENGINEERING OPTIMIZATION 193

Table 2. ARPD and the average CPU time, in seconds, of each heuristic.

Heuristics ARPD CPU time

Proposed(10, 20) 3.27 7.58
Proposed(10, 15) 3.53 6.13
Proposed(5, 20) 3.63 3.65
Proposed(5, 15) 3.89 3.45
FL-LS 4.76 14.60
LR-NEH(15) 7.37 3.17
WY 7.43 8.07
LR-NEH(10) 7.55 2.13
LR-NEH(5) 7.95 1.07
NEH 10.84 0.07
LR(n) 17.30 80.08
LR(n

10) 19.38 7.91
FF(n) 22.08 7.03
FF(n10) 23.73 0.69

presented results below the other simple heuristics (presented ahead). This was expected since a
robust construction phase was lacking in these methods.

The NEH heuristic presented computational efficiency (CPU time average of 0.07 seconds),
achieving higher results than the heuristics LR(n

10) (7.91 seconds) and FF(
n
10) (0.69 seconds). Regard-

ing solution quality,NEH is also better than the other ones. It was observed that increasing the number
of generated sequences in FF(n) and LR(n) improves the results considerably (ARPDFF(n) = 19.38,
ARPDLR(n) = 17.30), although its CPU time is tenfold.

The LR-NEH(x) heuristic presented a good balance between solution quality and computational
effort, overcoming the heuristics analysed so far.

The WY heuristic reached comparable results to the LR-NEH(10) heuristic, with a mean CPU
time greater than the LR-NEH (x) heuristic. The FL-LS heuristic obtained an excellent ARPD (4.76),
although its CPU time was the worst so far (14.60 seconds).

The Proposed(10,20) heuristic reached the best result regarding ARPD (3.27). The Proposed(x,y)
variations (x = {5, 10} and y = {15, 20}) provided the smallest ARPD. Besides, the Proposed(10,20)
heuristic proved effective, with ameanCPU time 48% lower than the FL-LS heuristic. Proposed(5,20)
presented superior results to the FL-LS heuristic in terms ofmeanCPU time, thatmeans, the first took
75% less time than the other one.

The lower average of the CPU time results from the Proposed(x,y), with the selection of a limited
set of jobs to be reinserted.While FL-LS selects all the jobs in the sequence for reinsertion, resulting in
a very costly computational procedure, the Proposed(x,y) intelligently selects only y = {15, 20} jobs
from the sequence, resulting in better partial solutions while it keeps its computational efficiency.
Figure 3 presents the intervals of theARPDof eachmain simple heuristic comparedwith a confidence
interval of 95%.

The LR-NEH(15) heuristic did not present a significant difference when compared to the WY
heuristic, despite its CPU time being significantly smaller (see Figure 3). The Proposed(10,20) heuris-
tic presents a significant statistical difference compared to the FL-LS heuristic, with much better
results than all the other simple heuristics assessed. The Tukey test was carried out to determine
if the averages are statistically different among them and this is provided in the online supplementary
material. The results indicate that there is a statistical difference between the Proposed(x; y) heuristic
and the other constructive heuristics.

4.1. Evaluation of the vIG DE algorithms

The algorithm vIG DE from the work by Tasgetiren et al. (2013), is the best metaheuristic for the
no-idle flowshop problem with flowtime criteria so far. It is a variable of the IG algorithm, in which

194 M. S. NAGANO ET AL.

Figure 3. ARPD for each simple heuristic, with a confidence interval of 95%.

the parameters are adjusted by the differential evolution (DE) algorithm (the destruction size and the
probability of applying the IG algorithm to an individual).

The vIG DE algorithm starts with an initial population generated by the NEH heuristic, where
each individual in the target population is represented by a sequence πi, a destruction size (di) and
the probability (pi) of applying the IG algorithm. The algorithm applies an iterative improvement
scheme for each individual consisting of the following procedures:

• Mutation and crossover: A trial individual is generated by applying a mutation and arithmetic
crossover operator, with the size of destruction (di) and probability (pi) parameters. The parame-
ters of the generated trial individual are denoted as ui,1, for the destruction size, and ui,2, for the
probability of applying the IG algorithm.

• The probability of applying the IG algorithm: A uniform random number r is generated. If r is less
than the probability (ui,2), the trial individual is directly produced by applying the IG algorithm.

• Destruction phase: ui,1 jobs are randomly removed from sequence πi without repetition. The
sequence without these jobs is denoted by πD.

• Construction phase: The ui,1 jobs removed are inserted one by one in the sequence πD following
the same procedure as in the insertion phase of the NEH heuristic.

• Local search: The solution generated in the construction phase is improved by an improved version
of the local search proposed by Pan, Tasgetiren, and Liang (2008).

• Selection: The selection is applied based on the survival of the fittest among the trial and target
individuals.

The heuristic Proposed(x, y) was utilized to generate the initial population for the vIGDE, instead
of using NEH. Thus, in this new algorithm, the sequence for the first individual is constructed by

ENGINEERING OPTIMIZATION 195

Figure 4. ARPD for IG algorithms, with a confidence interval of 95%.

the Proposed(1,15) heuristic. The remaining individuals in the target population are randomly con-
structed, and the modified NEH, with reinsertions utilized in Proposed(x, y), is applied to each of
them. This new version of the IG was denoted as vIG DE Improved. To compare the algorithms, the
same test from the previous section was used, using five replicates for each instance.

For the stop rule, the algorithms were run with Tmax = n(m2) × t ms, the same criterion used
by Tasgetiren et al. (2013). In the online supplementary material there is a figure that presents the
intervals of the ARPD of each algorithm, with a confidence interval of 95%. The vIG DE Improved
version presented the best ARPD for each stopping time, with average results 0.99, 0.52, and 0.15%,
against 1.39, 0.78, and 0.31%, for t values equal to 10, 30, and 60ms, respectively. In Figure 4, vIG DE
Improved presents a significant statistical difference from vIGDE. Complete results of the ARPD and
Tukey test for each version of the IG algorithm are in the online supplementary material.

Clearly, the IG algorithms produce considerably better solutions when compared to the simple
heuristics from the previous section. However, note that for t= 60 the largest instances of 500 jobs
and 50machines take approximately 13minutes to run, and around 65minutes when five replications
are considered, against the average of theCPU time of 22 seconds, for problemswith 500 jobs from the
best simple heuristic. This shows that the proposed simple heuristic is very computationally efficient.

The integration of the Proposed(x, y) heuristic with the vIG DE contributes to the generation of
better solutions, which can be attributed to the fact that a high-quality initial population is efficiently
generated by the proposed initialization procedure.

5. Conclusion

In this article, the production scheduling problem in a no-idle flowshop environment with minimiz-
ing total flowtimewas addressed. After an extensive search in the literature, it was noted that this issue

196 M. S. NAGANO ET AL.

has not been developed deeply in the articles published, especially regarding constructive heuristics.
To cover this deficiency, simple constructive high-quality heuristics of the most general problem,
without no-idle restriction, were adapted to the problem in question.

A simple heuristic, called Proposed(x,y), was presented. The aim of the proposed heuristic was to
optimize the partial sequences generated by the NEH using reinsertion of a limited set of jobs. The
proposed heuristic and the adapted methods were compared using an extended benchmark com-
posed by 250 problems instances with up to 500 jobs and 50 machines. The experiments show that
the construction strategy used in the heuristic Proposed(x,y) (x = {5, 10} and y = {15, 20}) results
in better results (statistically significant) than the adapted methods, maintaining its computational
efficiency, especially when compared to the FL-LS heuristic. For instance, FL-LS obtains an ARPD of
4.76 with amean of CPU time of 14.60 seconds, while themethod Proposed(10, 20) obtains an ARPD
of 3.27 in almost half the time, 7.58 seconds. Among the least computationally intensive heuristics,
the method LR-NEH(x) presented very good results, surpassing the NEH heuristic, when adapted to
the problem.

Furthermore, the proposed heuristic was incorporated in the initialization procedure of the vari-
able IG algorithm proposed by Tasgetiren et al. (2013). This new version was called vIG DE -
Improved. The computational experiments show this integration significantly improves the solution
quality of the algorithm.

For future research, it is possible to develop composite heuristics using the method proposed in
this article. In addition, the proposed approaches can be considered for other scheduling problems
with different objective functions, such as total tardiness and makespan.

Acknowledgments
This work was supported by the Brazilian National Research Council (CNPq) under grant number 448161/2014-1,
308047/2014-1 and 306075/2017-2.

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
Marcelo Seido Nagano http://orcid.org/0000-0002-0239-1725

References
Adiri, I., and D. Pohoryles. 1982. “Flowshop/No-Idle or No-Wait Scheduling to Minimize the Sum of Completion

Times.” Naval Research Logistics Quarterly 29 (3): 495–504.
Benavides, A. J, and M. Ritt. 2016. “Two Simple and Effective Heuristics for Minimizing the Makespan in Non-

Permutation Flow Shops.” Computers & Operations Research 66 (Supplement C): 160–169.
Čepek, O., M. Okada, and M. Vlach. 2000. “Note: On the Two-Machine No-Idle Flowshop Problem.” Naval Research

Logistics 47 (4): 353–358.
Deng, G., and X. Gu. 2012. “A Hybrid Discrete Differential Evolution Algorithm for the No-Idle Permutation Flow

Shop Scheduling ProblemWith Makespan Criterion.” Computers and Operations Research 39 (9): 2152–2160.
Dong, X., H. Huang, and P. Chen. 2008. “An Improved NEH-Based Heuristic for the Permutation Flowshop Problem.”

Computers & Operations Research 35 (12): 3962–3968.
Fernandez-Viagas, V., and J. M. Framinan. 2014. “On Insertion Tie-Breaking Rules in Heuristics for the Permutation

Flowshop Scheduling Problem.” Computers & Operations Research 45: 60–67.
Fernandez-Viagas, V., and J. M. Framinan. 2015. “A New Set of High-Performing Heuristics to Minimise Flowtime in

Permutation Flowshops.” Computers & Operations Research 53: 68–80.
Fernandez-Viagas, Victor, Rainer Leisten, and Jose M Framinan. 2016. “A Computational Evaluation of Construc-

tive and Improvement Heuristics for the Blocking Flow Shop to Minimise Total Flowtime.” Expert Systems with
Applications 61: 290–301.

Framinan, J. M., J. N. D. Gupta, and R. Leisten. 2004. “A Review and Classification of Heuristics for Permutation Flow-
Shop Scheduling With Makespan Objective.” The Journal of the Operational Research Society 55 (12): 1243–1255.

http://orcid.org/0000-0002-0239-1725

ENGINEERING OPTIMIZATION 197

Framinan, J. M., and R. Leisten. 2003. “An Efficient Constructive Heuristic for FlowtimeMinimisation in Permutation
Flow Shops.” Omega 31 (4): 311–317.

Framinan, J.M., R. Leisten, andR. Ruiz-Usano. 2002. “EfficientHeuristics for Flowshop SequencingWith theObjectives
of Makespan and Flowtime Minimisation.” European Journal of Operational Research 141 (3): 559–569.

Framinan, J. M., R. Leisten, and R. Ruiz-Usano. 2005. “Comparison of Heuristics for Flowtime Minimisation in
Permutation Flowshops.” Computers & Operations Research 32 (5): 1237–1254.

Graham, R. L., E. L. Lawler, J. K. Lenstra, andA.H.G. R. Kan. 1979. “Optimization andApproximation inDeterministic
Sequencing and Scheduling: A Survey.” Annals of Discrete Mathematics 5: 287–326.

Huang, J. D., J. J. Liu, Q. X. Chen, and N. Mao. 2017. “Minimizing Makespan in a Two-Stage Flow Shop With Parallel
Batch-Processing Machines and Re-Entrant Jobs.” Engineering Optimization 49 (6): 1010–1023.

Kalczynski, Pawel Jan, and Jerzy Kamburowski. 2005. “A Heuristic for Minimizing the Makespan in No-idle Permuta-
tion Flow Shops.” Computers & Indunstrial Engineering 49 (1): 146–154.

Kalczynski, P. J., and J. Kamburowski. 2007. “On the NEHHeuristic forMinimizing theMakespan in Permutation Flow
Shops.” Omega 35 (1): 53–60.

Kalczynski, Pawel J, and Jerzy Kamburowski. 2008. “An Improved NEH Heuristic to Minimize Makespan in Permuta-
tion Flow Shops.” Computers & Operations Research 35 (9): 3001–3008.

Kalczynski, P. J., and J. Kamburowski. 2009. “An Empirical Analysis of the Optimality Rate of Flow Shop Heuristics.”
European Journal of Operational Research 198 (1): 93–101.

Kalczynski, P. J., and J. Kamburowski. 2011. “On Recent Modifications and Extensions of the Neh Heuristic for Flow
Shop Sequencing.” Foundations of Computing and Decision Sciences 36: 18–33.

Laha, D., and S. C. Sarin. 2009. “A Heuristic to Minimize Total Flow Time in Permutation Flow Shop.” Omega 37 (3):
734–739.

Li, X., Q. Wang, and C. Wu. 2008. “Heuristic for No-Wait Flow Shops With Makespan Minimization.” International
Journal of Production Research 46 (9): 2519–2530.

Liu, J., and C. R. Reeves. 2001. “Constructive and Composite Heuristic Solutions to the P//�Ct Scheduling Problem.”
European Journal of Operational Research 132 (2): 439–452.

Liu,W., Y. Jin, andM. Price. 2016. “ANewNawaz-Enscore-Ham-BasedHeuristic for Permutation Flow-Shop Problems
With Bicriteria of Makespan and Machine Idle Time.” Engineering Optimization 48 (10): 1808–1822.

Liu,W., Y. Jin, andM. Price. 2017. “A New Improved NEHHeuristic for Permutation Flowshop Scheduling Problems.”
International Journal of Production Economics 193 (Supplement C): 21–30.

Lu, Y-Y. 2016. “Research on No-Idle Permutation Flowshop Scheduling With Time-Dependent Learning Effect and
Deteriorating Jobs.” Applied Mathematical Modelling 40 (4): 3447–3450.

Nagano, M. S., and J. V. Moccellin. 2002. “A High Quality Solution Constructive Heuristic for Flow Shop Sequencing.”
Journal of the Operational Research Society 53 (12): 1374–1379.

Nagano, M. S., F. L. Rossi, and C. P. Tomazella. 2017. “A New Efficient Heuristic Method for Minimizing the Total
Tardiness in a No-Idle Permutation Flow Shop.” Production Engineering 11 (4): 523–529.

Narain, L., and P. C. Bagga. 2005. “Flowshop/No-Idle Scheduling to Minimise the Mean Flowtime.” The ANZIAM
Journal 47 (2): 265–275.

Nawaz, M., E. E. Enscore, and I. Ham. 1983. “A Heuristic Algorithm for the m-Machine, n-Job Flow-Shop Sequencing
Problem.” Omega 11 (1): 91–95.

Pan, Q-K., and R. Ruiz. 2013. “A Comprehensive Review and Evaluation of Permutation Flowshop Heuristics to
Minimize Flowtime.” Computers & Operations Research 40 (1): 117–128.

Pan, Q-K., and R. Ruiz. 2014. “An Effective Iterated Greedy Algorithm for the Mixed No-Idle Permutation Flowshop
Scheduling Problem.” Omega 44: 41–50.

Pan, Q-K., M. F. Tasgetiren, and Y-C. Liang. 2008. “A Discrete Differential Evolution Algorithm for the Permutation
Flowshop Scheduling Problem.” Computers & Industrial Engineering 55 (4): 795–816.

Pan,Q-K., and L.Wang. 2008a. “No-Idle Permutation FlowShop SchedulingBased on aHybridDiscrete Particle Swarm
Optimization Algorithm.” The International Journal of Advanced Manufacturing Technology 39 (7): 796–807.

Pan, Q-K., and L. Wang. 2008b. “A Novel Differential Evolution Algorithm for No-Idle Permutation Flow-Shop
Scheduling Problems.” European Journal of Industrial Engineering 2 (3): 279–297.

Ponnambalam, SG, PAravindan, and SChandrasekaran. 2001. “Constructive and Improvement Flow Shop Scheduling
Heuristics: An Extensive Evaluation.” Production Planning & Control 12 (4): 335–344.

Rad, S. F., R. Ruiz, and N. Boroojerdian. 2009. “New High Performing Heuristics for Minimizing Makespan in
Permutation Flowshops.” Omega 37 (2): 331–345.

Ribas, I., R. Companys, and X. Tort-Martorell. 2010. “Comparing Three-StepHeuristics for the Permutation Flow Shop
Problem.” Computers & Operations Research 37 (12): 2062–2070.

Ribas, I., R. Companys, andX.Tort-Martorell. 2017. “EfficientHeuristics for the Parallel Blocking FlowShop Scheduling
Problem.” Expert Systems with Applications 74 (Supplement C): 41–54.

Rossi, F. L., M. S. Nagano, and J. K. Sagawa. 2017. “An Effective Constructive Heuristic for Permutation Flow
Shop Scheduling Problem With Total Flow Time Criterion.” The International Journal of Advanced Manufacturing
Technology 90 (1): 93–107.

198 M. S. NAGANO ET AL.

Rossi, F. L., M. S. Nagano, and R. F. Tavares Neto. 2016. “Evaluation of High Performance Constructive Heuristics for
the Flow ShopWith Makespan Minimization.” The International Journal of Advanced Manufacturing Technology 87
(1): 125–136.

Ruiz, R., E. Vallada, and C. Fernández-Martínez. 2009. “Scheduling in Flowshops with No-Idle Machines.” In
Computational Intelligence in Flow Shop and Job Shop Scheduling, edited by U. K. Chakraborty, 21–51. Berlin:
Springer.

Saadani, N. E. H., A. Guinet, and M. Moalla. 2005. “A Travelling Salesman Approach to Solve the F/No – Idle/Cmax
Problem.” European Journal of Operational Research 161 (1): 11–20.

Shao, W., D. Pi, and Z. Shao. 2017. “Memetic Algorithm With Node and Edge Histogram for No-Idle Flow Shop
Scheduling Problem to Minimize the Makespan Criterion.” Applied Soft Computing 54 (Supplement C): 164–182.

Tasgetiren,M. F., Q-K. Pan, P. N. Suganthan, andO. Buyukdagli. 2013. “AVariable IteratedGreedyAlgorithmWithDif-
ferential Evolution for the No-Idle Permutation Flowshop Scheduling Problem.” Computers & Operations Research
40 (7): 1729–1743.

Tasgetiren, M. F., Q-K. Pan, P. N. Suganthan, and T. J. Chua. 2011. “A Differential Evolution Algorithm for the No-Idle
Flowshop Scheduling ProblemWith Total Tardiness Criterion.” International Journal of Production Research 49 (16):
5033–5050.

Woo, H-S., and D-S. Yim. 1998. “A Heuristic Algorithm for Mean Flowtime Objective in Flowshop Scheduling.”
Computers & Operations Research 25 (3): 175–182.

Ying, K-C., S-W. Lin, C-Y. Cheng, and C-D. He. 2017. “Iterated Reference Greedy Algorithm for Solving Distributed
No-Idle Permutation Flowshop Scheduling Problems.” Computers & Industrial Engineering 110 (Supplement C):
413–423.

Zheng, J-X., P. Zhang, F. Li, and G-L. Du. 2016. “The High Performing Backtracking Algorithm and Heuristic for the
Sequence-Dependent Setup Times Flowshop Problem With Total Weighted Tardiness.” Engineering Optimization
48 (9): 1571–1592.

Zhou, Y., H. Chen, and G. Zhou. 2014. “Invasive Weed Optimization Algorithm for Optimization No-Idle Flow Shop
Scheduling Problem.” Neurocomputing 137: 285–292.

	1. Introduction
	2. Simple heuristics
	3. A new simple heuristic method
	4. Computational and statistical experiments
	4.1. Evaluation of the vIG DE algorithms

	5. Conclusion
	Acknowledgments
	Disclosure statement
	ORCID
	References

