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ABSTRACT 18 

Invasive species are one of the biggest threats to coastal areas. Jellyfish, when found in 19 

aquaculture systems, may cause major economic damage; they are already present in 20 

many aquaculture facilities in the Mediterranean, Yellow Sea, and Bohai Sea. Herein, 21 

for the first time, we describe the occurrence of the upside-down jellyfish (genus 22 

Cassiopea) in shrimp (Litopenaeus vannamei) farms. The observed specimens were 23 

collected on the equatorial Southwestern Atlantic coast (Northeast Brazil) for 24 

identification by genetic sequence data (COI). The results indicate that the jellyfish in 25 

aquaculture systems are similar in terms of morphology and genetics to those found in 26 

natural environments in Bermuda, Egypt, Hawaii, Florida, and elsewhere in Brazil (Rio 27 

de Janeiro) and are related to specimens originally inhabiting the Red Sea (Cassiopea 28 

andromeda). In addition, we report the northward expansion of C. andromeda along the 29 

Brazilian equatorial margin. Only female jellyfish were observed, which suggests that 30 
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the maintenance and spread of the non-indigenous population occur by asexual 31 

reproduction. The high abundance and presence of juvenile and adult animals may have 32 

major economic impacts on a high-value industry, given the potential of the population 33 

to spread to shrimp farms located in tropical mangroves. 34 

Keywords: Aquaculture; Biological invasions; Jellyfish blooms; Litopenaeus 35 

vannamei; Invasive species 36 

 37 

INTRODUCTION 38 

Invasive species are one of the major threats in several coastal communities 39 

(Carlton, 1989; Carlton, 2001; Paul & Kar, 2016; Soares et al. 2018), being responsible 40 

for ecological, economical, and social impacts, such as the loss of biodiversity and 41 

biomass, and damage to ecosystem goods and services (Bellard et al., 2016; Gallardo et 42 

al., 2016; Vilà & Hulme, 2018; Walsh et al., 2016). Jellyfish have high invasive 43 

potential due to the ability of their planktonic and benthic (polyp) stages to survive 44 

under drastic environmental changes; however, worldwide, there are only five species 45 

for which there are confirmed reports of biological invasion (Bayha & Graham, 2014). 46 

Besides being a threat to the coastal ecosystem function (Graham et al., 2003; Paul & 47 

Kar, 2016), jellyfish can cause significant economic problems by impacting aquaculture 48 

systems (Purcell, et al., 2013; Dong et al., 2017). 49 

The occurrence of jellyfish species in aquaculture activities, such as fish and 50 

shrimp farming, was reported along the Chinese coast, with species from the Bohai and 51 

Yellow Seas such as Rhopilema esculentum (Dong et al., 2009), Aurelia aurita, Cyanea 52 

nozaki, Nemopilema nomurai (Dong et al., 2010),	 Aurelia sp. (Dong et al., 2017), 53 

Aurelia coerulea (Dong et al., 2018), and Phyllorhiza sp. (Dong et al., 2019), as well as 54 
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in the Mediterranean Sea, with the presence of Pelagia noctiluca (Bosch-Belmar et al., 55 

2016, 2017). 56 

 Jellyfish blooms in aquaculture systems have already been seen in China, where 57 

Phyllorhiza sp. was detected (Dong et al., 2019). In the Mediterranean Sea, the mauve 58 

stinger (Pelagia noctiluca) was detected in fish farms, reducing the growth rates and 59 

even causing the death of European seabass (Dicentrarchus labrax) (Baxter et al., 60 

2011). In the British Isles, including Ireland, the jellyfish species Aurelia aurita and 61 

Pelagia noctiluca were also reported to cause the death of many fish in salmon farms 62 

(Doyle et al., 2008; Marcos-López et al., 2014; Mitchell et al., 2013; Purcell et al., 63 

2013). Aquaculture activities provide artificial substrates that can be used as settling 64 

areas for proliferating polyps, contributing to the increase in the number of possible 65 

medusae (Lo et al., 2008; Richardson et al., 2009; Dong, Liu and Keesing, 2010; Purcell 66 

et al., 2007; Purcell, 2012; Duarte et al., 2013; Dong et al., 2018). 67 

One of the non-indigenous species (NIS) of jellyfish found in natural 68 

environments is from the genus Cassiopea, also known as upside-down jellyfish. This 69 

benthic medusa is commonly found in shallow waters (Ohdera et al., 2018) and is 70 

considered invasive in several coastal areas of the Caribbean and 71 

the Eastern Mediterranean Sea (Holland et al., 2004). Migotto et al. (2002) first 72 

recorded the genus Cassiopea (as C. xamachana) in the Southwestern Atlantic (Brazil). 73 

However, Morandini et al. (2017) identified a NIS population of Cassiopea andromeda 74 

based on morphology and a molecular marker (COI) and hypothesized that it has 75 

inhabited the Brazilian coast for more than 500 years. This species is considered native 76 

to the Red Sea, where it can aggregate in large numbers in natural ecosystems such as 77 

seagrass beds, coral reefs, lagoons, and mangrove habitats (Holland et al. 2004, Niggl 78 
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and Wild 2010). Although it is considered invasive or non-indigenous in many coastal 79 

environments worldwide, Cassiopea has never been reported in aquaculture ponds 80 

(Bayha & Graham 2014; Ohdera et al. 2018).  81 

Here, we report the occurrence of the NIS Cassiopea andromeda in shrimp 82 

farms in Northeast Brazil. This record is important because it shows a northward 83 

expansion of the invasion of C. andromeda in the Western Equatorial Atlantic 84 

(Brazilian coast), and it is the first mention in the literature of the presence of a species 85 

of Cassiopea in aquaculture systems anywhere in the world.  86 

MATERIALS AND METHODS 87 

The field activities were conducted on shrimp farms located in the municipality 88 

of Acaraú, Ceará State (NE Brazil) (Figure 1). The study area is located in the Brazilian 89 

Equatorial Margin (Figure 1), western equatorial Atlantic Ocean, under oligotrophic 90 

conditions and a semi-arid climate. In this area, the rainfall pattern is defined by two 91 

seasons: rainy (January to May) and dry (June to December) (Barroso et al. 2018), with 92 

low intra-annual and interannual variation in sea temperature (26-30º C) (Soares et al. 93 

2019).  94 

The study area is also subject to the continuous subequatorial atmospheric 95 

circulation of the trade winds, which are persistent and intense throughout the year 96 

(Gomes et al. 2014). Moreover, the study area is of special interest owing to the 97 

occurrence of an easterly flowing equatorial current that links the western equatorial 98 

Atlantic and the Amazon coast at this tropical latitude (Soares et al. 2017). The shrimp 99 

farms are generally found in coastal areas (Queiroz et al., 2013), where there are 100 

shallow and hypersaline estuaries characterized by freshwater-deprived conditions (e.g., 101 

multiple dams and severe droughts) and mangrove forests (Barroso et al. 2018). 102 
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 104 

Figure 1. Map showing previous reports of the presence of Cassiopea andromeda 105 
(circles) along the Brazilian coast (Morandini et al. 2017) and the new record (star) of 106 
the presence of this jellyfish at shrimp farms on the Ceará (CE) coast. 107 

 108 

Over the last four decades, Northeast Brazil experienced an intense development 109 

of industrial shrimp farming (Litopenaeus vannamei), making this area one of the main 110 

shrimp producers in Latin America (Meireles et al., 2007). By the end of the 1990s, 111 

shrimp farming had become an important food export industry, supported by 112 

government assistance, public-bank financing, academic collaboration, and legislative 113 

permissiveness, especially with respect to farming in the mangrove forests. Shrimp 114 

farms in northeastern Brazil are mostly located in estuarine areas that include mangrove 115 

ecosystems (Soares et al. 2017). The farms may be installed in mangrove forests where 116 

the trees have been cut to accommodate the installation of aquaculture facilities or they 117 

are constructed, under environmental licensing, in old salt pond facilities (Queiroz et al., 118 

2013).  119 
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 120 

Biological sampling and environmental data collection occurred in July 2018 121 

(end of rainy season). We measured the pH, salinity, and water temperature using a 122 

multiparameter probe (YSI 6602). To calculate the density of jellyfish, three belt 123 

transects (BTs) of 20 × 2 m (40 m²) were made. On these BTs, we randomly distributed 124 

quadrats of 50 × 50 cm and took images of the benthic jellyfish to analyze the size 125 

structure of the population. We also used a drone to photograph the area inside the 126 

shrimp farms (Figure 2C and 2D). The data from the BTs and photo-quadrats were 127 

collected at the border of the circulating canal at a depth of 50 cm (Figure 2B). The 128 

images were analyzed using the software program IMAGE J to count the number of 129 

specimens in the area and assess the main morphometric features within the population 130 

(density, abundance, and umbrella diameter). The diameter of the umbrella was 131 

measured from the images obtained and using the quadrats of 50 × 50 cm as a scale. 132 

The images obtained from both the drone camera and hand-held camera were analysed 133 

were analyzed using the IMAGE J program. 134 

 135 

 136 

 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 
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 146 

Figure 2. Shrimp farms and the study site (delimited by red lines) in Acaraú, Northeast 147 
Brazil (A). Closer view of the flooding canal where the jellyfish were collected; some 148 
specimens can be seen on the margin (red arrow) (B). View of the flooding canal where 149 
the sampling was performed (C). Closer view of the flooding canal with visible 150 
specimens (red arrow) (D). Image sources: A, Google Earth; B, field survey; C and D, 151 
aerial views captured using a drone.  152 

 153 

To determine the sex of the specimens, the gonads (n = 40 jellyfish) were 154 

exposed by cutting away the oral arms (Schiariti et al., 2012) and observing the lower 155 

part of the umbrella under the microscope (following the protocol described by 156 

Kienberger et al., 2018). For molecular identification, samples of different tissues (oral 157 

arms, umbrella margin, and gonads) of ten specimens were preserved in 90% ethanol 158 

prior to analysis. The same ten specimens were preserved in 4% formaldehyde solution 159 

in seawater for morphological observations.  160 
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DNA extraction, amplification, sequencing and assembling  161 

A protocol using ammonium acetate was used to extract DNA from the umbrella 162 

tissue (Fetzner 1999), but DNA samples from four of the ten available specimens were 163 

sequenced. A 700-bp fragment, including the standard barcoding region of cytochrome 164 

c oxidase I (COX1), was amplified (Hebert et al., 2003). One microliter of the extracted 165 

DNA was used as a template, with the final PCR reaction volume being 25 µl. The 166 

primers used were FishF1–5′-TCAACCAACCACAAAGACATTGGCAC-3′ and 167 

med-cox1-R–5′-TGGTGNGCYCANACNATRAANCC-3′ (Lawley et al. 2016; Ward 168 

et al. 2005). The PCR thermal program consisted of an initial denaturation step of 3 min 169 

at 95°C, followed by 35 cycles of 30 s at 95°C, 40 s at 54°C, and 50 s at 72°C, with a 170 

final extension of 7 min at 72°C. The PCR products were visualized on 2% agarose gels 171 

and purified using AmPure XP. Products were labeled using the BigDye Terminator 172 

V.3.1 Cycle Sequencing Kit (Applied Biosystems, Inc.) using the same primers and 173 

annealing temperature as those used in the PCR reaction. Dye-labeled DNA was 174 

sequenced bidirectionally using an ABI 3730 sequencer at the Biosciences Institute, 175 

Botany Department, University of São Paulo (USP). 176 

Sequence identification and phylogenetic analysis  177 

Sequences were assembled and edited using GeneiousTM 6.1.8. and analyzed 178 

using the BLAST server against the sequences within the NCBI databases. Sequence 179 

identification was performed based on BLAST scores and percent identity. Cassiopea 180 

andromeda sequences obtained from our specimens (two from the shrimp farm, 181 

MN384761 and MN384762, and two from the surrounding mangrove, MN384763 and 182 

MN384764) and those retrieved from GenBank were aligned using MAFFT and 183 

visualized and edited in BioEdit. Aligned sequences were submitted to TNT v.1.5 184 
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(Goloboff and Catalano, 2016) to be analyzed under parsimony as the optimality 185 

criterion using “New Technology” searches (Goloboff, 1999; Nixon, 1999). Node 186 

support was assessed by Goodman-Bremer support values (Goodman et al., 1982; 187 

Bremer, 1994; Grant and Kluge, 2008). Cassiopea frondosa was used as the outgroup 188 

(GenBank accession number AY319467; Holland et al. 2004).	 	189 

 190 

RESULTS  191 

The water temperature and salinity were recorded as 27.8°C and 39 ppt, 192 

respectively. The density of individuals found was 1.75 specimens/m², and the mean 193 

umbrella size was 19.5 ± 5.94 cm (n = 211). We observed both young and adult 194 

specimens in the shrimp farm populations (Figure 4A) but curiously, only females were 195 

found (Figure 4B). In case of some young specimens, it was not possible to check the 196 

sex due to undifferentiated gonadal tissues.  197 

The specimens sampled from the shrimp farm could be clearly identified as 198 

belonging to the genus Cassiopea based on the general morphology (upside-down 199 

habit). With regard to color pattern (greenish to brownish), number of oral arms and 200 

rhopalia (7–10 oral arms; 14–20 rhopalia), and bell diameter (2–25 cm), our specimens 201 

were comparable to those from other populations in Brazil. 202 

The COX1 data obtained from the four specimens were identical, and the results 203 

of the BLAST search with GenBank sequences are shown in Table 1 (using only one 204 

sequence for comparison). The specimens collected correspond to C. andromeda (sensu 205 

Holland et al. 2004), being related (~ 99%) with other C. andromeda sequences 206 

including those from the Red Sea (the type locality of C. andromeda), Bermuda, Brazil, 207 

French Polynesia, Mexico, and the United States of America (Table 1). The 208 

phylogenetic hypothesis obtained (Figure 3) was poorly resolved, with mostly 209 
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polytomic branching patterns, and the Goodman–Bremer support values were weak. 210 

Cassiopea andromeda from the Ceará coast (NE Brazil) are more related to specimens 211 

from Bermuda, Brazil, Egypt, and the United States. However, the dataset was not 212 

variable enough to show full resolution within the C. andromeda subclade. 213 

 214 

Table 1. Comparison of BLAST results of Cassiopea sp. samples from shrimp farms on 215 

the Ceará coast (this study) and those reported in previously published studies.  216 

GenBank ID 
Max and 

Total 
Score 

Query 
Cover 

E 
value 

Percent 
identity 

GenBank 
accession 

Collection locality Reference (DOI) 

Cassiopea 
andromeda 

1245 100% 0 99.42% JN700934.1 
Tiahura, Moorea, 
French Polynesia, 

France 
10.1093/gbe/evr123 

Cassiopea 
andromeda 

1175 96% 0 98.64% KC464458.1 Cabo Frio, Brazil 10.1017/S0025315416000400 

Cassiopea sp. 1112 89% 0 99.51% MF742169.1 Richardson’s Bay, 
Bermuda 

10.3354/meps12521 

Cassiopea 
andromeda 

1112 89% 0 99.51% HF930521.1 
Subarea 51.1, 
Western Indian 

Ocean 
10.1016/j.foodres.2013.10.003 

Cassiopea 
xamachana 

1088 87% 0 99.50% AY319463.1 Walsingham Pond, 
Bermuda 

10.1007/s00227-004-1409-4 

Cassiopea 
xamachana 

1083 87% 0 99.33% AY319464.1 Richardson’s Bay, 
Bermuda 

10.1007/s00227-004-1409-4 

Cassiopea 
andromeda 

1079 87% 0 99.16% AY319458.1 El Ghardaqa, Red 
Sea, Egypt 

10.1007/s00227-004-1409-4 

Cassiopea 
xamachana 

1077 87% 0 99.00% AY319468.1 Key Largo, Florida 
Keys, USA 

10.1007/s00227-004-1409-4 

Cassiopea 
andromeda 

1077 87% 0 99.00% AY319453.1 
Kainaone fishpond, 
Moloka’i, Hawaii, 

USA 
10.1007/s00227-004-1409-4 

Cassiopea 
xamachana 

1066 87% 0 98.66% AY319466.1 Walsingham Pond, 
Bermuda 

10.1007/s00227-004-1409-4 

Cassiopea 
xamachana 

1066 87% 0 98.66% AY319465.1 Richardson’s Bay, 
Bermuda 

10.1007/s00227-004-1409-4 

Cassiopea 
andromeda 

1053 87% 0 98.16% AY319454.1 
Kainaone fishpond, 
Moloka’i, Hawaii, 

USA 
10.1007/s00227-004-1409-4 

Cassiopea 1046 84% 0 99.31% AY319449.1 Oahu, Hilton 
Leeward, Hawaii, 

10.1007/s00227-004-1409-4 
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andromeda USA 

Cassiopea 
andromeda 

1044 84% 0 99.13% AF231109.1 
Oahu, Waikiki Beach, 

Hilton Lagoon, 
Hawaii, USA 

10.1007/s00227-004-1409-4 

Cassiopea 
andromeda 

1042 83% 0 99.48% KC464459.1 Cabo Frio, Brazil 10.1017/S0025315416000400 

Cassiopea 
andromeda 

1040 84% 0 99.13% AY319451.1 
Oahu, Hilton 

Leeward, Hawaii, 
USA 

10.1007/s00227-004-1409-4 

Cassiopea 
andromeda 

1035 84% 0 98.96% AY319450.1 
Oahu, Hilton 

Leeward, Hawaii, 
USA 

10.1007/s00227-004-1409-4 

Cassiopea sp. 1033 82% 0 99.47% MF742172.1 Walsingham Pond, 
Bermuda 

10.3354/meps12521 

Cassiopea 
andromeda 

1026 84% 0 98.62% AY319448.1 
Oahu, Hilton 

Leeward, Hawaii, 
USA 

10.1007/s00227-004-1409-4 

Cassiopea sp. 990 79% 0 99.45% MF742168.1 Richardson’s Bay, 
Bermuda 

10.3354/meps12521 

Cassiopea sp. 985 79% 0 99.27% MF742213.1 Moorea, French 
Polynesia, France 

10.3354/meps12521 

Cassiopea 
andromeda 

983 79% 0 99.26% KY610556.1 Baja California Sur, 
Isla San Jose, Mexico 

10.1071/IS16055 

Cassiopea 
andromeda 

983 79% 0 99.26% KY610555.1 Baja California Sur, 
Isla San Jose, Mexico 

10.1071/IS16055 

Cassiopea 
andromeda 

983 79% 0 99.26% KY610553.1 Baja California Sur, 
Isla San Jose, Mexico 

10.1071/IS16055 

Cassiopea 
andromeda 

983 79% 0 99.26% KY610552.1 
Baja California Sur, 

Isla San Jose, Mexico 
10.1071/IS16055 

Cassiopea 
andromeda 

983 79% 0 99.26% KY610551.1 Baja California Sur, 
Isla San Jose, Mexico 

10.1071/IS16055 

Cassiopea sp. 981 79% 0 99.08% MF742215.1 Moorea, French 
Polynesia, France 

10.3354/meps12521 

Cassiopea 
andromeda 

977 79% 0 99.08% KY610554.1 Baja California Sur, 
Isla San Jose, Mexico 

10.1071/IS16055 

 217 

 218 

 219 

 220 

 221 
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 222 

Figure 3. Phylogenetic hypothesis of Cassiopea spp. and Cassiopea andromeda based 223 
on the mitochondrial cytochrome c oxidase I gene. Lower left corner: simplified 224 
cladogram representation of Cassiopea spp. obtained by Holland et al. (2004), 225 
Morandini et al. (2017), and also recovered in this analysis (Ceara, Br = Ceará state, 226 
Brazil) based on the parsimony optimality criterion. Right panel: topology inferred 227 
using parsimony optimality criterion with 94 steps in length and Goodman–Bremer 228 
support values obtained based on a 442-bp fragment of the COX1 gene of Cassiopea 229 
andromeda, and Cassiopea frondosa (as an outgroup). More information about the OTU 230 
codes can be found in Table 1. 231 

 232 
 233 
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 234 

Figure 4. (A) Oral and aboral view of different specimens of the non-indigenous species 235 
Cassiopea andromeda from the shrimp farms (Ceará coast, NE Brazil). (B) Different 236 
amplification views (4×, 10×, and 40×) of the female gonads of C. andromeda from the 237 
shrimp farm.  238 
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DISCUSSION 239 

Morphological identification of the specimens sampled was inconclusive. This 240 

was somewhat expected due to the high variation in morphology and few characteristic 241 

features of species belonging to the genus Cassiopea (Morandini et al., 2017). However, 242 

the genetic analyses confirmed the first record of the non-indigenous (NIS) upside-243 

down jellyfish Cassiopea andromeda in shrimp (Litopenaeus vannamei) farms globally.  244 

For the first time, our study a bloom of C. andromeda in aquaculture facilities 245 

(shrimp farms) and the northernmost record of the species on the Brazilian coast (Figure 246 

1). This NIS species has expanded its range 24 km to the west, compared to the first 247 

report of its presence in mangroves in the Ceará state (from Morandini et al. 2017). 248 

Interestingly, we found only females from the cultivation and flooding canals of the 249 

shrimp farm. The presence of a single sex in the study population reinforces the 250 

hypothesis of Morandini et al. (2017) that the species arrived in Brazil through fouling 251 

on ship hulls and is establishing and expanding its population through asexual 252 

reproduction.  253 

We adopt the term NIS for this Cassiopea andromeda population in our study 254 

considering that it is not established, i.e., there appear to be no breeding between males 255 

and females. In addition, we have no information about the ecological and 256 

socioeconomic impacts of this species on mangroves and the shrimp farm in this region. 257 

This demonstrates the importance of future studies regarding these possible impacts. 258 

The presence of this NIS in shrimp farms in this region of Brazil can be explained by 259 

two mechanisms. First, the arrival of the population in the northeastern Brazil probably 260 

occurred by the transport of polyps or larvae attached to ship hulls, ballast water tanks, 261 

or even on some farm material (e.g., pumps or hoses). Secondly, the local expansion of 262 

the population in the localities of Acaraú and Itarema (Figure 1) may have occurred by 263 
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short-term dispersion by larvae in the estuarine area which enabled to reach on the 264 

shrimp farms and mangroves. The establishment of the population and its expansion on 265 

the shrimp farm and nearby areas such as mangroves require further investigation. 266 

Genetic analyses may indicate if the species first invaded the mangroves and then 267 

expanded to the shrimp farms or the other way around. Additionally, the availability of 268 

natural substrates (mangrove roots and leaves) in the surroundings of the aquaculture 269 

ponds also favors the invasive process in the shallow-water estuaries.  270 

The estuarine environments have a wide range of salinity profiles due to the 271 

influx of freshwater and tidal action (Azhikodan and Yokoyama, 2016). However, the 272 

studied shallow-water estuary is located on the equatorial coast and has thermal stability 273 

(ranging from 26–30°C) (Soares et al. 2019) and sometimes, the higher salinities of the 274 

hypersaline estuaries (Barroso et al. 2018), which favor the occurrence of Cassiopea 275 

andromeda. In addition, there is a large amount of food available for both the pelagic 276 

and benthic fauna in this estuarine area due to the high levels of organic matter and 277 

phytoplankton productivity (Barroso et al., 2018).  278 

The high abundance and presence of young and adult individuals of the NIS C. 279 

andromeda (Figure 4) in the shrimp farm can be attributed to the location of the 280 

aquaculture infrastructure in a mangrove area. Such an environment is ideal for the life 281 

cycle of the species, given that it comprises shallow and transparent waters and also 282 

high levels of available organic matter (Fitt & Costley, 1998; Fleck & Fitt 1999). The 283 

medusae are gathered only at the edge of the channel, where presumably light 284 

harvesting by the photosynthetic endosymbionts is possible. The aquaculture activities 285 

promote the eutrophication of the estuarine waters due to the input of phosphorus, 286 

nitrogen, and surplus organic matter, which favors phytoplankton growth (Barcellos et 287 

al., 2019).  288 
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The eutrophication can further favor the establishment of Cassiopea populations 289 

by providing nutrients for the symbiotic algae Symbiodiniaceae and plankton for 290 

heterotrophic feeding (Ohdera et al., 2018). Thus, the mixotrophic strategy of the 291 

jellyfish is an advantage in this estuarine environment. On the other hand, Cassiopea 292 

may also impact the ecological processes in this tropical shallow-water environment. 293 

High densities of Cassiopea may increase the benthic ammonium uptake and oxygen 294 

production but reduce nitrate uptake in a tropical lagoon (Zarnoch et al. 2020), which 295 

suggests that the Cassiopea population can significantly alter the biogeochemical cycles 296 

in the mangroves and shrimp farms.  297 

The genetic marker COX1 confirmed the first record of Cassiopea andromeda in 298 

the shrimp farm industry globally. Different genetic markers have been used to answer 299 

specific questions about the systematics of medusozoans. Slowly evolving genes have 300 

been shown to be appropriate for inferring relationships among scyphozoan jellyfish 301 

families (e.g., 18S and 28S) (Bayha et al. 2010). COX1 has been reported as useful for 302 

revealing diversity in genera such as Aurelia, Cassiopea, and Cyanea, having been used 303 

to demonstrate that taxa such as Aurelia aurita, C. andromeda, and Cyanea capillata do 304 

not comprise a single taxonomic unit as previously assumed (Dawson & Jacobs 2001; 305 

Holland et al. 2004; Dawson 2005; Scorrano et al. 2017).  306 

COX1 has also been employed in biogeographic, population genetics, and 307 

phylogeographic studies of scyphozoans; thus, it was useful in distinguishing two 308 

reciprocally monophyletic clades of Catostylus mosaicus showing evidence of early 309 

evolution (Dawson et al. 2005). On the contrary, researchers using COX1 and internal 310 

transcribed spacer 1 sequences observed neither geographic clusters nor genetic 311 

structure in the jellyfish Rhizostoma pulmo in the Mediterranean Sea (Ramšak et al. 312 

2012). Similar to the case of R. pulmo (Ramšak et al. 2012), we saw no evidence of 313 
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geographical clustering of the subclades of C. andromeda using COX1 (with our 314 

parsimony hypothesis), and neither did we not obtain a good resolution, nor well-315 

supported clades. Although they have different life habits (pelagic and epibenthic), both 316 

species lack differences in their genetic structure at these geographical scales. The wide 317 

distribution and drifting/swimming abilities of R. pulmo enable population connectivity 318 

for this species within the Mediterranean Sea; in the case of C. andromeda, the reduced 319 

mobility, combined with human-mediated distribution via maritime transport and 320 

invasive mechanisms can explain the population connectivity. 321 

Seasonal studies aimed at understanding the reproductive patterns, population 322 

structure, and factors favoring the increase in abundance and size of this NIS jellyfish in 323 

aquaculture facilities are urgently needed. The possible presence of Cassiopea jellyfish 324 

in other Brazilian shrimp farms should also be investigated. This can be carried out 325 

through a citizen's science approach (Embling et al. 2015; Deidun et al. 2018); digital 326 

images could be distributed to farms along the coast, and scientists would then validate 327 

the presence (or absence) of Cassiopea jellyfish. Moreover, considering the possible 328 

biogeochemical and ecological impacts of this NIS jellyfish (Ohdera et al. 2018; 329 

Zarnoch et al. 2020), further studies could evaluate the positive, negative, or neutral 330 

effects of such species on the shrimp farms and mangroves.  331 

The high abundance and presence of juvenile and adult animals may have major 332 

economic and ecological impacts on a high-value industry and mangroves. The tropical 333 

mangroves—in which the farms are located—could act as a bridge for the further 334 

spreading of the population of NIS jellyfish. Accordingly, other important issues to be 335 

addressed are the ecological, social, and economical consequences of the expansion of 336 

C. andromeda to farms producing the shrimp Litopenaeus vannamei, which is 337 

considered a valuable aquaculture resource globally (FAO 2018). 338 
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