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Landslide detection in the Himalayas using  
machine learning algorithms and U‑Net

Abstract  Event-based landslide inventories are essential sources 
to broaden our understanding of the causal relationship between 
triggering events and the occurring landslides. Moreover, detailed 
inventories are crucial for the succeeding phases of landslide risk 
studies like susceptibility and hazard assessment. The openly 
available inventories differ in the quality and completeness lev-
els. Event-based landslide inventories are created based on man-
ual interpretation, and there can be significant differences in the 
mapping preferences among interpreters. To address this issue, we 
used two different datasets to analyze the potential of U-Net and 
machine learning approaches for automated landslide detection 
in the Himalayas. Dataset-1 is composed of five optical bands from 
the RapidEye satellite imagery. Dataset-2 is composed of the Rapi-
dEye optical data, and ALOS-PALSAR derived topographical data. 
We used a small dataset consisting of 239 samples acquired from 
several training zones and one testing zone to evaluate our models’ 
performance using the fully convolutional U-Net model, Support 
Vector Machines (SVM), K-Nearest Neighbor, and the Random 
Forest (RF). We created thirty-two different maps to evaluate and 
understand the implications of different sample patch sizes and 
their effect on the accuracy of landslide detection in the study area. 
The results were then compared against the manually interpreted 
inventory compiled using fieldwork and visual interpretation of 
the RapidEye satellite image. We used accuracy assessment met-
rics such as F1-score, Precision, Recall, and Mathews Correlation 
Coefficient (MCC). In the context of the Nepali Himalayas, employ-
ing RapidEye images and machine learning models, a viable patch 
size was investigated. The U-Net model trained with 128 × 128 pixel 
patch size yields the best MCC results (76.59%) with the dataset-1. 
The added information from the digital elevation model benefited 
the overall detection of landslides. However, it does not improve the 
model’s overall accuracy but helps differentiate human settlement 
areas and river sand bars. In this study, the U-Net achieved slightly 
better results than other machine learning approaches. Although it 
can depend on architecture of the U-Net model and the complex-
ity of the geographical features in the imagery, the U-Net model 
is still preliminary in the domain of landslide detection. There is 
very little literature available related to the use of U-Net for land-
slide detection. This study is one of the first efforts of using U-Net 
for landslide detection in the Himalayas. Nevertheless, U-Net has 
the potential to improve further automated landslide detection in 
the future for varied topographical and geomorphological scenes.

Keywords  Landslides · U-Net · Deep learning · Machine learning · 
Himalayas

Introduction

Loss of property and human life due to earthquake-triggered 
landslides is significantly high and is expected to increase due 
to climate change (Froude and Petley 2016; Gariano and Guzzetti 
2016). About 47,000 earthquake-induced landslide casualties were 
reported from 2004 to 2010 (Petley 2012). Earthquake-induced 
landslides (EQIL) have direct and indirect long-term socioeco-
nomic and environmental effects (Fan et al. 2018). The direct and 
indirect effects of landslides, for example, through the formation 
and breakout of landslide dams, are a significant natural hazard in 
the mountain regions of the Himalayas (Dhital 2015). Studies show 
unprecedented loss to both human lives and the economy in the 
Himalayan regions due to landslides, contributing up to 30% of the 
world’s total landslide-related damage value (Dahal and Hasegawa 
2008; Haigh and Rawat 2011). In Northern India, for example, dur-
ing the recent 2021 Uttarakhand landslides, 24 people were killed by 
landslides and around 150 were missing (Meena et al. 2021a). A large 
number of people are affected in the Himalayan regions by small 
and large-scale landslides, especially during the monsoon seasons 
(Khanal and Watanabe 2005; Thapa and Dhital 2000; Upreti and 
Dhital 1996). Although landslides often occur in remote areas, the 
resulting catastrophic flash floods from landslide dam outbreak 
cause extensive damage to settlements, hydroelectric projects, and 
agriculture fields in the downstream areas (Meena and Tavakkoli 
Piralilou 2019).

To better analyze the frequency and distribution of landslides, 
there is a growing demand for event-based inventories that can be 
used to determine the probability of landslide occurrence in space 
and time as a basis for hazard and risk assessment. There is still 
insufficient information on landslide occurrences for many areas 
to make reliable hazard maps (Reichenbach et al. 2018). Landslide 
susceptibility and hazard modeling require accurate and complete 
landslide inventory datasets. This inventory dataset is usually used 
for training hazard models to find potential landslide-prone areas 
(Guzzetti et al. 2012).

The accuracy and completeness of landslide inventory data-
sets are essential for making spatial predictions for future events 
(Hakan and Luigi 2020). The mapping of event-based landslide 
inventories in remote and mountainous areas makes remote sens-
ing data the primary source of information for mapping these 
events (Chen et al. 2018).

In terms of detecting landslide boundaries with remote sensing  
images, classification methods like pixel-based, feature-based, and  
object-based techniques can be employed (Lu et al. 2020; Su et al.  
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2020). While pixel-based methods only extract features by classi-
fying each pixel, they do not take the spatial-context into account. 
However, feature-based methods (like gray level co-occurrence 
matrix and principal component analysis) (Whitworth et al. 2002) 
and object-based image analysis (OBIA) explicitly leverage the spa-
tial information from satellite images (Bacha et al. 2020; Hölbling 
et al. 2012; Martha et al. 2010). During the last decade, deep-learning 
models and other machine learning models, particularly Convolu-
tional Neural Networks (CNNs), have been applied successfully in a 
broad range of image segmentation and object detection purposes 
(Ding et al. 2016; Ghorbanzadeh et al. 2020; Jin et al. 2019; Liu et al. 
2019; Shi et al. 2020).

The use of CNN models has yielded promising results for clas-
sification of aerial images (Bui et al. 2019; Ghorbanzadeh et al. 2021, 
2020; Meena et al. 2021b; Yu et al. 2017). Numerous studies using 
CNN have been conducted for landslide detection (see Table 1). 
Many authors used CNN models for automated landslide detec-
tion in mountainous regions using multi-temporal high-resolution 
remote sensing data, mono-temporal medium-resolution image 
data (Chen et al. 2018), where others optimized their models and 
compared with existing baseline models such as Fully Convolu-
tional Networks (FCNs) (Lei et al. 2019). Hyperspectral data for 
landslide detection was first investigated by Ye et al. (2019). In recent 
studies, different topographical factors like elevation and its deri-
vates like slope, aspect, and curvature combined with remote sens-
ing data for landslide detection were explored to improve landslide 
detection (Sameen and Pradhan 2019; Liu et al. 2020b; Prakash et al. 
2020).

Deep learning models usually require large amount of training 
data to detect objects efficiently. However, since landslide inven-
tories are generated for small areas using manual interpretation 
and fieldwork, such inventories commonly have just a few samples 
and present a limitation for the training of deep learning models 
(Chen et al. 2020; Liu et al. 2020a; Qi et al. 2020) Therefore, in this 
study, the main objective was to evaluate and compare the perfor-
mance of the machine and deep learning models trained with a 
small dataset composed of only 239 landslide polygons (55 polygons 
for training and 184 polygons for testing purposes). The fully con-
volutional U-Net deep learning model and other machine learning 
models were trained with data from a 5-m RapidEye optical satellite 
imagery and resampled 12.5-m ALOS PALSAR digital elevation data 
for landslide detection.

Study area

The study area is located in Rasuwa district Nepal, which is situ-
ated in higher Himalayas and is one of the highly affected regions 
after the 2015 Gorkha earthquake (see Fig. 1). Most of the study 
area falls in the Langtang national park and there are several 
hydropower plants projects along the Trishuli River. After the 2015 
Gorkha earthquake, a series of landslides triggered by the earth-
quake caused damage to hydro powerplants, agricultural land, and 
human settlements. On 15 April 2015, during the Gorkha earthquake, 
more than 80 people were killed due to EQILs and flood events 
near the Mailung village hydropower plant camps. Several attempts 
have been made by local authorities and foreign institutes to study 
impact of landslide on human settlements and hydro powerplants 
in the region. However, in many inaccessible hilly areas, field visit 

was not feasible hence remote sensing tools can help supplement 
the field visits. The study area is highly affected by monsoonal rains 
and every year several deep-seated landslides get reactivated such 
as the one near Ramche village.

Data used and methodology

Datasets

The landslides were visually interpreted as polygons from RapidEye 
imagery acquired on 04 November 2016 (Planet Labs Inc.) and field 
observations. The data has 5 m spatial resolution in five spectral 
bands: blue (440–510 nm), green (520–590 nm), red (630–685 nm), 
red-edge (690–730 nm), and near-infrared (760–850 nm) (RapidEye 
2011).

A total of 239 landslide polygons were mapped in the entire 
study area, 55 in the training zones and 184 in the test zone (the 
training zones are yellow and testing zones are red in color in 
Fig. 1c). For training the model, 117 sampling points were manually 
selected along the centerline of the landslide polygons present in 
the training zone. Other 57 points were selected outside the land-
slide polygons to represent non-landslide samples (see Fig. 1c). 
Therefore, a total of 174 sampling points were used to train the 
models. Those points were used as the centroid to generate the 
training patches of four sizes: 16 × 16, 32 × 32, 64 × 64, and 128 × 128 
pixels (Fig. 2).

Two datasets were created to train the models. Dataset-1 consists 
of the five spectral bands (RGB, red-edge, NIR) from the RapidEye 
satellite. The Dataset-2 consists of the same five bands and two 
extra topographical bands (elevation and slope). The elevation and 
slope data were acquired from a digital elevation model (DEM), 
resampled to 5-m spatial resolution, derived from Phased Array 
type L-band Synthetic Aperture Radar (PALSAR) of the Advanced 
Land Observing Satellite (ALOS).

All the models used the same training data to compare the 
results from the models properly. The deep learning algorithms 
were trained using the Python libraries TensorFlow 2.0 and the 
machine learning using Scikit-Learn.

Classifiers

U‑Net model

U-Net (Ronneberger et al. 2015) is a state-of-art deep learning 
model used for semantic segmentation tasks. This model has an 
encoder-decoder architecture similar to the letter “U” (Fig. 3). The 
encoder path is composed of blocks of two 3 × 3 convolutional lay-
ers followed by a 2 × 2 max-pooling layer. The convolutional layers 
are 3 × 3 moving windows that translate around the image, calcu-
lating a dot product that can be summarized by Eq. 1 (Zhang et al. 
2018):

where Ol−1 refers to the output of the (l-1)th layer, Wl represents 
the weights and bl represents the bias. � indicates the non-linear 
activation function. The rectified linear unit (ReLU) was used as the 
activation function in this research. ReLU is commonly used as the 

(1)O
l = �(Ol−1 ∗ W

l + b
l)
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activation function because it is more efficient than other functions 
and reduces the gradient vanishing problem during the training 
step (Wang et al. 2019). The function returns 0 when the input is 
negative and the same input value if it is positive. The max-pooling 
layers keep only the maximum values from the feature maps gen-
erated from the convolution operation. Thus, after a max-pooling 

operation, the spatial dimension of the feature map is reduced to 
half of the input size.

The decoder path recovers the spatial location by using up-con-
volutions and concatenations from the encoder path (Ronneberger 
et al. 2015). The up-convolution layers increase the dimensions of 
the feature maps. The layers’ output is concatenated with the feature 
map from the symmetrical position in the encoder path. In the last 
layer, a sigmoid function was used to output the class predictions 
in a 0–1 probability range. A threshold of 0.5 was used to deter-
mine the positive (> 0.5) and the negative (< 0.5) classes after the 
prediction.

Several papers describe and explain the U-Net structure and 
how convolutional neural networks are trained (Ghorbanzadeh 
et al. 2019a, b; Prakash et al. 2020; Wang et al. 2019). In this study, 
we use a fully convolutional neural network that is capable of calcu-
lating per-pixel probability of comprising a landslide. Unlike previ-
ous work conducted by Ghorbanzadeh et al. (2019a, b) where they 
used a classical convolutional neural network to generate patch-
wise landslide classification, the neural network used in our study 
is more efficient for landslide segmentation problems as the result 
is a binary output with the same size as the input image (Prakash 
et al. 2020, 2021; Qi et al. 2020). The network hyperparameter tuning 
process considered different number of filters (8, 16, 32), learning 
rates (0.01, 0.001, 0.0001), and batch sizes (8, 16, 32). The learning 
rate value was reduced by a factor of 0.1 when the validation loss 
function reaches a plateau for more than twenty epochs. The mod-
els were saved only when the validation loss function decreased as 
an attempt to avoid overfitting.

Support vector machine (SVM) model

SVM is a machine learning method that uses kernel functions to 
map the dataset into a higher dimension to determine a hyperplane 
that separates the training data feature spaces (Cortes and Vapnik 
1995). The margining of the hyperplanes, also known as support 
vectors, is maximized to be the closest to the training features. This 
method gained popularity for landslide mapping due to accurate 
results, even with small datasets and unknown statistical distribu-
tions (Moosavi et al. 2014; Mountrakis et al. 2011; Pawłuszek and 
Borkowski 2016).

The classification result is affected by the kernel function (e.g., 
linear, sigmoid, polynomial, radial basis). Thus, various kernel 
functions were evaluated to find the best classifier.

K‑nearest neighbors algorithm (KNN) model

K-nearest neighbors is a machine learning algorithm that uses the 
training data to find the feature space’s K-closest neighbors. The 
algorithm outputs a class probability that reflects the uncertainty 
with which a given individual item can be assigned to any given 
class (Marjanovic et al. 2009). In this study, the distance between 
the feature space points was calculated using the Euclidean distance 
method. An optimal K value was determined by testing K in a 1–10 
range.

Fig. 1   A Location of the study area in Nepal, B landslide training and 
testing zones in the study area, and C sampling points along the 
center line of the landslide polygons (black) and non-landslide class 
(purple)
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Random forests (RF) model

Random forest is an ensemble method widely used for landslide 
detection (Chen et al. 2014). The method is based on multiple deci-
sion trees. Each tree is slightly different since they are trained with 
the training dataset’s random subsets. The technique is less prone 
to overfitting because each tree’s output class is weighted based on 

a majority voting technique where the class with the most votes 
becomes the model’s prediction.

Multiple input patches

Different patch sizes may affect the model accuracy because 
landslides have different shapes and sizes, which may not be 

Fig. 2   Conceptualization of 
generating the patches for 
training the models

Fig. 3   The architecture of the U-Net model. The numbers below the convolution represent the number of filters used to train the model
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well-represented depending on the patch size. Moreover, since 
the negative class is usually more frequent than the positive class 
in remote sensing imagery, larger patches may negatively influ-
ence the model because they can increase the imbalance between 
the positive and negative class (Ghorbanzadeh et al. 2019a, b).

In this work, the patches used to train the models were con-
stituted by a multiple of 16 pixels since this is a condition to 
effectively train the U-Net model. The models were trained with 
16 × 16, 32 × 32, 64 × 64, and 128 × 128 pixel patches to compare 
and evaluate how the different patch sizes affect the accuracy of 
the model. The models were also trained with 256 × 256 pixels 
patches. However, since the results were inferior compared to the 
other patch sizes, only the results achieved with the mentioned 
patch sizes were considered in the “Results” section.

Results

The machine and deep learning models were trained using only 
174 samples to evaluate and compare the performance of the algo-
rithms using small datasets. In total, sixteen result maps were 
generated for each dataset (dataset-1 and dataset-2). The result 
maps (Figs. 4a, b; 5a, b; 6a, b; 7a, b) are named based on the algo-
rithm, the patch size, and the dataset used to train the algorithm. 
Therefore, the map U-Net_16_5 and U-Net_16_7 (Fig. 4a and b) 
correspond to the U-Net deep learning algorithm trained with 
the 16 × 16 patch size using the dataset with five optical bands 
(dataset-1) and seven bands (dataset-2), respectively. The best 
results were achieved by U-Net models with a learning rate of 
0.001; SVM models trained with a polynomial kernel function 
and a scalable gamma parameter (γ); KNN models trained with 
nine neighbors; and RF models with 200 trees and depth 8.

Figure 8 portrays the differences in the areas of the landslides 
detected with the different machine learning models with respect 
to the influence of the topographical information from dataset-2. 
As seen in Fig. 8b, the total area in most of the models is relatively 
higher in dataset-2 than dataset-1 when compared against the 
manually interpreted ground truth area. This difference is because 
of the detection of false positives as an influence from the slope 
and elevation in dataset-2. Although there are improvements in the 
built-up area and river sand bars, the model gets confused and gen-
erates false positives in forests and agricultural areas.

The models were evaluated based on precision, recall, F1-score, 
and Matthews Correlation Coefficient (MCC) metrics, which are 
calculated using the value of true positive (TP), false positives (FP), 
and false negatives (FN) (Fig. 9). Precision (Eq. 2) calculates the 
proportion of pixels correctly classified as landslides. Recall (Eq. 3) 
value represents the number of pixels that was correctly classified 
as landslides from the total pixels representing landslides.

F1-score (Eq. 4) is a harmonic mean between precision and 
recall; therefore, the highest values of F1-score correspond to 

(2)Precision =
TP

TP + FP
× 100

(3)Recall =
TP

TP + FN
× 100

models with better performance. Landslide datasets usually 
have an unbalance between the positive (landslides) and nega-
tive (background) classes. Thus, the MCC (Eq. 5) metric is better 
for comparing imbalanced datasets (Baldi et al. 2000).

The results show that among the models trained with data-
set-1, the U-Net 128,5 model achieved the highest MCC (71.06) and 
F1-score (71.12). Nevertheless, compared with the other algorithms, 
the MCC results are just 0.63, 1.59, and 2.65 higher than the SVM, 
KNN, and RF algorithms (Table 2). SVM 1285 achieved the highest 
precision (80.28), while U-Net 16,5 had the highest recall (83.94).

The U-Net also had better performance in dataset-2 (Table 3). 
However, in dataset-1, the model trained with 128 × 128 patch size 
achieved the best F1-score and MCC, while in dataset-2, the model 
trained with 16 × 16 patch size achieved the highest F1-score (69.42) 
and MCC (69.70). The patch size seems to be more relevant to data-
set-2 since all the models trained with 16 × 16 patch size achieved 
the best results. In dataset-1, the SVM and KNN trained with the 
16 × 16 patch size also had the best results; however, the best U-Net 
and RF model was trained with 128 × 128 and 32 × 32 patch size, 
respectively.

Comparing the results of both datasets, the models trained with 
dataset-1 achieved better results compared to the same algorithm 
over dataset-2. The U-Net 128,5 was the best overall model among 
both datasets. Similar to what was observed by Ghorbanzadeh et al. 
(2019a, b) with machine learning models trained in the same area, 
the topographical layers helped differentiate human settlement 
areas, which have identical spectral responses to landslides; how-
ever, the models generate more false-positive in the steeper areas. 
Visually evaluating the segmentation of each algorithms (as seen in 
Fig. 10), the U-Net segmentation is smoother and more continuous, 
with greater similarity in comparison to the manual annotations 
than with the other ML methods. SVM, KNN, and RF results show 
similar segmentation patterns and mistakes.

Discussion

The U-Net deep learning model achieved the best results in this 
study based on the metrics used to evaluate the models. However, 
the MCC and F1-score values were similar among all the models. 
The results highlight that U-Net can achieve robust results even 
with few training samples. However, since the machine and deep 
learning achieved similar accuracies, all the algorithms have similar 
behavior with a small dataset, and it is impossible to define a bet-
ter algorithm based on the accuracy metrics. However, similarities 
between the manual annotations and the U-Net model results are 
noted in terms of landslide prediction smoothness and continuity, 
demonstrating better segmentation results than the other models. 
The models evaluated by Ghorbanzadeh et al. (2019a, b) in the same 
study area were trained with a bigger dataset composed of 3500 
samples, which was augmented to 7000 samples. In that study, the 
CNN model achieved the best results with an F1-score that was 

(4)F1score =
2 × precison × recall

(precision + recall)
× 100

(5)MCC =
TP × TN − FPxPN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100
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Fig. 4   a Landslide detection 
results using U-Net model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using U-Net 
model in sampled area in the 
test zone using dataset-2
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Fig. 4   (continued)
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Fig. 5   a Landslide detection 
results using SVM model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using SVM 
model in sampled area in the 
test zone using dataset-2
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Fig. 5   (continued)
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Fig. 6   a Landslide detection 
results using KNN model in 
sampled area in the test zone 
using dataset-1. b Landslide 
detection results using KNN 
model in sampled area in the 
test zone using dataset-2.
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Fig. 6   (continued)
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Fig. 7   a Landslide detection 
results using RF model in sam-
pled area in the test zone using 
dataset-1. b Landslide detec-
tion results using RF model in 
sampled area in the test zone 
using dataset-2.
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Fig. 7   (continued)
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5.73% greater than the best machine learning model. The signifi-
cant differences in the author’s accuracy between the machine and 
deep learning models highlight the importance of the dataset size. 
In this study, despite the slightly higher accuracy achieved by the 
U-Net, the deep learning algorithms were computationally more 
expensive, needing a GPU (GeForce RTX 2060, 8 GB memory) for 
the training process, while the machine learning algorithms only 
used the CPU (Intel I7 10700 K).

The patch size is an important parameter to find the best algo-
rithm since it affects the model’s accuracy. The U-Net trained with 
the optical data showed a similar pattern to what was observed by 
Soares et al. (2020), where the U-Net models trained with smaller 
patches (32 × 32) yield a greater recall while the models trained 
with the bigger patches (128 × 128) achieved a greater precision. The 
models trained with bigger patches became more restrictive (made 
fewer false-positive errors) than the models trained with smaller 
patches. Nevertheless, this pattern was not observed in the U-Net 
models trained with the topographical dataset and on the results 
achieved by the machine learning models.

The topographical data does not improve the results of the mod-
els in this study. This may be related to the resampled DEM used 
and the samples. Since the dataset is composed of 174 samples, the 

Fig. 8   Area of detected 
landslides using different 
machine learning and U-Net 
models against the manually 
interpreted ground truth (red 
color). A Dataset-1, B dataset-2

Fig. 9   Confusion matrix showing true class and predicted classes of 
landslides and other features and four different evaluation metrics
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models were not exposed to various topographic features. There-
fore, the pattern learned with the training samples may not repre-
sent the test area, and consequently, the results were worse. Moreo-
ver, the Hughes Phenomenon (Hughes 1968), also known as the 
Curse of Dimensionality in the field of machine learning, may also 
be related to the inferior results with the topographical dataset. 
Since the dataset with two extra topographical bands has a higher 
dimensionality, a greater number of samples are needed to improve 
the models’ accuracy. The small number of samples used to train 
the models was not enough for the classifier to reliably classify the 
landslide areas; therefore, the classification performance degraded 
with the higher dimensional data. This phenomenon may also jus-
tify why the models trained with 16 × 16 patch size (smaller patch, 
with lower dimensionality) achieved the best results within this 
dataset.

The training and test area used in this study have landslides with 
similar spectral characteristics. Therefore, this may also explain the 
comparable results achieved with the machine and deep learning 
models. However, since machine learning algorithms are trained 
using a one-dimensional vector with pixel values, the spatial pat-
tern of the landslides, such as the shapes, is not learned by those 
models. Consequently, it is expected that the deep learning method 
achieves better results in areas with different spectral characteris-
tics than the machine learning algorithm because those models are 
trained with two-dimensional patches that keep the spatial infor-
mation of the images. According to the literature, the U-Net like 
architectures achieve the best results for segmenting landslides in 
test areas with similar spectral characteristics to the training zones, 
and test areas with different spectral characteristics highlighting 
their generalization capacity and good accuracy on landslide seg-
mentation (Qi et al. 2020; Prakasha et al. 2020; Soares et al. 2020; Yi 
et al. 2020; Prakasha et al. 2021).

Table 2   The results of landslide detection in the study area based on 
the different ML and U-Net model for dataset-1; accuracies are stated 
as precision, recall, F1-measure, and MCC. The best values are in bold

Model Precision Recall F1-Score MCC

U-Net 16_5 57.20 83.94 68.03 68.99

U-Net 32_5 57.88 81.99 67.85 68.56

U-Net 64_5 67.19 71.09 69.09 68.83

U-Net 128_5 76.59 66.38 71.12 71.06

SVM 16_5 75.75 65.95 70.51 70.43

SVM 32_5 74.96 62.62 68.23 68.25

SVM 64_5 72.43 60.65 66.02 66.00

SVM 128_5 80.28 55.84 65.87 66.71

KNN 16_5 67.79 71.77 69.73 69.47

KNN 32_5 73.66 62.47 67.60 67.57

KNN 64_5 73.36 61.39 66.84 66.84

KNN 128_5 73.64 60.00 66.16 66.24

RF 16_5 58.70 76.54 66.44 66.69

RF 32_5 76.64 61.52 68.25 68.41

RF 64_5 72.82 60.42 66.04 66.06

RF 128_5 73.91 59.73 66.07 66.17

Table 3   The results of landslide detection in the study area based on 
the different ML and U-Net model for dataset-2; accuracies are stated 
as precision, recall, F1-measure, and MCC. The best values are in bold

Model Precision Recall F1-Score MCC

U-Net 16_7 61.46 79.74 69.42 69.70

U-Net 32_7 59.31 80.44 68.28 68.75

U-Net 64_7 62.07 77.11 68.78 68.88

U-Net 128_7 60.27 78.17 68.35 68.58

SVM 16_7 72.20 66.52 69.24 69.04

SVM 32_7 66.74 67.34 67.04 66.74

SVM 64_7 68.80 63.19 65.88 65.64

SVM 128_7 71.32 61.03 65.77 65.69

KNN 16_7 66.24 72.58 69.27 69.05

KNN 32_7 69.37 66.47 67.89 67.62

KNN 64_7 70.25 63.29 66.59 66.39

KNN 128_7 71.77 58.72 64.59 64.63

RF 16_7 70.22 68.67 69.44 69.17

RF 32_7 69.80 66.81 68.27 68.01

RF 64_7 69.95 60.04 64.62 64.51
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Fig. 10   Enlarged maps of 
sub-area from the test zone. 
Landslide detection results are 
overlayed on the inventory 
data
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Fig. 10   (continued)
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Conclusions

This work evaluates different machine and deep learning model 
performances trained with small datasets and different patch 
sizes for landslide segmentation. The U-Net deep learning model 
achieved the best results on dataset-1 and dataset-2. However, all 
the models achieved similar MCC and F1-scores, highlighting 
that deep learning models achieve comparable results to machine 
learning algorithms with small datasets. The extra topographic 
features (slope and elevation) did not improve the models’ results 
but yielded improved detection of false-positive such as built-up 
areas, an error in riverbeds. In this study, U-Net has slightly better 
results than other machine learning approaches. Although it can 
depend on the model architecture and the complexity of geograph-
ical features in the imagery, the U-Net model is still preliminary 
when considered for landslide detection. A reason for the U-Net 
model to perform better is because of the encoder-decoder and 
skip-connection structure of the model that preserves the struc-
tural integrity of the output results even with lower training data 
(Ronneberger et al. 2015). This exhibits the notion of actually using 
lesser training data, which is generally the case for new events, and 
can be then used in training and detecting landslides for newer 
events.

This study is one of the first efforts of using U-Net for land-
slide detection in the Himalayas. Nevertheless, U-Net has the 
potential to further improve automated landslide detection in 
the future as U-Net excels in producing good results as stated 
above in regard to the architecture structure but also that since 
the output is a segmentation result, we are provided with the 
information of the landslide boundary and the delineation of 
the landslide body as well. Further adjusting of the encoder part 
of the model, we can add deeper layers like Virtual Geometry  
Group (VGG) and Residual Neural Network (ResNet-50) (Simonyan  
and Zisserman 2014; He et  al. 2016) to further improve the 
results and thereby detecting more landslides with fewer false 
positives as model complexity overall tends to overcome such  
artifacts.

The use of only spectral bands can be a limitation for landslide 
detection since geological and the degree of saturation of the soil 
directly affect the targets’ spectral response. Therefore, areas with 
higher soil saturation may present darker colors while less satu-
rated areas will have light colors. Moreover, rocks with different 
weathering conditions will show different spectral responses. Thus, 
to avoid algorithm misclassifications and improve the results, fur-
ther studies need to use images covering a more comprehensive 
range of time and different seasons. This way, the models can learn 
and predict a broader range of spectral responses of the landslides 
and achieve better results.
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