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Abstract

The interaction between ocean current with sea waves plays an important role in the determination of the steady wave forces acting in a
floating system and, in the limit when the velocity is small, an exact formula obtained [J Fluid Mech. 272 (1994) 147; J Fluid Mech. 313
(1996) 39], relates the steady wave forces with the standard drift forces in the seakeeping problems. This result is applied here, in conjunction
to Newman’s approximation, to express the first order influence of wave-current interaction in the second order low frequency wave force
spectrum used in the study of the slow drift oscillation of a floating system. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The slow drift oscillation of a floating system is a
resonant phenomenon being excited by the second order
low frequency wave forces. These forces are, in general,
expressed in terms of the so-called quadratic transfer
function and are influenced, as the steady wave forces, by
the presence of an ocean current. The complete determina-
tion of the quadratic transfer function is a complicated
problem, even more when the interaction with the current
is accounted for, and the purpose of this paper is to present a
consistent approximation for the frequency spectrum of this
force.

The obtained expression is just an extension of the
so-called Newman’s approximation [9] for the present
case, where the force spectrum is described entirely now
in terms of the second order steady wave force coefficients
Dy(w,B) influenced by the current U; notice here that the
tree components of the vector Dy(w,3) are the two force
coefficients in surge and sway, the third component being
the yaw moment, while (w,8) are, respectively, the wave
frequency and wave direction before the interaction with the
current. The consistency of Newman’s approximation has
been analyzed in Ref. [1] and, as will be seen in the present
work, it can be extended, with some minor modifications, to

* Corresponding author. Address: Department of Naval and Ocean Engi-
neering, Cidade University, EPSUP, 05508-900 Sao Paulo, Brazil. Tel.:
+55-11-3818-5340; fax: +55-11-3818-5717.

E-mail address: japaran@usp.br (J.A.P. Aranha).

the present case, where the influence of the wave-current
interaction is addressed.

On the other hand, as shown in Refs. [2,3], when terms of
order U? are ignored the generalized force vector Dy(w,)
can be exactly expressed in terms of the standard (U = 0)
generalized steady wave force Dy(w,) by the formula

Dy(w. B) = (1 - 4%cos Bcw)Do(we, B, (L)

U
W, = w(l - —wcos BCW),
8

Bi=B+2 % in B
8

where . is the angle between the wave direction and the
current (see Fig. 1) and (w.B;) are, respectively, the
frequency of encounter and the refracted wave direction.
Besides to be mathematically exact within the frame of
the pertinent theory, where the flow is assumed potential
and terms of order U? are i gnored, two distinct experimental
results seem to confirm the adequacy of Eq. (1.1) to describe
the wave-current interaction effect. In fact, both Trassou-
daine and Naciri [4], analyzing MARIN’s decay test of a
VLCC model, and Aranha et al. [5], analyzing the experi-
mental results obtained at IPT for the equilibrium position
of a FPSO model with turret, observed a very close agree-
ment between the experiments and the theoretical results
obtained from Eq. (1.1). Using Eq. (1.1) into the extension
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Fig. 1. Geometric definitions.

of Newman’s approximation, it is possible now to express
the low frequency force spectrum influenced by the wave-
current interaction directly in terms of the standard drift
force coefficients Dy(w,B). This is the main result of the
present work.

In Section 2, some basic definitions and assumptions are
introduced while in Section 3 the expression of the low
frequency force spectrum is derived; in Section 4 a consis-
tent approximation for this spectrum is obtained for a
resonant response while in Section 5 some numerical results
for a VLCC are presented, showing the importance of the
wave-current interaction on the slow drift oscillation of a
floating system. In Appendix A some results about the
resonant response of a floating system and the kinematics
of the wave-current interaction are reviewed; specifically, it
is shown that the kinematic relations in Eq. (1.1) hold for a
particular history of the ocean current and it is also
indicated there how to extend to an arbitrary current field
the main results of this work.

2. Basic definitions and assumptions

The environment is characterized by an ocean current
with intensity U and an irregular wave being propagated
in a direction that makes an angle ., with the current,
see Fig. 1. The irregular wave is defined by its energy spec-
trum S(w), where S(w) is supposed to be the energy
spectrum before the interaction with the ocean current,
namely, the energy spectrum observed in the reference
system where the medium is stationary. To make more
precise this definition the attention is focused here on a
particular current field, assumed to be uniform in the
whole space. In the reference system moving with the
current one observes then the body being displaced with
the velocity —U while excited by a wave with spectrum
S(w). If w, is the peak frequency of S(w), it is supposed
here, consistent with the small velocity assumption behind
Eq. (1.1), that

Uw

T=—L <. 2.1
8

Let w, be the frequency of encounter,' defined in Eq.
(1.1), and Sy(w.) be the spectrum actually measured in the
vicinity of the body; by conservation of the wave action the
following relation can be derived (see Appendix A):

S(w) dw = Sy(w,) do, (2.2a)
and so, for 7 << 1, one obtains (see Ref. [6])
Uw,

S(w) = SU(we)(l — 22" cos ,BCW>, (2.2b)

w= we(l + Vo cos BCW>.
8

The spectrum S(w) is identified with the one existing
before the interaction with the current while Sy(w.) is the
one observed after the interaction. To make easier the
derivation, in special, to use Eq. (1.1), the reference will
be always the spectrum S(w) although the final result can
be expressed in terms of Sy(w.) with the help of Egs. (2.2a)
and (2.2b).

In a practical problem one is usually interested to estimate
the dynamic behavior of a certain variable V(f) dependent on
the slow drift displacement of the body. The first task then is
to define generically this variable and to estimate its low
frequency spectrum Sy({2).

Reserving the indices (j,k) = 1,2,3 for the degrees of
freedom in the horizontal plane, let

dy(®) = {d;u(}, (2.3a)

Fy(®) = {Fru()}

be, respectively, the generalized slow drift displacement
vector and the low frequency force in the horizontal
plane, both influenced by the wave-current interaction, and

V() =D vidy(1) (2.3b)
J

with {vj; j=1,2,3} being real numbers, be a generic low
frequency variable of the floating system. The intention here
is to obtain a consistent approximation for the frequency
spectrum Sy({2) of V(¢) in terms of the standard drift forces
coefficients Dy(w,f3).

The dynamics of the floating system can be characterized
by two parameters: by its natural frequency (2, in the
horizontal plane and the factor { of the critical damping,
see Appendix A. The following relations hold for these
parameters:

p= ooy, 2.4)

@p

[<1.

The low frequency excitation has practical importance

' The suffix ‘e’ will be reserved here and in the following to identify
frequencies after the interaction with the current.
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when resonance is excited ({2 = (2,) and the dynamic
amplification is large ({ << 1); those are the basic assump-
tions in the present work and since u << 1 one should be
concerned with the low frequency force spectrum in a
certain range {2 of frequencies where 2 =~ O(pw,) < w,.
It will be shown in Section 4 that the obtained approxima-
tion has an error factor of the form [1 + O(,u,z; né; u; 72)],
see Egs. (2.1) and (2.4).

3. The frequency spectrum Sy(£2)

As it is well known, a wave record with duration 7, can be
represented by the Fourier series (Aw = 27/T,)

n(t) = D A, cos(w,t — ,), w,, = mAw, (3.1a)

m=1

where the phases ¢,, are random and the amplitudes are such
that E[A2] = 28(w,)Aw in the limit Aw — 0, with @ and
S(w) (or w,, and S(w,,)) being, respectively, the frequencies
and the wave energy spectrum of the free waves before the
interaction with the ocean current.

Let {Tj,U(wl;wZ); j=1,2,3} be the quadratic transfer
functions influenced by the wave-current interaction.
These functions relate a pair of harmonic waves, with unit
amplitudes and frequencies (w;w,), with the second order
wave forces at difference frequency w;. — w,. after the
wave-current interaction, with the frequency of encounter
w,. being defined by Eq. (1.1), see Appendix A. This
transfer function depends, obviously, on the incidence
angle B and it can be eventually measured in a wave tank
by imposing, at the wavemaker, two harmonic waves with
frequencies (w;w;) and unit amplitudes while measuring
the force in the floating body, being displaced with velocity
—U, at the difference frequency of encounter w;, — wy,.

If (*) stands for the complex conjugate of the term on the
left, the components of the force vector (2.3a) can be written
in the form

Fiu(t) = (Fju(92,) % + () (3.1b)
q

with (notice, in Eq. (3.1¢), that (w,, + f)q(m))e — Wy = {2

q
2 .
when terms of order 7° are ignored)

o0
Fj,U(‘Qq) = Z AmAerq(m) el(qu Tj,U(wm; Wy, + Qq(m))’ (qu

m=1
= Pmtqm) — Pm>
N U
Q yomy = gm)Ao = Q|1+ E(Zwm + £2,)cos By, |-

3.1¢)

If H({2) is the transfer matrix of the linearized dynamic
system in the horizontal plane, see Appendix A, the

generalized displacement can be written as

dy) = > (H@Q)(Fp(2)) % + () (3.2)
q
and introducing the row vector (see Eq. (2.2b))
[H(2); Hy({); H3()] = |vy;vy; v3 H(LD) (3.2b)
the following expression is obtained for V(7):
Vi =Y ( H(Q)Fy(0,) % + (*)). (3.2¢)
g=1\_J

Placing now Eq. (3.1c¢) into Eq. (3.2c), observing the
randomness of ¢, and using the relation E[Afn] =
28(w,)Aw, the frequency spectrum of V(¢) can be written
in the form

Sy =" S HP @S] () + HP (OS] (). (3.3a)
k

J

where

1 * *
H () = 5 (H(OH () + H] (OH(D),

(3.3b)
HOW@O) = ~ %(Hj(_())H,j(Q) — H; (Q)H(D)
and (see Ref. [7])
S () =8 Jw S(@)S(e + fz(w))% [Tju(w; @
0
+ Q)T y(w; 0 + Q(w) + ()] do,
(3.3¢)

i) =8 Jw S(w)S(ew + fz(w))%[—iT,-,U(w; ®
’ 0

+ Q)T y(w; 0 + Q(w) + ()] do,

with the frequency 0(w) defined by the expression (see Eq.
(3.1c))

A U

D(w) = !2(1 + E(Zw + )cos BCW). (3.3d)
Again, if terms of order 7° are ignored, one can easily

check that (see Eq. (1.1))

(w+ Q(w), — w, = . (3.3e)

4. Approximation for Sy(£2) with error factor [1 +
O(p*; pg pr; 7))

The quadratic transfer function satisfies the conditions
(see Ref. [7])

T;u(wp: ) = Tiy(w; wy),
(4.1a)

T y(w; w) = D;y(w, B),
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where D, y(w,B) is the second order steady wave force influ-
enced by the wave-current interaction; given T; y(w;w>) the
following function can also be defined (see Ref. [1]):

M (w; ) — M (w; w)]. (4.1b)

i
IT y(w,B) = =
']’U(w B) 2[ 8w1 (:)(()2

Observing now that (Yo = O(w) and expanding
T;y(w; 0 + f)(w)) in Taylor’s series around T7;y(w +
Q(w)/2; 0 + Q(w)/2) = D;y(w + Q(w)/2, B) one obtains,
with the help of Eq. (4.1b), that®

T;u(w; 0 + Q(w) = D;y(0 + Q(w)/2, B)

+ 10T y(o, B)Q(w) + O(,uz). (4.1c)
The same expansion for 7} y(w + Q(w); ) gives now

Tiu(w + Q(0); ©) = D;y(0 + 2(w)/2, B)

—i0T;u(w, (W) + O()

and from the Hermitian property of the quadratic transfer
function, namely, from the first relation in Eq. (4.1a), it
follows that 97;y(w, B) is real. Since !Z/wp = O(p), it
turns out that (see Eq. (4.1¢))

1 A * A *
El_Tj,U((U; o+ NTy(w; 0+ 2) + ()]

= Dyl + 212, BD, y(w + 212, B) + O(u?),

1 . A ® A *
E[_ITJ’U(Q); o+ NT (o, 0+ 2) + ()]

= Q3T y(w, BDy(w, B) — Diy(w, PaTy(w, P
+0(u?)

and so, from Eq. (3.3c), the following approximations are
obtained:

(o)

S{]j(,R(Q) =38 JO S(w)S(w + Q(w))Dj’U(a)

+ Q(w)2, BD;y(w + D (0)/2, B) dw

+0(p?),
(4.2a)

oD =8 L Q(@)S* (@[T (w, B)Dyu(w, B)

— Djy(w, BT, y(w, B)] do + O(u?).

In a resonant response H},?(.Q) is of order (<1
compared with H;,f)(ﬂ), see Appendix A, and observing

that S{Jk, ;(£2) = O(w), since it is proportional to (2, see

% The function dT; y(w, B) depends on the second order potential and it
may become relevant in shallow water. As shown in Ref. [12], the influence
of the second order potential can be determined from a trivial extension of
Haskind’s relation applied to the steady second order wave potential.

Eq. (4.2a), the parcel H j(kl)((l)S{j]i ;(2) can be disregarded in
Eq. (3.3a) with an error of the form [1 + O(p,z; {w)]. On the
other hand, one can easily check, from Eq. (4.2a), that

ds ® (d0)
UR () — 4J (d()(w)) d
df 0 dQ Jo—odw

X (S*(0)D;y(w, B)D; y(w, B)) dw

® U d
=4J (1 +2—wcosﬁcw)—
g dow

0

X (S*(0)D;y(w, B)D; y(w, B)) dw

= — gcos BCWS{Ij z(0)
. :
and so
. , ds*
Sta(D) = S{4(0) + — 502+ O(?)
= S z(O)[1 + O(u’; w1). (4.2b)

Then, with an error factor of the form [1 +
O(Mz; wé; ur; 7 )], the spectrum Sy({2) can be approximated
by
Sy => > HP WS 0),

k

i (4.3a)
S (0) = 8 J: SA@D,(w, BDy(w, B) do,
where this last integral is given by (see Eq. (1.1))
stao =3[ (1- 452 oy Bcw)2
X §*(@)D; (e, B1) Dy o(we, By) do, (4.3b)

W, = w(l - %cos BCW), B =B+ ZESin Bew-
8 8

The frequency spectrum Sy({2) of the second order low
frequency variable V(f) can then be directly expressed in
terms of the standard (U = 0) second order steady drift
force coefficients D;¢(w,B), determined from a linear
frequency domain model. Expressions (4.3a) and (4.3b)
are the main results of this work and, in Section 5, the
practical importance of the wave-current interaction will
be displayed by means of some numerical examples. First,
however, it is necessary to extend the above result to a
broader class of situations that may become important for
application.

The basic point is that the wave refraction by the ocean
current is uniquely determined only if the field U(x,?) of the
ocean current is known in a geographical scale. In the
present context, however, the only information about
the ocean current was supposed to be its value in the vicinity
of the floating body and, in deriving the above result, a
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specific field U(x,f) had to be assumed: U(x, ) = U(0,7) =
—=U(t)e;, with U(t) =0 fort =0 and U(t) = U for t = t,
where x = 0 is the position of the floating system. This is the
most natural way to define the ocean current from the given
information and, clearly, the assumed field makes the
problem identical to the one where the medium is stationary
but the body is displaced with the velocity U(f)e; (see
Appendix A). In this case, then, the above result can be
experimentally confirmed in laboratory by towing a model
with the velocity Ue; while exposing it to a wave generated
by the wavemaker, with spectrum S(w); in particular, this
experiment can be easily performed for following (8., =
0°) and head seas (B.,, = 180°), as it was done in Ref. [5] for
the steady (harmonic) problem. Assuming, as it has been
done so far, this particular current field one can express
directly Eq. (4.3b) in terms of the actual spectrum Sy(w.);
in fact, using Eqgs. (2.2a) and (2.2b) into Eq. (4.3b) the
following expression can be derived:

. 0o U 2
S ((0) = SJO (1 -5 ;’° cos BCW)

X SH(@e)D;o(@e, B1)Dyo(@es Br) A, (4.3¢)

Uw,

Bi=B+2 sin Bey-

The question remains, however, on how to deal with an
arbitrary current field U(x,?) in the eventual situation where
it is known in a geographical scale; as discussed by White
and Fornberg [8] and in the references quoted there, the
predictions obtained from the wave refraction theory seem
to be reliable and may be used in the analysis of a floating
system, at least in the few circumstances where a more
detailed information about the spatial variation of the
ocean current is known.

In this way, let again Sy(w.) be the actual wave spectrum
in the vicinity of the floating body, this spectrum being
obtained either from a direct measurement of the wave
elevation or else theoretically, by the integration of the
equations of the geometric optics using the actual field
U(x,?). It is possible to argue then, as discussed in Appendix
A, that the spectrum S{'ﬁ‘,R(O) of the second order low
frequency forces should be given by Eq. (4.3c). The basic
argument is related with the ability that an observer placed
at the floating body must have to predict the forces from the
environment information he is able to measure in situ,
namely, the spectrum Sy(w.) and the current —Ue,, irre-
spective of the particular field U(x,f) existing in a geogra-
phical scale.

5. Numerical results

In the design analysis of a floating body one must study
the behavior of the floating system subjected to different
combinations of waves and currents. In this context, both

the wave spectrum and the ocean current are defined inde-
pendently and it seems natural, then, to identify the design
wave spectrum as the one existing before the interaction
with the current, since it is independent of it. As a conse-
quence the design wave spectrum should be identified with
S(w) and the expression (4.3b) should be used.

In order to assess the importance of the wave-current
interaction in the slow drift phenomenon one considers a
VLCC, with length L, beam B and draft 7, exposed to an
irregular wave described by Pierson—Moskowitz spectrum
with cut-off frequency’ 2w,, namely

5 H; 1 51

(DIZ)H S

0=w= L = 2,
@p
(5.1a)

=0.24

and to an ocean current with intensity U, incident in a direc-
tion that makes an angle ., with the wave direction, see
Fig. 1.

As it is clear from Eqgs. (4.3a) and (4.3b), the intensity of
the low frequency second order wave forces can be gauged
by the non-dimensional force coefficients

St R (O],
F' ; W = : B
jk,U(B Bc ) (1/8)ng§l]k
L L LJL2 (5.1b)
[yl = L L LJL2

LJLR2 LJLR2 L2

that is a function of both the incidence angle 8 and the
wave-current angle B.,. The importance of the wave-
current interaction can be disclosed by comparing
Fiu(B;Bcw) with Fiy o(B), the non-dimensional force coeffi-
cient in the standard problem, when U = 0 in Eq. (4.3b).

Figs. 2 and 3 present, for a VLCC with L = 320 m;
B =54m; T =21 m, the plot of Fj(B) and Fjy(B;Bcw)
when the ship is exposed to the extreme environmental
condition at Campos Basin (Hg =7.6m; U = 1.8 m/s)
and at the North Sea (Hg = 16 m; U = 1.5 m/s). In these
examples, the program WAMIT has been used to compute the
steady force coefficients {Dj,O(w, B);j=1,2,3}.

As a first observation about the obtained results it inter-
esting to observe that the slow drift phenomenon is more
important in Campos Basin, in spite of the fact that the
significant wave height is then half the value as the one
observed at the North Sea; this is caused by the invariance
of the wave steepness assumed in Eq. (5.1a) and by the fact
that the steady force coefficients are very small in the low
frequency regime.

3 Besides to be usual in the definition of an actual wave spectrum, a cut-
off frequency as prescribed in Eq. (5.1a) is needed here since the essential
assumption Uw/g < 1 cannot be maintained if w becomes very large.
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As it is shown in Figs. 2 and 3, the wave-current interaction
may have an important influence in the slow drift phenom-
enon, being able to change the response by a factor of order
2 when B, = 0° 180°. Similar conclusions were also found
in the determination of the steady equilibrium position of a
FPSO with a turret, where the importance of the wave-
current interaction was then confirmed experimentally, see
Ref. [5]. It is certainly important to check experimentally
the main results derived in this work, even more in the
situations where such interaction is apparently so relevant;
in the other hand, the proposed leading order approximation
in the small parameters 7, {, u can be very easily computed
in a routine analysis of a floating system, see Eqs. (4.3a) and
(4.3b).

Appendix A
A.l. Resonant response

In this section, some basic results about the resonant
response of a floating system in the horizontal plane are
reviewed, aiming to clarify some arguments used in the
main text and also to provide some results that are thought
to be useful. When the equations of the motion of the float-
ing system in the horizontal plane are linearized around a
given stable equilibrium position, the transfer matrix can be
written as

H(Q) = (—0°M + i0B(o) + R) |, (Al.la)

where M and R are, respectively, the inertia and the restor-
ing matrices and B(o) is the damping matrix, in general a
function of the standard deviation o of the response. The
matrix M is symmetric positive definite and the matrix R,
being due to the restoring forces caused by the mooring
lines,* may be assumed to satisfy also these properties; the
natural frequencies and normal modes {(Qj; q); j=1, 2,3}
are then solutions of the eigenvalue problem

(—02°M + R)q =0, (Al.1b)

with 2,= Max{{2;; j =1,2,3} in Eq. (2.3a) and (2.3b).
Let T =[q;;q,;q3] be the matrix of transformation to
modal coordinates, assumed normalized by the conditions

T'™MT =1, (Al.1c)

T'RT = [ 273, ].

B(o) = [by(0)] = T'B(0)T

with B(o) being the damping matrix in the modal coordi-

* There may be also a parcel of R due to the variation of the steady forces
with the dynamic yaw angle. In this case, one can write R = Ry + R, with
R symmetric positive definite and R, anti-symmetric and of the same
order ¢ of the damping matrix. The same results can be obtained then
with Ry in place of R in Egs. (Al.1b) and (Al.1c).

nates. The following damping coefficients can then be
introduced (see Eqgs. (2.3a) and (2.3b)):

20, °

7

{i(o) = (Al.2a)

{= 11;/1121;3 {gi(o)}.

Assuming that {<<1, with I;jk(o)/lajj(a) = 0O(1), the
resonant response in the modal coordinates can be obtained,
with an error of order (1 + O({)), from the simplified
transfer matrix

Hs(0) = [A;(D)], (A1.2b)
Hy(Q) = ik

(2} = 0% + 2,0

Returning to the original physical variables dy(?), see
Eq. (2.2a), it turns out that the resonant response can be
obtained, with the same error of order (1 + O({)), from
the approximated transfer matrix defined by

H(Q) = TH (DT". (A1.2¢)
Introducing the auxiliary matrices
1 0 07 0 00
L[ =10 0 0], L=]0 1 0],
| 0 0 0 0 00
(Al.3a)
0 0 07
=10 0 O
| 0 0 14
and the row vectors (see Eq. (3.2b))
7215 o Bam] = L1 v25 V3J(TImTl)- (A1.3b)
It follows, from Eq. (3.2b) and Eq. (A1.2d), that
Hih = Z 02 — 0% ]j-j”;i{,,l((r)_(lm_(l(l o).
(Al.3c)

In a resonant response, where |2 — (| = O({(2;) for j =
1,2, 3, the leading order behavior of the products that appear
in Eq. (3.3b) is then given by

hjmhkm (l
(Q, — 0 + 42 (007,07

H(QH; () = + 0()).

m

(Al.4a)

Observing that h;, are real numbers, since v; are (see Eq.
(A1.3b)), Eq. (Al.4a) implies that HY is of order ¢
compared to H},f), as assumed in this work.

From this result it follows, with an error factor of the form
[1+ O(,u,z; e u; 72)], that Sy({2) can be approximated by

Eq. (4.3a); if this expression is further integrated in {2 and



J.A.P. Aranha, M.R. Martins / Applied Ocean Research 23 (2001) 147—-157 155

Eq. (Al.4a) is used, the standard deviation oy of the
variable V(¢) can be approximated, now with an error factor
of the form [1 + O({)], by

Ym = Z z S{]J(,R(O)hjmhkm’
Ik )

2 TYm
V=2 50,000

Using Eq. (A1.4b) for the displacements whose standard
deviations enter in the definition of B(o) one can determine
the damping factors {{,,(0); m = 1,2,3} by iteration.

A.2. Wave-current interaction: kinematic relations and
spectrum

The intention here is to recover some basic kinematic
results used in the main text and to discuss also the relation
between the wave spectrum before and after the interaction
with the current. The focus of this discussion is specially
concerned with the assessment of the performance of a
floating production system, pursued either by a theoretical
means or else experimentally in the existing facilities. The
purpose is to try to make a little more objective and explicit
some implicit assumptions made in these studies.

Let o(K) be the intrinsic frequency, namely, the wave
frequency with respect to the medium; for example, o(K) =
(gK) " for a deep water gravity waves. If the medium is
moving with a slowly varying velocity U(x,f), from a
Galilean transformation of velocities one can easily check
that the dispersion relation is then defined by the function
(K= Kie; + Kye))

WK, x,1) = o(K) + Ux, HK,

K=K+ K32

Let now x(7) be the wave ray, tangent to the group velo-
city vector; as shown in Ref. [10], the wave ray x(f) and the
values of K(#) and w(¢) along it can be determined by the
solution of the following system (kinematic equations of
geometric optics):

(A2.1a)

dy, oW
dt 9K’ dr

dK; oW

do oW
v 227 (A21b)
0x; dr ot

The Hamiltonian structure of Eq. (A2.1b) has a consider-
able interest in itself: as it is known, by using de Broglie’s
wave-particle relations (H;p;E) =A(W;K; w) and the
expression E = p2/2m + V(x, ) for the energy of a particle
in the potential field V(x,f), one obtains the dispersion
relation fiw = A2K2/2m + V(x,1) of Schrédinger’s wave
equation; in this context, Hamilton’s equations for the
particle is just the geometric optics limit of Schrodinger’s
wave equation. If now C,(K) = do/dK is the intrinsic group
velocity, placing Eq. (A2.1a) into Eq. (A2.1b) one

obtains (j = 1,2)

dy; K;
L= G+ U,

dt
dK; aU;
e :_Kjg’ (A2.1¢)

To integrate Eq. (A2.1c) it is necessary to define the
initial state and also the current U(X,f), more precisely,
the history of how was the evolution of the ocean current,
as observed in the floating system, until the design value
—Ue, was reached. It seems natural, in this context, to
postulate an initial state without any current and where a
wave with frequency w and wave number K, being propa-
gated in the direction S, is detected by an observer placed
in the floating system. The wave number vector and
frequency are in this case defined by

K = K(cos B.,, e, t sin B, €,), (A2.2a)

o= o(K) = /gK.

Suppose further that at time ¢ = 0 the presence of an
ocean current in the direction —e; starts to be felt. Since
the ocean current is supposed to vary weakly in the space,
and this is an underlying assumption in the geometric optics
approximation, the observer in the floating system feels only
the variation of the current in time and, for him, the ocean
current is given5 by U(x,t) =U(0,1) = —U(r)e;, with
Uit)=0fort=0and U(t) = U for t = ;. As it is clear
from (A2.1c), in this case all wave variables change only in
time and, in particular, the wave numbers {K,-; j=12}
remain constant along all the transition.

From the last equation in Egs. (A2.1c) and (A2.2a) it
follows, however, that the frequency changes from w, at t =
0, to w,, at t = t;, with (see Eq. (1.1))
W, = w(l - %cos BCW). (A2.2b)

The observer at the floating body also detects a change in
the wave direction (wave refraction), the new direction S,
being given by

dx, Cy(K)sin B,

t = - ’
an Bovi = 3o Co(K) cos By — U

or, when terms of order U? are ignored and Eq. (A2.2a) is
used, by (see Eq. (1.1))

U
Bcw,l = Bcw + 2£Sin Bcw- (A22C)
8

> The case of an arbitrary U(x,r), with U(0,7) — —Ue; when t — oo,
is briefly addressed in the discussion that follows Eq. (A2.3b); notice that
x = 0 is assumed to be the position of the floating body.
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To obtain the variation of the wave spectrum one should
observe, first, that the intrinsic frequency o(K) remains
constant, since the wave number K does, and so conserva-
tion of the wave action implies here in energy conservation.
If now Sy (we(?)) is the wave energy spectrum at the time ¢,
with S(w) and Sy(w.) being, respectively, the spectrum
before (t = 0) and after (t = t;) the interaction with the
current, let E(f) = Sy (w.(?)) dw.(¢) be the energy around
a certain frequency w.(f); the equation for the energy
conservation is given by (see Eq. (A2.1c))

oE

9 dy;
-+ ; 6—xj(cg!,-E) =0, cg (1) = e (A2.3a)

Since in the present case the wave variables do not
change in space, the above equation implies in dE/dt = 0
or E(t)is a constant® and then

Su(w,) dw, = S(w) dw.

From this equality and Eq. (A2.2b) it follows, disregard-
ing again terms of order U?, that

Uw,

S(w) = SU(we)(l — 2= cos Bcw>, (A2.3b)

0= we(l + o, cos Bcw>.
8

Notice that Eqs. (A2.2b), (A2.2¢) and (A2.3b) coincide
exactly with the relations that would be observed at the
floating body if the medium is stationary but the body is
advancing with velocity U(?)e;, see, for example Ref. [6].

Placing now Eq. (A2.3b) into Eq. (4.3b) one obtains Eq.
(4.3c) and this expression is useful to extend the main result
of this work to an arbitrary current field U(x,?). In fact, if for
a time long the same ocean current —Ue; and wave
spectrum Sy(w.) are observed in the vicinity of the floating
body then, irrespective of the previous history of both, the
response should always be given by Eq. (4.3c), that
expresses the low frequency force spectrum directly in
terms of the in situ measured quantities. This can be raised
to a status of a postulate, where one affirms the ability that a
floating body observer must have to determine the response
from the environmental measurements he is able to make.
Another way to place this argument, in perhaps a less
enlightened and more direct perspective, is the following:
let Sy(w.) be the actual wave spectrum in the vicinity of the
floating body when r — oo, this spectrum being obtained
either by a direct measurement of the wave elevation or
else by a theoretical calculation, namely, by integrating
Eq. (A2.1c), with the prescribed U(x,f) and initial condi-
tions, in conjunction with the equation for the conservation
of the wave action. If now (w;S(w)) are determined from the
actual values of (w.;Sy(w.)) by means of Eq. (A2.3b) then,

® Eq. (A2.3a) is usually integrated by the method of the characteristic:
along the wave ray x(7) this equation reduces to (dE/df);) = —E div ¢
But here ¢, = ¢,(#) and so div ¢, = 0 leading to dE/dr = 0.

necessarily, (w;S(w)) are the frequency and wave spectrum
that would exist before the interaction if the current were
given by U(x,t) = —U(¢)e;, as assumed in the main text; but
then the derived results Egs. (4.3a) and (4.3b) continue to be
valid if the values of (w;S(w)), obtained from Eq. (A2.3b),
are used in them, and so Eq. (4.3c) follows trivially when
terms of order U are ignored. In other words: the (w;S(w))
obtained from Eq. (A2.3b) are the ones observed in the
reference frame that moves with the current, where the
medium is stationary and the body advances with velocity
Ue,; all results derived in this work were obtained in this
reference system.

In the same way that Eqs. (4.3a) and (4.3b) can be verified
in a wave tank by towing a model with velocity Ue,, expres-
sion (4.3c) can be verified in those large wave tanks
provided with devices to generate current. As it known,
the obtained current fields are not homogeneous in space
(sometimes, they are not even in time) and so they refract
the waves generated by the wavemaker; then, by measuring
the actual Sy(w.) in the wave tank together with the
response of the floating body model, one could check
experimentally Eq. (4.3c). However, some word of caution
is needed here. First, it must be granted that the spatial
variation of the current in the wave tank is weak compared
with the main dimensions of the floating body model since,
otherwise, the whole set of measurements has very little
meaning; second, as shown by White [11], the vorticity
associated with the depth dependence of the current field
imposes a phase shift that should not be ignored; third, and
perhaps more important for practical application, the
obtained responses at these facilities cannot be extrapolated
directly to reality, since they are influenced by the particular
wave refraction pattern of the tank. It is necessary to correct
the distortions caused by it, using then a prescribed S(w),
together with Eq. (A2.3b) and the measured Sy(w.), to
control the wavemaker in a closed loop.
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