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Abstract 

In the present paper a heuristic hydrodynamic model is proposed to describe the forces and moment in the horizontal plane in a tanker 
caused by an ocean current. The obtained expressions depend only on the incidence angle of the current, on the main dimensions of the ship 
and on some well known hydrodynamic coefficients. The results from this model were confronted with experimental values obtained by 
Withers (A Simulation Model for a Single Point Moored Tanker, Publ. 797, MARIN, Wageningen, the Netherlands, 1988) and at IPT’s test 
basin, the observed adherence being reasonably good for all current headings. A special device was used to experimentally study the stability 
of the equilibrium of a tanker free to rotate around a vertical axis and with the other’s movements constrained, emulating a turret system with 
stiff mooring lines. In this situation the only bifurcation parameter is the turret position, and the proposed hydrodynamic model was able to 
predict, with reasonable accuracy, the critical value of this parameter. Furthermore, the adherence between the experimental and theoretical 
models in the post-critical region was very consistent, disclosing that the post-critical behavior is dominated by the parcel CYqbPl, where CY 
is the lateral force coefficient in beam current and q is the angle between the current and the ship’s longitudinal axis. It turns out that, in the 
vicinity of the bifurcation point, the yaw angle increases linearly with the bifurcation parameter and not with its square root, as a standard 
approach would suggest, based on Taylor’s series expansion (hydrodynamic derivatives). 0 1998 Elsevier Science Ltd. All rights reserved. 

1. Introduction 

The oil industry has become interested lately in studying 
the technical feasibility of large tankers as floating produc- 
tion systems in deep water. To minimize the requirements 
on the mooring lines it is certainly desirable to weathervane 
the ship, allowing an automatic alignment of its axis with 
the resultant of the environmental loads. One of the possible 

alternatives in this context is to introduce a turret, namely, 
an articulation around which the ship can rotate freely until its 
axis is coincident with the direction of the resultant forces. 

Technical aspects of the turret system have been dis- 
cussed in the literature recently[ 1,2], while the intricate 
dynamic behavior of both a single point or spread mooring 
systems has been subjected to intense study by the academic 
community[3-81. These studies use the maneuvering equa- 
tions of motion, with hydrodynamics derivatives obtained, 
in general, from Obokata et a1.[9] or Takashina[lO], and 
address the problem either from a qualitative dynamic 
approach or else from a direct time domain simulation. 

As an outcome of this study a variety of dynamic beha- 
viors has been disclosed, including bifurcation of equili- 
brium, limit cycles and chaotic response, the boundaries 
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defining the transition from one type of response to another 

depending both on the order of the maneuvering equation 
chosen and the hydrodynamic coefficients used. Obviously, 
questions about the structural stability of the model and its 
robustness with respect to variations of the hydrodynamic 
coefficients naturally arise and should not be overlooked if 
the intention is to use these models as a design tool. Besides, 
the experimental confirmation of most results is still weak 
and sometimes blurred by the fact that it is difficult to inter- 
pret an experimental result when too many variables are 
involved. 

Motivated by this observation, the intention of this work 
is to present and discuss experimental results obtained in a 
simplified configuration, by restricting the degrees of free- 

dom and, as a consequence, the variability of possible 
dynamic behaviors. More specifically, the devised experi- 
ment consisted to pull the model with uniform velocity 
while allowing it to have only one degree of freedom, 
namely, the freedom to rotate around an articulation (turret) 
placed at a given distance from the midship section. By 
changing the position of the articulation one could not 
only determine experimentally its critical position (bifurca- 
tion point) but also the post-critical behavior of the system 
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as a function of the bifurcation parameter, given by the 
distance between the critical and the actual position of the 

articulation. 
With this simplified physical model one loses the rich 

dynamic pattern discussed in the literature, but, on the 
other hand, a very clear picture of the (static) bifurcation 

phenomenon is obtained. In particular, one could show that 
the yaw angle q, which defines the stable equilibrium posi- 
tion in the post-critical region, increases linearly with the 
bifurcation parameter, and not with its square root, as a 
standard Taylor’s series expansion approach (hydrodynamic 
derivatives) would suggest. This result is caused by the fact 
that the dominating nonlinear term is of the form Cy9]\k], 
with Cy being the lateral force coefficient in beam current. It 
turns out then that static bifurcation phenomenon can be 
predicted with some accuracy, since the experimental deter- 
mination of the lateral force coefficient Cv is relatively 
precise, due to the magnitude of this force; furthermore, 
the present analysis suggests that the influence of this 
term cannot be ignored in the more complex dynamic 
study, such as those quoted above. 

In Section 2 of this work a simple, heuristic, hydro- 
dynamic model is proposed to describe the generalized cur- 
rent forces in a tanker as a function of the incidence angle of 
the current, of the main ship’s dimension and some few 
hydrodynamic coefficients; in Section 3 the stability of the 
equilibrium of a tanker, with its only degree of freedom 
being the rotation around the turret, is analyzed. In Section 

4 the experimental results are presented, showing both the 
accuracy of the hydrodynamic model for,an arbitrary inci- 
dence angle and its adequacy for the study of the bifurcation 
phenomenon under consideration. 

2. Hydrodynamic model 

One considers here a coordinate system with origin at the 
midship section, the z-axis being vertical and pointing 
upwards, the x-axis being in the longitudinal direction, 

from stem to bow, and the y-axis positive to portside. The 
ocean current is supposed to have velocity U and is incident 
in a direction that makes an angle 01 with the x-axis; the 
velocity vector U is then given by: 

U = lJ* [cos ai + sin aj] (1) 

Let X,((Y) be the longitudinal force, Yc(c.u) the lateral force 
and Nc(o) the yaw moment, with the resultant assumed to 
be applied at the midship section. Following Wichers[ 111, 
the forces will be normalized by the ship’s draft T and ship’s 

length L, in such way that: 

X,((Y) = ~pTLClc(a)JJ2, (2) 

Ye(a) = ~pTLC,,(a)4J2, 

N,-(a) = ;pTL2~C6&)4J2 

The intention now is to use some heuristic hydrodynamic 
model to express the functions {Cl&a); Czc((3~); C&o)) in 
terms of well defined hydrodynamic coefficients and of the 
ship’s main dimensions, namely: the length L, the beam B, the 
draft T, the block coefficient CB and the wetted surface S. 

In the computation of the forces {Xc(a); Yc(cr)) it will be 

assumed below, for the sake of simplicity, that the ship is 

symmetric with respect to the midsection, although the 
actual non-symmetry of the ship is considered in the estima- 
tion of the yaw moment No. 

For a current in the longitudinal direction ((Y = 0”; 01 = 
180”) two hydrodynamic coefficients are important: the skin 
friction coefficient Cr(R,) and the factor ofform k. Taking 
the ITTC friction line for Cr(R,) and the Prohaska method, 

assuming nearly zero Froude number, to estimate k, one 
obtains[l%]. 

Clc(O") = Cl,-( 180”) = (1 + k). 
0.075 s 

(logtaR, - 2)2’E’ 
(3a) 

k = 0.25 

One certainly should expect a small difference in C&a> 
when CY = 0” and a! = 180”, but this difference is ignored 

in the proposed model. For a current in the beam direction 
(a = 90”; (Y = 270”) the lateral force coefficient is related to 
the two-dimensional cross-flow coefficient Co, function of 
the ratio B/2T and of the bilge radius[ 131. Observing that 
three-dimensional effects should decrease the value of the 
cross-flow coefficient, one can either correct the two- 

dimensional value, introducing a ‘slenderness parameter’, 
or else, as a first estimate, to take the lower bound of the 
two-dimensional coefficients given in Hoerner, correspond- 
ing to the greatest bilge radius (rc/2T G 0.5); just for 
reference this curve is presented at Fig. 1. 

Naming by Cy the cross-flow coefficient for the actual 
ship, one has 

&(90”) = - C2,(270”) = Cy (3b) 

Form coefficient-Hoerner 

I I I I I I I I I 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

B/(2T) 

Fig. 1. Twodimensional cross-flow coefficient CI, as a function of 8/2nl3]. 
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where one can use Hoemer’s curve as a first estimate for 
(C, = C&?/273). 

If the ship were strictly symmetric with respect to the 
y-axis no yaw moment could be detected for a current inci- 
dent in the beam direction. The lack of symmetry implies 
that a small moment must exist, since then the resultant of 
the lateral force should pass by a point distant 1 from the 
midsection, in general aft of this section, leading to an 
expression of the form 

1 
C&(90”) = - C6,-(270”) = - -CY 

L 
(3c) 

As it will be seen in Section 4, the value of l/L is small, 

although the relative variability is large: it ranges from 
roughly 1% to 8% for the different ships analyzed both by 

Wichers[l l] and at the IPT’s test basin; as a first guess one 
may take l/L = 5%. 

Once introduced the hydrodynamic coefficients 
{ (1 + k)Cr(R,); C,; Z/L], the force coefficients { Cic(a); 
C*,-(a); C,~((Y)} can be inferred from some simple argu- 
ments, as discussed below. 

2.1. The longitudinal force coefJicient Clc(a) 

The function C,,-(a) is periodic in (Y and can be expanded 
in Fourier series. From the symmetry with respect to the x- 
axis one has Clc(a) = Crc(-CX) and so only terms of the 

form cos(ncu) can appear in this series; assuming also the 
symmetry with respect to the y-axis one should have C&cr) = 
-C,c(?r - CY) and so only the odd terms cos[(2n + l)cr] can 
be present. Taking only two terms in the series the following 
approximation is proposed: 

Cd4 
___ z al cow + a3cos3cx; 
C,,(O”) 

al +q=l 

The intention now is to use known results for a wing of low 

aspect ratio to obtain convenient expressions for the Fourier 
coefficients {a ,; az). For aflat plate with aspect ratio A = 
2TIL << 1 the lift coefficient CL and induced drag coefficient 
CD are given by the relations ((Y < 1): 

2 

CL = qsinol: Co = 2 

Projecting the total drag and lift forces in the longitudinal 
direction one obtains, for a flat plate, that 

C,c(cu) = [Cr(RJ + C~]COSCY - Ct,sincr (4c) 

Observing that Cl&O”) = Cr(R,) in this case and expanding 
the above expression, together with Eq. (4a), in power series 

in CY up to the order cr2, the following relations can be derived: 

a,=l- 
1 TT ~. -. 

G(4) 8L’ 

1 *T 

“‘=CFo’E 

It turns out then that, for a jut plate, the longitudinal force 

coefficient can be approximated by 

Cd4 = c&q cos(Y + ;$(cos3cu - coscr) 

A similar expression is now proposed for the ship, the only 
modification being to change the flat plate resistance coeffi- 
cient Cr(R,) by the ship’s resistance coefficient (Eq. (4a)); 
the final result is 

ClC(~P 

0.09375 s 
.- 

(loglo& - 2)2 TL > 

~COSCY 

+ ;$(cos3a - cow) (5) 

The only point that deserves attention here is to observe that 
the Fourier series Eq. (4a) gives a rationality to spread, for 
all values of (Y, results that were thought to be valid only for 
small CY (wing theory). In this context, one could have used 
directly Eq. (4b) and Eq. (4c), an alternative that will be 
explored in the next item. 

2.2. The lateral force coeflcient C~C((Y) 

For ]sina]O(l) the basic mechanism that determines the 
lateral force is the cross-flow, identified with the hydro- 
dynamic coefficient C,; if the body is slender one may 
take CY sin cr]sincr 1 as the related force coefficient[l4]. 
One should add now the lift and induced drag forces 

obtained from the low aspect wing theory (see Eq. (4b)) 
but, in doing so, the actual cross-flow coefficient must be 
corrected in order to maintain Eq. (3b); the following 
expression is then proposed for the lateral force coefficient: 

&(a)= (C, - -$) sirmlsincrl 

+ gsin’a + $sinollcosoll 

The behavior of C2c(a) for small a! is essential in the stabi- 
lity analysis, although, in the above expression, this term is 

dominated by the jut plate result (vrTIL)a. One should 
expect that the stability performance of the ship is influ- 
enced by some form coejfkient and, in fact, after an exten- 
sive statistical analysis of several ship maneuvering 

experiments Clarke et aE.[ 151 suggested the following linear 
hydrodynamic derivative: 

C*,(cY>= ~(1+0.4~).~;~< 1 

Incorporating Eq. (6b) into Eq. (6a), the force coefficient 
C2c(cy) can finally be approximated by the expression: 

&-(o)= C, - 2 sin&ina!l+ $in3a 
( 1 

+ @( 1 i0A~)sinalcosol (7) 
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The lirst parcel in Eq. (7) can be interpreted as the two- 
dimensional cross-flow coefficient attenuated by the 
‘slenderness parameter’ 7rT/2L, the second parcel is related 
to the induced drag of the low aspect ratio wing and the last 
one to the lift force in this surface. 

2.3. The yaw moment coeficient C&o() 

When 1 sina! 1 = 0( 1) the lateral force is dominated by the 

cross-flow component, passing in a point distant 1 from the 
origin; adding to the moment of this force the Munk’s 
moment one has: 

C,(o)= - i CY - g sincrlsinal 
( > 

- $incrcosar; IsinaI = O(1) (8a) 

For a! = n the lateral force is basically given by the lift on 
the low aspect ratio wing and, as it is known, in a rectan- 
gular wing this force is applied at the leading edge, giving 
rise to a moment that is half the Munk’s moment value 

indicated in Eq. @a). Observing this result, and also that 
this moment should depend on some form coeficient, after 
analyzing several experimental results Clarke et aZ.[ 151 sug- 
gested the expression 

Cfjc((Y> G $( f+2.4g)sina;a = ?r (8b) 

Observing that some form factor should be incorporated to 
the Munk’s moment Eq. @a), one can join Eq. @a) and Eq. 
(8b) using a ‘transition function’, as e.g. (1 + ]cosa]/2)*, to 
obtain 

&c(o)= - i Cv - g sinarlsincul - Fsinocosar 
( > 

- ( 1+l~a’)2~(f-2.4~)sinalcosal (9) 

The last parcel in Eq. (9) corrects the flat plate Munk’s 
moment (?rT/L)sincrcosa in a non-symmetric way: it 
decreases this value when (Y = rr while increasing it when 

(Y = 0. This result is consistent with the fact that the effect 
of the rudder as a stabilizing (destabilizing) fin when o = ?r 

(a = 0) it is implicitly assumed here. If one intends to 
consider the bare hull moment the effect of the rudder has 
to be subtracted from Eq. (9) in the way indicated in Clarke 

et a1.[15]. 
In Section 4 the Eqs. (5), (7) and (9) will be compared 

with the experimental results described in Wichers[ 1 l] and 
with experiments done at IPT’s test basin. 

3. Stability and bifurcation analysis 

One can imagine here that the tanker has an articulation 
(turret), placed at a distance aL from the midsection, and 

U 

Fig. 2. Sketch of the model in the bifurcation experiment. 

that a vertical bar, passing through the articulation, is being 

towed with a velocity U in the spatial X-direction, supposed 
to coincide initially with the longitudinal direction of the 
ship (see Fig. 2). In this set up the only degree of freedom 
left for the tanker is the yaw displacement $‘, which 

measures the angle between the ship’s longitudinal axis 
and the pulling direction X. In the reference system moving 
with the ship one sees a current with intensity U incident in 
the direction 

(Y=rr--9 (lOa) 

One can define here the non-dimensional restoring moment 
N(q) by the expression 

the term in the left hand side being introduced by commod- 
ity; using Eq. (2) in this equality one obtains: 

N(*) = - & 1 + 0.4:C B (G,(o~>.a - &c(4) (lob) B/T 

Placing Eq. (10a) into Eqs. (7) and (9) expanding these 
functions in power series of iI’ and retaining only terms to 
the order q3, the following expressions can be derived: 

C*&a)= (c,- g)~l~l+ g93 

+ ?(1+0.405$).(*- it3); (1Oc) 

C&a)= - f(CY- +,,,$$2.4;),3 

+ :(;+2.4;)+- 23) 
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Introducing the parameter 

aCR = 

;+2.4; 

1+0.40? 

the restoring moment N(9) can be written as 

-N(q) =A(a).\k3 + B(a)+*‘l91- C(a).* 

with: 

(11) 

(12a) 

(12b) 

a + 1IL 

C,B’ 
1 + 0.40T 

C(a) = (aCR - a) 
Observing that 1 > 0 and 0 5 a 5 0.5, since the turret is 
usually placed ahead the midship section, then, necessarily, 
B(a) > 0. The sign of C(a) changes from negative to posi- 
tive as a decreases while the sign of A(u) may or may not 
change with a, depending on the ship’s main dimensions. 

3.1. Equilibrium and stability conditions 

If 9, is such that N(qe) = 0 then, in theory at least, the 

ship can be pulled in the X-direction with velocity U while 
maintaining a constant yaw angle 9’,; this angle defines an 
equilibrium con$guration of the system. In reality, this equi- 
librium configuration will be actually observed if and only if 
it is stable, namely: if a small perturbation 6\k on 9, intro- 
duces a moment that tends to restore the original equi- 
librium configuration. Using the Taylor’s series expansion 

N(‘P, + 69) = NV’,) + aP+(...) 
*e 

and recalling that N(\k,) = 0, the moment N(9, + S!P) will 
be restoring if and only if it has the opposite sign of @P. The 
following conditions define then a stable equilibrium 

configuration: 

N(\E,) = 0 (equilibrium); (13a) 

< 0 (stability) 

In terms of the cubic ‘polynomial’ (Eq. (12a)) these condi- 
tions can be written in the form: 

A(a)@ + B(a)k,l9,1 - C(a)ql, = 0 (equilibrium); (13b) 

3A(a)\kz + 2B(a)lqe 1 - C(a) > 0 (stability) 

The trivial equilibrium position 9, = 0 will then be stable if 
and only if a > a&C(a) < 0), where a,-RL is defined as the 

critical position of the turret. For \k, # 0 the equilibrium 

equation reduces to the form 

A(u)+‘,2 + B(a)i!PeI - C(a) = 0 (144 

while the stability criteria can be written as 

- B(a)i\k,I + 2C(a) > 0; qe # 0 (14b) 

or else in the form 

2A(a)@ + B(a)/*,/ > 0; 9, f 0 (14c) 

Observing that B(a) > 0, the only stable equilibrium posi- 
tion when a > aCR is the trivial solution \k, = 0, since the 
stability criteria (Eq. (14b)), valid for 9, # 0, cannot be 
satisfied when a > u~R(C(U) < 0). The post-critical 
behavior, when a < aCR, will be analyzed next. 

3.2. Bifurcation and post-critical behavior 

When a < &&C(a) > 0) the roots of Eq. (14a) depend on 
the sign of A(a). For A(a) > 0 the only possible roots are 

9,= t { -$&+/m];*(a)>0 

Wa) 

From EZq. (14~) it follows, at once, that these equilibrium 

positions are stable (A(u) > 0). If A(a) < 0 the roots of 
Eq. (14a) are given by 

and the stability criteria (Eq. (14~)) can be rewritten in the 
form: 

> 0 

It turns out that the only stable roots are given by: 

qe= f- ($$-/~~};A@)<0 

(15b) 

For 0 5 acR - a < l(0 d C(u) << 1) both Eq. (15a) and Eq. 
(15b) can be approximated by 

(15c) 

showing that the stable equilibrium angle increases linearly 

with the bifurcation parameter aCR - a in the vicinity of the 
bifurcation point. This result must be contrasted with the 

result obtained from the standard Taylor’s series expansion 
method (hydrodynamic derivatives) where, in general, the 
parcel B(a)q’,kel is overlooked; in this case one can check 
easily (take B(u) = 0 in Eq. (15a)) that the stable equili- 
brium angle increases with the square root of the bifurcation 
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Main dimensions (in meters) of the tankers 

Ship 

VLCC-1 

VLCC-1 

VLCC-2 

P. P. MORAES 

P. P. MORAES 

Source 

MARIN 

MARIN 

IPT 

IPT 

IPT 

Condition CB L B T S 

Loaded 0.850 310.0 41.2 18.9 22804 
Ballasted 0.827 310.0 47.2 7.6 18670 
Loaded 0.832 320.0 54.5 21.6 27508 

Loaded 0.821 231.1 26.0 12.8 10304 
Ballasted 0.771 231.1 26.0 5.1 6424 

parameter when A(a) > 0. Notice, in particular, that in this a somewhat unusually large WB ratio for a tanker; for the 

Taylor’s series expansion method no stable equilibrium sake of comparison, the force coefficients obtained at 

configuration would exist in the vicinity of the bifurcation MARIN for the ship VLCC-1 (scale 1/82.5)[11] are also 

point when UcR - a > 0 and A(a) < 0. shown here. 
Besides this qualitative change of behavior in the bifurca- 

tion phenomenon, it should be stressed that the term B(a) 
depends essentially on the cross-flow coefficient CY (see 
Eq. (12b)), a hydrodynamic parameter that is certainly 
very robust from an experimental point of view. This result 
should be contrasted with the standard Taylor’s series 
expansion method, where the post-critical behavior depends 
on the third order hydrodynamic derivatives A(u), the con- 
fidence in the experimental determination of this term being 

relatively weak. Even experiments specially designed to 
obtain such higher order hydrodynamic derivatives show, 
sometimes, a wide discrepancy of results; in particular, as 
described in Kijima[l6], different laboratories, working 
with models of the same ship, predict values for the hydro- 
dynamic derivative N,,,, directly related to the coefficient 
A(u), that differ not only in magnitude but also in sign. 

In the following, the experimental results are presented 
and compared with the theoretical expressions derived at 

Sections 2 and 3 of this work. 

4.1. Force coeficients 

Table 1 describes the main dimensions of the tankers that 
will be analyzed in this section; here the ‘ballasted’ condi- 
tion is defined at 40% of the ‘loaded’ draft. 

4. Experimental results 

This section presents experimental results obtained at 
IPT’s test basin for both the force coefficients {C&o); 

C&o); C&a)} and the bifurcation and post-critical beha- 
vior of a ship exposed to a current and free to rotate around 

an articulation placed along the ship’s axis. The force coef- 
ficients were determined by a standard captive model test 
while the bifurcation feature has been obtained by towing 
the ship by a vertical bar passing through the articulation. 

The force coefficients (Eqs. (7) and (9)) depend on the 
cross-flow drag coefficient CY and on the distance E behind 
the midsection where this drag force is applied. As dis- 

cussed in Section 2, the cross-flow drag coefficient CY can 
be estimated by the Hoerner’s curve shown in Fig. 1, while 

Z/L should be of order 5%. Table 2 shows the measured 
values of Cv and Z/L together with the value of Co from 
Hoemer’s curve. The agreement is in general reasonable 
with exception of the VLCC-1 tanker in the ‘loaded’ con- 
dition. In particular, the difference between the experi- 
mental values of Cy for the tankers VLCC-1 and VLCC-2 
is difficult to be understood, since they have basically the 
same main dimensions; the only possible explanation is that 
for Bf2T = 1.25 the drag coefficient changes rapidly with 
B/2T (Fig. l), suggesting that in this range of B/2T the value 
of CY may be more strongly influenced by others small 

differences, as the bilge radius, for example. 

The wave tank at IPT is 220 m long, 6.75 m wide and 
4.50 m deep and two models have been analyzed: one for a 
very large tanker, named here VLCC-2 (scale l/90), the 

other for the ship P. P. MORAES (scale l/65), which has 

To check the heuristic Eqs. (5), (7) and (9) one has feed 
them with the experimental Reynolds number 2.5 X lo5 and 
with the values ( (Cy)Exp; (l/L)Exp}, since the intention was 
to verify the structure of the formulas in their dependence on 
the main dimensions and on the incidence angle CY. 

Table 2 

Experimental values [(Cv),,,; (ZIL)EXPJ and Hoemer’s vahes (CD)HOER 

Ship Bl2T 

VLCC-1 1.25 

VLCC- 1 3.11 

VLCC-2 1.26 

P. P. MORAES 1.02 

P. P. MORAES 2.55 

(CD)HOER. (CY)EXP 

0.84 0.60 

0.60 0.50 

0.85 0.84 

0.90 1 .oo 

0.60 0.50 

(NL)EXP 

3.0% 

4.8% 

5.9% 

1.4% 
8.6% 

Fig. 3 shows the comparison between the experimental 

results and the heuristic expressions for the tanker VLCC-2. 
The agreement is reasonably good for the lateral force coef- 

ficient CZc(o) and the yaw coefficient C&o), although 
Eq. (7) predicts, due to the term proportional to ICOW], 
that the maximum lateral force is not exactly at a! = 90” 
but in the vicinity of this angle; some experimental support 
of this result can be found in Obokata et uZ.[9]. For the 
longitudinal force coefficient Cic(cu) both the theoretical 
and experimental results show the same trend, although 
the scatter of the experimental data is quite evident; this 
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Longitudinal force coefficient 

m 

-0.03 - m 
-0.04 

-0.05 t Incidence angle 

- CIC 
n C l C-experimental 

Lateral force coefficient 

1.2 

1.0 
c 

Incidence angle 

- c2c 

m C2C-experimental 

Moment coefficient 

Incidence angle 

- C6C 
n C6C-experimental 

Fig. 3. Force coefficients (.5), (7), (9) and experimental results for VLCC-2 

(‘loaded’). 

scatter is caused by the difficulties to measure such small 
values of the force. 

Fig. 4(a,b) presents the same data for the tanker P. P. 
MORAES in the ‘loaded’ and ‘ballasted’ conditions; the 
overall behavior is the same as the one commented above, 
although the fitting between the results for the yaw coeffi- 
cient is a little worse than for the VLCC-2 case, mainly in 

Table 3 

Experimental and theoretical (see Eq. (11)) values of aCR 

Ship 

VLCC-2 

P. P. MORAES 

P. P. MORAES 

Condition bCR)EXP 

Loaded 0.39 

Loaded 0.42 

Ballasted 0.20 

(aCRhE0 Error 

0.36 -7.7% 

0.38 -9.5% 

0.21 5.0% 

the ‘ballasted’ condition, where the magnitude of the 
moment is small. It is interesting to observe that the 
longitudinal force coefficient has a completely different 
a-dependence in the ‘loaded’ and ‘ballasted’ conditions, a 

difference that is captured by Eq. (5). 
In Fig. 5(a,b) the results for the VLCC-1 are displayed, 

showing a similar behavior as the ones discussed in the two 
others cases. The only point that deserves attention here is 
that the source of these data is different from the other two, 
which enhance the confidence in the proposed expressions 
(in reality, the more recent OCIMF data were used instead 

of Wichers[ 1 l] results). 
Finally, Eqs. (5), (7) and (9) could obviously be adjusted 

to better the fitting with the experimental results. In doing 
so, however, the physical meaning of the different terms 
could be lost and, even more, in adjusting the expressions 
some important terms could be missed, leading eventually 
to conclusions about the qualitative dynamic behavior that 
may not be strictly correct. 

4.2. Bifurcation of the equilibrium and post-critical 

behavior 

Consider now that the ship is being towed in a given 
direction by a vertical bar passing through an articulation 

(turret) placed at the distance aL from the midsection, with 
0 < a < 0.5 (see Fig. 2). It has been verified experimentally 

that for a large enough the ship’s longitudinal axis is aligned 
with’the pulling direction (qe = 0). As a decreases the same 
configuration is observed until a critical value of a, denoted 
by aCR, is reached; for a < acR the observed equilibrium 
configuration is such that bl!,] # 0, the equilibrium angles 
appearing in pairs, with (qe s &,I; qe E - ]$k,]}. 

The region in the a-axis where the critical value is located 

can be easily detected from the experimental values but it is 
certainly difficult to exactly determine from the experiments 
the actual value of aca. The following procedure can be 

used to estimate the experimental value of this critical para- 
meter: assuming that the articulation is approaching the 
midsection, let ai be the first point in the experiment 
where one Observes P, = \k,,, f 0 and a2 < al be the 
second one, with qe = !?e.2 > O,,. Since the theory indi- 
cates (and the experimental data visually confirmed) that for 
small values of aca - a the angle \k, increases linearly with 
this parameter, one can estimate the position of aca by 
drawing a straight line between these two experimental 
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(b) Longitudinal force coefficient 

0.05 r 

(a) Longitudinal force coefficient 

I 

Incidence angle 

-0.02 

-0.03 

-0.04 

-0.05 1 

Incidence angle 

- ClC n ClC-experimental - ClC n ClC-experimental 

Lateral force coefficient GO Lateral force coefficient (b) 

1.2 

1.0 

0.8 
t 

Incidence angle Incidence angle 

- C2C n C2C-experimental 

(a) Moment coefficient 

- C2C n C2Cexperimental 

(b) Moment coefficient 

Incidence angle Incidence angle 

- C6C n C6C-experimental - C6C a C6C-experimental 

Fig. 4. (a) Force coefficients (5), (7), (9) and experimental results for P. P. MORAES (‘loaded’); (b) force coefficients (5), (7), (9) and experimental results for 

P. P. MORAES (‘ballasted’). 

points. This procedure was followed for the P. P. MORAES 
model, both in the ‘loaded’ and ‘ballasted’ condition, but for 
the VLCC-2 model a more visual approach was taken. 

The confrontation between the theoretical prediction of 
acs, given by Eq. (1 l), and the experimental values is shown 

in Table 3. It turns out that Eq. (1 l), obtained from the linear 
hydrodynamic derivatives proposed by Clarke et a1.[15], 
predicts the critical turret position with reasonable accuracy. 
Obviously, the theoretical result could eventually be 
bettered if the statistical analysis pursued by Clarke et al. 
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1 
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-0.15 - 

Incidence angle Incidence angle 
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Fig. 5. (a) Force coefficients (5), (7). (9) and experimental results for VLCC-1 (‘loaded’); (b) force coefficients (.5), (7), (9) and experimental results for VLCC- 

1 (*ballasted’). 

were restricted to data from large tankers but this point will Notice that the intention here was not to check the critical 

not be addressed here. value but only the post-critical behavior, particularly the 
Assuming, in the following, acs = ((ZcR)Exr, one Can use importance of the term B(a) &,I in the equilibrium Eq. (14a). 

Eq. (12b), Eq. (15a), Eq. (15b) and Eq. (15~) to determine Although the theory predicts that the bifurcation phenom- 
*,(a), namely, the stable equilibrium configuration as a enon is independent of the pulling velocity, the experiments 
function of the turret position aL; the final result has been at WI’s wave tank were conducted at different velocities, 
plotted in Figs 5-7 together with the experimental values. aiming to assert the repeatability of the results and to verify 
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Fig. 6. Stable equilibrium configuration qe(a). Case: P. P. MORAES, ‘loaded’; theory: -----; experiment: WA&B = 0.10; OU/&$=O.25. 

the sensibility of the model to ‘imperfections’, namely, to 
the possible importance of non-modeled effects, as the 
Froude number influence (wave generation), for example. 
For this reason, Figs 6-8 present the experimental values 
measured at two different velocities, corresponding to the 
sectional Froude number ( U&B = 0.10; UIJgB = 0.25 ] for 
the P. P. MORAES case and {U/&B = 0.08; UlJgB = 0.24) 
for the VLCC-2. 

In the ‘loaded’ situation, where the current forces are large 
and the response should be less susceptible to ‘imperfections’, 
the measured values of q,(a) at the two velocities were rela- 
tively close, although the values related to the greatest Froude 
number were consistently larger than the ones related to the 
smallest Froude number. This result indicates that some ‘wave 
generation’ effect is in fact present and influencing the 

experimental values, a conclusion reinforced by the analysis 
of the ship P. P. MORAEB in the ‘ballasted’ condition, where 
the current forces are now small and the difference between 
the two Froude numbers results is large. 

Restricting the attention to the lowest Froude number, 
where the wave generation effect is minimized, the agree- 
ment between the experimental results and theory is cer- 
tainly consistent. 

5. Conclusion 

In this paper the force coefficients in a tanker, caused by 
an ocean current, were derived by means of a heuristic hydro- 
dynamic model and have been checked against experimental 

Stable equilibrium configuration 
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Fig. 7. Stable equilibrium configuration S’Ja). Case: P. P. MORAES, ‘ballasted’; theory: -----_; experiment: W.//&B = 0.10; OU/&B = 0.25. 
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Stable equilibrium configuration 
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Fig. 8. Stable equilibrium configuration 4,(a). Case: VLCC-2, ‘loaded’; theory: -----; experiment: W//&E = 0.08; Of,‘/,@ = 0.24. 

results, the adherence being reasonably good for all three 
force coefficients in the horizontal plane. The arguments 

employed to obtain these coefficients are relatively standard 
in ship hydrodynamics and they have been used before by 
several researches[9,17]; the novelty here (if any) is just to 
make a heuristic blend between the cross-flow expressions, 
valid when Isina] z O(l), and the expressions from the low 

aspect ratio wing theory, valid when cr << 1, incorporating in 
these last ones the linear maneuvering coefficients proposed 

by Clarke et a1.[15]. 
The obtained formulas for the force coefficients were then 

used to predict the bifurcation and post-critical behavior of a 

tanker, assuming that only one degree of freedom, the yaw 
motion, was allowed. The observed adherence between the 
predicted and experimentally determined post-critical beha- 
vior was very consistent, indicating that the near critical 
response is dominated by the term Cy‘k]\kl, related to the 
cross-flow phenomenon. It turns out, then, that the equili- 
brium angle increases linearly with the bifurcation para- 
meter, and not with its square root, as the standard 
Taylor’s series expansion approach (hydrodynamic deriva- 

tives) indicates. Although most researches apparently prefer 
the traditional Taylor’s series expansion to analyze the man- 
euvering and the stability of ships, it is important to observe 
at least one exception to this trend, related to the work done 
by Inoue et a1.,[18] where the cross-flow term Cuq]\k] is 
explicitly incorporated in the model. 

The most important consequence of this work, however, 
is related with the questions about the reliability of the 
dynamic model. In fact, in the traditional approach the 
qualitative behavior of the system depends crucially on a 
consistent determination of the third order hydrodynamic 
derivatives { Y,,,; NV,,], a relatively difficult task from an 
experimental point of view; in particular, even the sign of 
these coefficients are sometimes predicted in different ways 

depending on the source of the experimental data. In con- 
trast, it has been shown here that the post-critical behavior 
depends essentially on the value of the cross-flow coeffi- 
cient Cy, a hydrodynamic parameter that can be determined 
with relative accuracy. 
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