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Abstract

In this work we estimate the heavy quark production in proton–proton and proton–nucleus collisions
at LHC energies using the color dipole formalism and the solution of the running coupling Balitsky–
Kovchegov equation. Nuclear effects are considered in the computation of the total cross sections and
rapidity distributions for scattering on protons and nuclei.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Heavy quark production in high energy collisions is important for a number of reasons. One of
them is that it offers a good testing ground for perturbative QCD (pQCD) calculations, which in
spite of the continuous progress over the last thirty years, still contain some ambiguities, mostly
related to scale dependence of the observable quantities. In the context of pQCD there are differ-
ent calculation schemes. The most well known is the collinear factorization approach, which has
been developed up to Next-to-Leading Order (NLO) in αs [1–4]. More recently the Fixed Or-
der plus Next-to-Leading-Log (FONLL) [5] was developed. It resumes large perturbative terms
proportional to powers of αs log(pT /mQ) where pT and mQ are the heavy quark transverse
momentum and mass, respectively. In these calculations all particles involved are assumed to
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be on mass shell, carrying only longitudinal momenta, and the cross section is averaged over
two transverse polarizations of the incident gluons. The virtualities Q2 of the initial partons are
taken into account only through their structure functions. The formalism which incorporates the
incident parton transverse momenta is referred to as the kT -factorization approach [6–14]. In this
approach the Feynman diagrams are calculated taking into account the virtualities and all possi-
ble polarizations of the incident partons. In the kT -factorization approach the unintegrated gluon
distributions are used instead of the usual structure functions.

In proton nucleus collisions the linear A-dependence of the heavy flavor production cross
sections is usually assumed, so the obtained results are discussed in terms of the cross section
scaled to pp collision. In perturbative QCD with the factorization approximation, heavy ion col-
lisions differ from pp collisions only by the change of the usual nucleon structure functions
or unintegrated gluon distributions by the same functions for bound nucleons. At RHIC ener-
gies the difference between bound and unbound parton structure functions is known from EMC
and NMC experimental data and their DGLAP evolution analysis. From these studies we have
learned that nuclear effects in charm production at RHIC cause a deviation of 5–10% from the
linear (A-dependent) predictions. The experimental data of the PHENIX [15,16] Collaboration
obtained at RHIC both from pp and nuclear collisions are in reasonable agreement with the NLO
QCD and with the kT factorization approach predictions. The existing STAR [17] Collaboration
data are in contradiction with the PHENIX data and with standard QCD calculations. However a
reanalysis of these data is in progress.

Calculations performed with other approaches, also based on pQCD, are welcome and may
be very useful to cross-check and complement previous analyses. In this paper we calculate
heavy quark production cross sections using a formalism derived from the high energy regime of
QCD (for recent reviews see Ref. [18]). In this regime, perturbative QCD predicts that the small-
x gluons in a hadron wave function should form a Color Glass Condensate (CGC), which is
characterized by the limitation on the maximum phase-space parton density that can be reached
in the hadron wave function (parton saturation), with the transition being specified by a typical
scale, which is energy dependent and is called saturation scale Qsat. In order to estimate the
saturation effects we study heavy quark production using the color dipole approach, which gives
a simple and unified picture of this process in photon–hadron and hadron–hadron interactions
(for related studies see Refs. [19–25]). It is important to emphasize that in contrast to the heavy
quark production in the previous accelerators (SPS, Tevatron and RHIC), where the saturation
scale Qsat is smaller than the typical hard scale, μ = mQ, at the LHC energies, we probe for the
first time the kinematical regime where Qsat ≈ μ. Therefore, at these energies one may expect a
sizeable modification of the heavy quark total cross sections and rapidity distributions.

This paper is organized as follows. In next section (Section 2) we present a brief review of
the heavy quark production in the color dipole formalism, introducing the main formulae. In
Section 3 we discuss the QCD dynamics and the models used in the calculations. In Section 4
we present our predictions for the total cross sections and rapidity distributions for heavy quark
production in pp and pA collisions. Finally, in Section 5 we summarize our main results and
conclusions.

2. Heavy quark production in the color dipole formalism

Heavy quark hadroproduction at high energies has been usually described considering the
collinear factorization, where all partons involved are assumed to be on mass shell, carrying only
longitudinal momenta, and their transverse momenta are neglected in the QCD matrix elements.
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The cross sections of the QCD subprocess are usually calculated in leading order (LO), as well
as in next-to-leading order (NLO). In particular, the cross sections involving incoming hadrons
are given, at all orders, by the convolution of intrinsically non-perturbative (but universal) quan-
tities – the parton densities – with perturbatively calculable hard matrix elements, which are
process dependent. The conventional gluon distribution G(x,μ2), which drives the behavior of
the observables at high energies, corresponds to the density of gluons in the proton having a
longitudinal momentum fraction x at the factorization scale μ. This distribution satisfies the
DGLAP evolution in μ2 and does not contain information about the transverse momentum kT

of the gluon. On the other hand, in the large energy (small-x) limit, the characteristic scale μ

of the hard subprocess of parton scattering is much less than
√

s, but greater than the ΛQCD
parameter. In this limit, the effects of the finite transverse momenta of the incoming partons be-
come important, and the factorization must be generalized, implying that the cross sections are
now kT -factorized into an off-shell partonic cross section and a kT -unintegrated parton density
function F (x, kT ), characterizing the kT -factorization approach. The function F is obtained as a
solution of the evolution equation associated to the dynamics that governs QCD at high energies.
Several authors have considered the kT -factorization approach in order to analyze some observ-
ables and they have obtained a better description of these quantities than the one obtained with
the collinear approach. However, the current situation is still not satisfactory, due to the large un-
certainty associated to the lack of a complete knowledge of the unintegrated gluon distribution.
In particular, at high energies the non-linear QCD effects associated to the gluon saturation are
expected to contribute significantly and this leads to the breakdown of the twist expansion and of
the factorization schemes.

Gluon saturation effects can be naturally described in the color dipole formalism. At high
energies color dipoles with a defined transverse separation are eigenstates of the interaction.
The main quantity in this formalism is the dipole–target cross section, which is universal and
determined by QCD dynamics at high energies. In particular, it provides a unified description of
inclusive and diffractive observables in ep processes as well as for in Drell–Yan, prompt photon
and heavy quark production in hadron–hadron collisions. Furthermore, an important advantage
of this formalism is that it is very simple to include nuclear effects (see below).

In the color dipole formalism the total cross section for the process h1h2 → QQ̄X, where
hi = p or A, is given by [19,20]:

σtot
(
h1h2 → {QQ̄}X) = 2

− ln(2mQ/
√

s )∫
0

dy x1Gh1(x1,μF )σ
(
Gh2 → {QQ̄}X)

(1)

where x1Gh1(x1,μF ) is the projectile gluon distribution, the cross section σ(Gh2 → {QQ̄}X)

describes the heavy quark production in the gluon–target interaction, y is the rapidity of the pair
and μF is the factorization scale, which we assume to be given by μF = 2mQ. The proton gluon
distribution will be taken from the set of parton densities GRV98 [26], but similar predictions are
obtained using e.g. the CTEQ6L parametrization. Eq. (1) can be easily interpreted in the target
rest frame, where heavy quark production looks like pair creation in the target color field. For
a short time, a gluon G from the projectile hadron can develop a fluctuation which contains a
heavy quark pair (QQ̄). The interaction with the color field of the target may then release these
heavy quarks. This mechanism corresponds to the gluon–gluon fusion mechanism of heavy quark
production in the leading order (LO) parton model. The dipole formulation is therefore applicable
only at low x, where the gluon density of the target is much larger than all quark densities. This
condition is fulfilled for the charm and bottom production at the CERN-LHC.
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The cross section for the process G + h2 → QQ̄X is given by:

σ
(
Gh2 → {QQ̄}X) =

1∫
0

dα

∫
d2ρ

∣∣ΨG→QQ̄(α,ρ)
∣∣2

σ
h2
qq̄G(α,ρ) (2)

where σ
h2
qq̄G is the scattering cross section of a color neutral quark–antiquark–gluon system on

the hadron target h2 [19–22]:

σ
h2
qq̄G(α,ρ) = 9

8

[
σqq̄(αρ) + σqq̄(ᾱρ)

] − 1

8
σqq̄(ρ). (3)

The quantity σqq̄ is the scattering cross section of a color neutral quark–antiquark pair with sepa-
ration radius ρ on the target and α (ᾱ = 1 − α) is the fractional momentum of quark (antiquark).
The light-cone (LC) wave function of the transition G → QQ̄ can be calculated perturbatively,
with the squared wave function given by:

∣∣ΨG→QQ̄(α,ρ)
∣∣2 = αs(μR)

(2π)2

{
m2

QK2
0 (mQρ) + [

α2 + ᾱ2]m2
QK2

1 (mQρ)
}

(4)

where αs(μR) is the strong coupling constant, which is computed at a renormalization scale μR ,
which we assume to be equal to quark mass, and it is given by:

αs(μR) = 4π

(11 − 2
3Nf ) ln(

μ2
R

(200 MeV)2 )

. (5)

Another observable of interest is the rapidity distribution, which in the dipole formalism is ex-
pressed as:

dσ(h1h2 → {QQ̄}X)

dy
= x1G

h1
(
x1,μ

2
F

)
σ
(
Gh2 → {QQ̄}X)

. (6)

Before discussing the QCD dynamics at high energies in the next section, some comments are in
order. First, in the dipole formalism we work in a mixed representation, where the longitudinal
direction is treated in momentum space, while the transverse directions are described in the
coordinate space representation. Second, in Ref. [22] the equivalence between this approach and
the gluon–gluon fusion mechanism of the conventional collinear factorization at leading order
and twist has been demonstrated. In particular, the dipole predictions are similar to those obtained
using the next-to-leading order parton model calculation. However, it is important to emphasize
that Eq. (1) resums higher-twist corrections beyond the traditional factorization schemes.

3. QCD dynamics

The main ingredient of the dipole formalism is the dipole–target cross section σqq̄ which is
determined by the QCD dynamics. At leading logarithmic approximation it is directly related to
the target gluon distribution xGh2 as follows [27]:

σqq̄

(
x,ρ2) = π2

3
ρ2αsxGh2

(
x,10/ρ2), (7)

which satisfies the property known as color transparency, i.e. σqq̄ vanishes ∝ ρ2 at small sep-
arations. If we assume that xGh is a solution of the DGLAP evolution equations, the use of
2
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this expression as input in our calculations implies that we are disregarding non-linear QCD ef-
fects, associated to the high gluon density present at small-x (large energies). In what follows
we assume that the resulting predictions correspond to the linear QCD dynamics and denote
them by CT in the plots. When the target is a proton we assume that the gluon distribution
is given by the GRV98 parametrization [26]. If the target is a nucleus we will assume that
xGA(x,Q2) = A.Rg(x,Q2).xGN(x,Q2) with xGN being the gluon distribution in the pro-
ton and Rg given by the EPS09 [28] or DS [29] parametrizations for the nuclear effects. In both
cases we are disregarding multiple scatterings of the dipole with the nuclei and are assuming that
the dipole interacts incoherently with the target. Expression (7) was recently used in [30] to give
the linear physics predictions for heavy quark production in eA collisions.

The results from HERA, RHIC and more recently from the LHC suggest that ep and hadron–
hadron interactions at high energies probe QCD in the non-linear regime of high parton densities,
where the growth of parton distributions should saturate, possibly forming a Color Glass Con-
densate [31]. This formalism implies that the dipole–target cross section σqq̄ is given in terms
of the dipole–target forward scattering amplitude N (x,ρ,b), which encodes all the information
about the hadronic scattering, and thus about the non-linear and quantum effects in the hadron
wave function. It reads:

σqq̄(x, ρ) = 2
∫

d2b N (x,ρ,b). (8)

It is useful to assume that the impact parameter dependence of N can be factorized as
N (x,ρ,b) = N (x,ρ)S(b), so that σqq̄(x, ρ) = σ0 N (x,ρ), with σ0 being a free parameter re-
lated to the non-perturbative QCD physics. The Balitsky–JIMWLK hierarchy [31] describes the
energy evolution of the dipole–target scattering amplitude N (x,ρ). In the mean field approxi-
mation, the first equation of this hierarchy decouples and boils down to the Balitsky–Kovchegov
(BK) equation [32,33].

In the last years the next-to-leading order corrections to the BK equation were calculated [34–
36] through the resummation of αsNf contributions to all orders, where Nf is the number of
flavors. Such calculation allows one to estimate the soft gluon emission and running coupling
corrections to the evolution kernel. The authors have found out that the dominant contributions
come from the running coupling corrections, which allow us to determine the scale of the run-
ning coupling in the kernel. The solution of the improved BK equation was studied in detail in
Refs. [35,37]. The running of the coupling reduces the speed of the evolution to values compat-
ible with experimental data, with the geometric scaling regime being reached only at ultra-high
energies. In [38] a global analysis of the small x data for the proton structure function using the
improved BK equation was performed (see also Ref. [39]). In contrast to the BK equation at lead-
ing logarithmic αs ln(1/x) approximation, which fails to describe the HERA data, the inclusion
of running coupling effects in the evolution renders the BK equation compatible with them (see
also [40–42]). In what follows we consider the BK predictions for N (x,ρ) obtained using the
GBW [43] initial condition.

The dipole–target cross section can also be calculated considering phenomenological parame-
trizations for N (x,ρ) based on saturation physics, which provide an economical description of
a wide range of data with a few parameters. Several models for the forward dipole cross section
have been used in the literature in order to fit the HERA and RHIC data. In general, the dipole
scattering amplitude is modeled in the coordinate space in terms of a simple Glauber-like formula
as follows
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N (x,ρ) = 1 − exp

[
−1

4

(
ρ2Q2

s

)γ (x,ρ2)
]
, (9)

where γ is the anomalous dimension of the target gluon distribution. The main difference among
the distinct phenomenological models comes from the predicted behavior for the anomalous
dimension, which determines the transition from the non-linear to the extended geometric scaling
regimes, as well as from the extended geometric scaling to the DGLAP regime (see e.g. [18]).
The current models in the literature consider the general form γ = γs + 	γ , where γs is the
anomalous dimension at the saturation scale and 	γ mimics the onset of the geometric scaling
region and DGLAP regime. In what follows we compare the rcBK [38] predictions with those of
the GBW model [43], which assumes γ (x,ρ2) = 1.

In order to estimate heavy quark production in pA collisions we will use the fact that color
dipoles are eigenstates of the interaction and therefore the qq̄G–nucleus interaction can be ex-
pressed in terms of the cross section on a nucleon target using the Glauber–Mueller formalism:

σA
qq̄G(x,ρ) = 2

∫
d2b

{
1 − exp

[
−1

2
σ

p
qq̄G

(
x,ρ2)TA(b)

]}
, (10)

where σ
p
qq̄G is given by Eq. (3) and TA(b) is the nuclear profile function, which is obtained from

a 3-parameter Fermi distribution for the nuclear density normalized to A. The above equation
sums up all the multiple elastic rescattering diagrams of the qq̄G system and is justified for large
coherence length, where the transverse separation ρ of partons in the multiparton Fock state of
the projectile becomes a conserved quantity, i.e. the size of the dipole becomes eigenvalue of the
scattering matrix. In the next section we will estimate Eq. (10) using as input the rcBK and GBW
models for the dipole–proton cross section. Moreover, we will compare these predictions with
those obtained using the CT model generalized to the nuclear case.

Recently a comprehensive study of the kT -factorization at high energies was performed in
Refs. [44,45], which have addressed dijet production in various processes in the small-x limit
and an effective factorization for hard processes in systems with dilute probes scattering on dense
targets was established. In particular, the authors have analyzed in detail the G → qq̄ channel
using the Color Glass Condensate formalism (see Section IV.B.2 in [45]), which allows us to
obtain an expression for the σA

qq̄G total cross section given by:

σA
qq̄G(α,ρ) =

∫
d2b

{
9

8

[
1 − exp

[(−σqq̄(αρ) − σqq̄(ᾱρ)
)
TA(b)

]]

− 1

8

[
1 − exp

(−σqq̄(ρ)TA(b)
)]}

, (11)

which reduces to Eq. (3) in the dilute limit. In what follows we calculate the above expression
using σqq̄ given by the GBW dipole–proton model and we will denote by CGC the predictions
obtained using Eq. (11) as input in our calculations of the heavy quark production cross sections.

Another issue that we will address is the asymmetry in heavy quark production in pA colli-
sions when we use the color dipole formalism. Our treatment of the interaction is not symmetric
under the projectile–target exchange. In particular, pA and Ap processes allow us to study differ-
ent physical effects. While pA collisions allow to study non-linear effects in the dipole–nucleus
interaction, the study of Ap collisions probes the nuclear effects in the projectile gluon distribu-
tion. The rapidity distribution in the latter case is given by:

dσ(Ap → {QQ̄}X) = x1G
A
(
x1,μ

2
F

)
σ
(
Gp → {QQ̄}X)

. (12)

dy
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Fig. 1. (Color online.) Total charm (left) and bottom (right) production cross sections in proton–proton collisions as a
function of the c.m.s. energy (

√
s ). Data points from PHENIX [15,16] (circles), from UA2 [47] (down triangles) and

from cosmic ray [48] (diamonds). Theoretical results obtained with kT factorization [49] (squares) and with FONLL [50]
(up triangles).

As it can be seen, this process can be used to constrain the magnitude the shadowing and an-
tishadowing effects, which is still an open question (for a similar discussion in the Drell–Yan
process see Ref. [46]). It is important to emphasize that the factorization assumed in Eq. (12),
denoted usually hybrid kT -factorization, is well justified for collisions of a dilute projectile in
a dense target [45]. Consequently, its use in Ap collisions should be considered exploratory.
However, as at high energies and backward rapidities the saturation scale in the proton is large
and we are probing the nucleus at large-x, we believe that our estimates can be considered as a
reasonable first approximation for the cross sections.

4. Results

In Fig. 1 we show the predictions of the color dipole formalism for the total heavy quark
production cross sections in proton–proton collisions as a function of the c.m.s. energy (

√
s )

using as input the CT, GBW and rcBK dipole cross sections. The left (right) panels show charm
(bottom) cross sections. As the rcBK dipole cross section can be calculated only for small x

(� 10−2), we are not able to obtain results for heavy quark production at the lowest energies. We
compare our results with the experimental data obtained by the PHENIX Collaboration [15,16]
(circles), by the UA2 Collaboration [47] (up triangles) and with data extracted from cosmic ray
measurements [48] (diamonds). We also show the theoretical results obtained with the kT factor-
ization scheme [49] (squares) and with FONLL [50] (down triangles). Our results were obtained
assuming mc = 1.2 GeV and mb = 4.5 GeV. In the case of the GBW and rcBK predictions these
values of mass allow us to describe satisfactorily the experimental data without the inclusion of
a K-factor to fit the normalization. However, in the CT case it is necessary to multiply the pre-
diction by K = 0.4 in order to describe the experimental data. This factor becomes equal to one
if the mass is increased, since (as in other approaches) there is a strong dependence of the results
on the choice of the heavy quark mass. This strong dependence is observed in Fig. 2 for the CT
input (K = 1 in this figure) and similar results are obtained using the GBW and rcBK inputs.
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Fig. 2. (Color online.) Dependence on the mass of the total charm (left) and bottom (right) production cross sections in
proton–proton collisions as a function of the c.m.s. energy (

√
s ) obtained with the GBW dipole cross section.

In what follows we will assume the same values for the heavy quark masses in all calculations.
Beyond the mass dependence, the heavy quark cross sections are also strongly dependent on the
renormalization and factorization scales. We postpone the discussion about this dependence for
a future work and assume μR = mQ.

From Fig. 1 we can see that in the case of charm production the rcBK and GBW predictions
are very similar at high energies, while the CT one predicts a stronger growth of the cross section
with the energy. This difference comes from saturation effects which are expected to significantly
contribute in the kinematical region in which Q2

s > m2
Q. On the other hand, in the case of bottom

production the rcBK and CT predictions are similar and larger than the GBW one. This behavior
can be attributed to the description of the linear regime which is different in the rcBK and GBW
dipole–proton cross sections. In particular, the numerical solutions of the BK equation tend to
reach later the unitarity limit [40]. This can be understood looking carefully at the integrand of
(2), which is the product of the wave functions, containing information about the masses, and
the dipole cross section. As a function of the dipole size, ρ, the difference between GBW and
rcBK is mostly in the low to intermediate ρ region, where the GBW is always below the rcBK
dipole cross section. At large ρ the two cross sections are close to each other. The squared wave
function, i.e., (Ψ ∗Ψ ) given by (4) has peaks at different locations in ρ. The cc̄ is a larger state
and its wave function peaks at much larger values of ρ than the bb̄ wave function. In this way it
gives a stronger weight to larger ρ where the differences between GBW and rcBK are smaller.
A similar effect was also observed in a previous calculation with the rcBK dipole cross section.
The exclusive vector meson production cross sections change when we change the dipole cross
section. One of the conclusions of [51] was that the difference between results with rcBK and
bCGC becomes more pronounced for heavier mesons. Our results suggest that with the total
cross section alone we are not able to discriminate between the different dynamics contained in
the dipole–proton cross sections. On the other hand it is reassuring to observe the compatibility
of our results both with data and with other theoretical estimates.

We address now heavy quark production in pA collisions. In the absence of nuclear effects,
the heavy quark cross section would simply scale with the atomic number. Therefore departures
from the A scaling provide information about nuclear effects. Here we consider the influence of
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Fig. 3. (Color online.) Target mass dependence of the total charm (left) and bottom (right) production cross sections in
pPb and pCa collisions as a function of the c.m.s. energy (

√
s ). For comparison the pp predictions are also show.

saturation and shadowing. Both effects are expected to strongly affect heavy quark production at
high energies but the relation between them is not clear. We assume two extreme scenarios: the
coherent, based on the non-linear dynamics, and the incoherent one, based on the linear DGLAP
dynamics. Our goal is to verify if it is possible to discriminate these scenarios.

In Fig. 3 we present our predictions for the heavy quark production in pA collisions consid-
ering A = Ca and Pb. For comparison the pp predictions are also shown. In the nuclear case
and charm production, the GBW and rcBK predictions are very similar, as already observed in
the proton case. The difference between these predictions and those from CT increases with the
atomic number. This fact can be attributed to the growth of the contribution of saturation effects.

It is important to remember that the nuclear saturation scale is expected to increase with A
1
3 ,

which implies that the kinematical regime where Q2
s > m2

Q is enlarged in pA collisions at high
energies. Moreover, the difference between the coherent prediction, obtained using Eq. (10), and
the incoherent one, obtained using the CT model, can be larger if the shadowing effects are disre-
garded in xGA. The CT predictions for the nuclear case in Fig. 3 were obtained using the EPS09
[28] parametrization of the nuclear effects, which predicts a large shadowing effect at small-x,
implying a strong reduction of the magnitude of the charm cross section. In the bottom case the
magnitude of saturation and shadowing effects is smaller and therefore the difference between
the CT and rcBK predictions is also smaller. As in the proton case, the GBW model predicts
a distinct behavior in the bottom case, that implies a mild growth of the cross section with the
energy. When the CGC model [Eq. (11)] is used as input, the resulting predictions are similar
to those from the Glauber–Mueller model, with a mild energy dependence in the charm case. In
the bottom case the CGC and GBW predictions are identical, which is directly associated to the
dominance of small pair separations.

In Fig. 4 we present our predictions for the charm (left panel) and bottom (right panel) rapidity
distributions in pp, pCa and pPb collisions. For comparison we use the same value of center-
of-mass energy:

√
s = 7 TeV. In the charm case, as already observed for the total cross section,

the rcBK, GBW and CGC predictions are very similar and smaller than the CT one, with the
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Fig. 4. (Color online.) Rapidity distributions for charm (left panel) and bottom (right panel) production in pp, pCa and
pPb collisions at

√
s = 7 TeV.

difference increasing with the rapidity. On the other hand, in the bottom case, the rcBK and CT
predictions are larger than the GBW and CGC one.

In order to estimate more precisely the difference between the predictions and the magnitude
of the effects, in Figs. 5 and 6 we present our predictions for the normalized ratio between the
rapidity distributions for charm and bottom production, respectively. In these figures we choose√

s = 8.8 TeV, which is the expected center-of-mass energy for pA runs at LHC. As expected
the ratio diminishes at larger y and A and smaller heavy quark mass. In the charm case, the ratio
is smaller than one for all dipole–target models. While the rcBK model predicts the largest value
for the ratio, the CT one predicts smaller values than the Glauber–Mueller predictions (rcBK
and GBW). This behavior can be related to the magnitude of the shadowing effects present in
the EPS09 nuclear gluon distribution. In contrast, the CGC model predicts the smallest values
for the ratio. The large difference between the GBW and CGC predictions implies that the study
of the ratio can be useful to determinate the correct model to describe the σA

qq̄G cross section.
In the bottom case, the rcBK, GBW and CGC models predict values about one while the CT
one predicts that the ratio is strongly reduced. Therefore, the behavior of the ratio is strongly
dependent on the model used to describe the dipole–nucleus interaction.

As discussed in the previous section, the color dipole formalism for heavy quark production
in proton–nucleus collisions is asymmetric under projectile–target exchange. In what follows
we estimate the rapidity distribution for charm and bottom production at

√
s = 8.8 TeV using

Eq. (12) and assuming that the gluon distribution xGA is given by a parametrization of the
nuclear effects and that the dipole–proton cross section is given by the rcBK prediction. In Fig. 7
we present our predictions considering the EPS09 [28] and nDS [29] parametrizations of the
nuclear effects. For comparison we also present the prediction obtained disregarding nuclear
effects. The region of negative rapidity probes small values of x in the nuclear gluon distribution
[x1 = (mQ/

√
s )e+y ] and consequently the magnitude of shadowing effects. At LHC energies,

this is also valid at midrapidity. In contrast, at large y we are probing antishadowing. It can be
explicitly observed by the coincidence between the prediction obtained disregarding the nuclear
effects (denoted No Shad in the figure) and the nDS prediction. One of the basic features of this
parametrization is that antishadowing is not present in the gluon distribution. Another feature is
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Fig. 5. (Color online.) Rapidity dependence of the normalized ratio between charm rapidity distributions in pCa (left)
and pPb (right) collisions at

√
s = 8.8 TeV.

Fig. 6. (Color online.) Rapidity dependence of the normalized ratio between bottom rapidity distributions in pCa (left)
and pPb (right) collisions at

√
s = 8.8 TeV.

the small magnitude of shadowing. As observed the nDS and No Shad predictions are similar for
the bottom production, the nDS one being a little smaller in the case of charm. In contrast, EPS09
predicts a strong reduction at y < 4.2(2.7) and charm (bottom) production. This behavior is more
easily observed if we calculate the ratio between the rapidity distributions calculated using the
EPS09 or nDS and disregarding the nuclear effects. The rapidity dependence of this ratio is show
in Fig. 8. This ratio is approximately one in the nDS case and present a strong dependence in the
EPS09 case.

5. Summary

The description of heavy quark production is one the most important testing grounds for per-
turbative QCD. Currently, there are several approaches which satisfactorily describe the available
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Fig. 7. (Color online.) Rapidity distributions of charm (left) and bottom (right) produced in Ap collisions at
√

s =
8.8 TeV.

Fig. 8. (Color online.) Rapidity dependence of the ratio between rapidity distributions with and without nuclear effects.

experimental data. However, it is still an open question whether standard pQCD works well at
higher energies and in nuclear collisions. In this regime, the traditional factorization schemes
based on a twist expansion, are expected to breakdown due to the presence of saturation effects
associated to the high parton density and all twists should be resummed. In this paper we have
computed heavy quark production in pp and pA collisions considering the color dipole formal-
ism, which allows to include saturation effects (which are expected to be present at high energies
and large nuclei). In particular, we analyze the energy dependence of the total cross section and
the behavior of the rapidity distribution at fixed energy considering two distinct approaches to
treat the dipole–target interaction. One based on the non-linear QCD dynamics and another as-
sociated to the linear QCD dynamics. Our results shown that the influence of the saturation or
shadowing effects is different for charm and bottom production and therefore the simultaneous
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analyses of the associated observables can be useful to discriminate the dynamics. Furthermore,
we analyze Ap collisions as a probe of shadowing effects in nuclear gluon densities and demon-
strate that the study of rapidity distributions should allow to constrain their magnitude.
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