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Abstract

A riser or mooring line, when excited dynamically at its upper end, resists the imposed displacement by increasing its tension. Viscous
damping in the lateral motion is known to be crucial and the resulting problem is thus intrinsically nonlinear. In this paper, an algebraic
expression for the dynamic tension, formerly obtained [Polar Engineers, ISOPE’-93 (1993)], is revised and enlarged, once the variation of the
tension along the suspended length is specifically focused here. The obtained expression is systematically compared with results from usual
nonlinear time domain programs and with experiments, showing a fair agreement. This algebraic expression is used then, in two accom-
panying papers, to address relevant problems from a more practical point of view: in the first one, the question of the dynamical compression
of risers, with a proper estimative of the related critical load, is analyzed in conjunction with the results here derived; in the second one, the
algebraic expression is used to obtain an analytic approximation for the probability density function of the dynamic tension in random waves.
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1. Introduction

Consider a cable, whether it is a riser or a mooring line,
hanging from a floating system and resting on the sea floor
in the other end. The cable may be made by a junction of
different materials, as it is usual in a mooring line config-
uration, or it may have some few concentrated buoys or
weights or even it can also be exposed to the action of a
steady ocean current in the cable’s plane. If the flexural
rigidity EJ is ‘small’, in the sense that its influence can be
felt only in the boundary layers where the change in curva-
ture is large, then the equilibrium of the cable can be
determined assuming EJ = 0, see Ref. [3]. The static con-
figuration is defined by the functions { 6(s);7(s)}, where 6(s)
is the angle between the tangent to the cable and the
horizontal plane and 7(s) is the static tension. If [ is the
suspended length, the curvilinear coordinate of the point
anchored in the floating system is s =1/, s =0 being the
coordinate of the touchdown point.

Given the static configuration, suppose that a harmonic
motion U(t) = Uycos(wt) is imposed at the suspended end
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s = [, in the direction of the cable’s tangent; it can be shown,
see Section 4, that the displacement in the normal direction
gives rise to a small correction in the tension and can there-
fore be ignored. The displacement U(?) is due to the action
of the sea wave on the floating body and the main objective
of the present analysis is to determine the dynamic tension
Tp(s, 1) caused by such displacement.

From a numerical point of view, the problem is appar-
ently straightforward, even more if it is observed that the
large viscous damping in the lateral motion eliminates a
possible resonant phenomenon. In spite of this, the dynamic
tension can be very large: in fact, when either the amplitude
U, of the displacement or the frequency w increases, the
viscous dissipation becomes so strong that the cable almost
freezes in its equilibrium position. The imposed displace-
ment is then absorbed elastically by the cable, see Ref. [9],
giving rise to a large value of the tension. In fact, in this
limit the elastic tension T, = EA(U,/l + I') can be reached,
where EA is the axial stiffness and [’ is the effective length of
the cable on the ground, see Section 2 for a proper defini-
tion; to get an idea about the possible level of tension, if
Uy=4m and [ + I’ = 2000 m the elastic strain €, = T./EA
becomes equal to the steel yield strain.

There are thus two time scales in the problem, each one
related to particular mechanisms for the reactive forces that
can be best visualized in limit situations: if the cable is
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loose, for example, it accommodates the imposed displace-
ment by a geometric change in the catenary and the related
time scale is associated with the cable’s lateral frequency
w.; on the other hand, a tight cable absorbs the imposed
displacement elastically, with a time scale related to the
elastic axial frequency w.. Obviously, these two time scales
coexist in an actual problem and the numerical scheme has
then to deal with discrepant time scales, since in general, as
seen in Section 2, w.>> w.. Discrepancy in time scales
presents a natural difficulty for numerical integration, but
this is not the only source of numerical problems in the
analysis. In fact, the discrete system uses lumped masses
that hits the ground in the vicinity of the touchdown point,
giving rise to impact forces that are propagated along the
cable. These impact forces are spurious, since they are
caused by the discretization,' and they impose spurious
high frequency components on the dynamic tension that
are not very much attenuated along the cable, unless the
axial damping is very high. Obviously, this -effect
diminishes as the mesh size becomes thinner, but for a typi-
cal mesh size the spurious tension, although small compared
with T,, can become noticeable when compared with the
static tension, blurring then the signal of the total tension.
One will have the opportunity to observe this phenomenon
in the few simulations to be shown here and it is a matter of
concern how to deal numerically with these higher harmonic
components, observed also at the suspended end of the
cable. Simply filtering them does not seem to be a wise
solution since, though spurious in the continuum context,
they are innate to the discrete models and, once excited, the
higher harmonics interact nonlinearly, affecting the energy
of the fundamental harmonic.

These critical remarks about the numerical solutions
should be looked into a proper perspective: they do not
imply that numerical results are useless and, as a matter of
fact, numerical simulations have been extensively used, in
the present paper and in the accompanying ones, as a refer-
ence for the analytic results. Although recognizing the
usefulness of these solutions, with their numerical robust-
ness and broad generality, the intention here was to draw the
attention to some more subtle aspects of the cable dynamics
that can be relevant in certain circumstances.

On the other hand, the same discrepant time scales that
cause numerical trouble can be explored to obtain asympto-
tic solutions for the cable dynamics. The basic idea is moti-
vated by the fact that, as seen in Section 2, the imposed
frequency w is of the order of magnitude of the cable’s
lateral frequency w. and so, in general, w < w.. If now k
is the axial wavenumber related to w then, from the defini-
tion of the axial wave velocity, one has ¢, = w/k = w./k.,

! In fact, it can be shown (see Ref. [3]) that in the continuous problem the
cable in general ‘rolls’ in the ground without striking it. This result is
confirmed by the experiments, since the observed time record of the tension
does not show any evidence of higher harmonics, even when the cable
slackens; see Section 3 of this work.

with k. = 7/l + ' being the wavenumber of the first axial
natural mode. It turns out that k(I + ') = m(w/w.) < 1,
showing that the natural length scale for the axial dynamic
tension is much larger than the cable’s length; in first
approximation, then, the dynamic tension can be assumed
constant along the cable’s length and it can be obtained
from the overall dynamic equilibrium of the cable. This is
the basis of the algebraic approximation derived in Ref. [2]
where, in essence, the dynamic equations are integrated
along the suspended length to obtain a closed form expres-
sion for the dynamic tension.

However, one point was not satisfactory, mainly for an
almost vertical riser: for these geometries the variation of
the dynamic tension along the cable is indeed small, when
compared to the reference tension T, but it can be appreci-
able when compared with either the static tension or the
dynamic tension at the touchdown. From a more practical
point of view, then, the variation of the dynamic tension
along the cable must be evaluated and one of the purposes
in the present work is to present such ‘second order’ correc-
tion. The other intention was to show, in a more systematic
way, comparison with numerical results obtained with
different programs, calling the attention to the observed
discrepancies when they happen and commentating them;
at the same time, both the numerical results and the alge-
braic expression are compared with a set of experimental
results, disclosing some of the numerical misbehavior
described above.

This paper has been organized with the objective to focus
the attention on these issues, placing then in a secondary
plane the mathematical derivation of the algebraic expres-
sion. For this reason, Section 2 presents directly, besides
some definitions, the final algebraic expression for the
dynamic tension, the discussion being restricted there to
some simple physical arguments that can help to interpret
the final result; Section 3 is dedicated to a more systematic
comparison with experiments and numerical results, with
some pertinent discussion of the results. Only in the Appen-
dix the detailed mathematical derivation of the algebraic
expression is addressed.

2. The algebraic expression for the dynamic tension

Consider a cable fixed at the floating system in a certain
point S and touching the sea floor at a point O; if s is the
curvilinear coordinate, with s =0 at O and s = at S, then /
is the suspended length of the cable. The static configuration
is defined by the coordinates (x(s);z(s)) satisfying the
geometric equations dx/ds = cosf(s); dz/ds = sinf(s), with
0(s) being the angle between the cable’s tangent and the
horizontal axis. Let g be the submerged weight per unit of
length of the cable and 7(s) its static tension, with particular
values defined below:

Ts = T(), T, = T(0). (2.1a)
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Let also Al be the length of the cable resting on the sea
floor, that is, the distance between the anchor A and the
touchdown point O, and w the friction coefficient between
the cable and the soil. If the length Ti/wq is smaller than Al
then, obviously, the static tension is zero in the interval
—Al =5 = —Ty/ug and the effective length of the cable
on the sea floor will be Ty/q. Denoting by I’ this length,
and observing that the whole cable is stretched when
Al < Ty/pq, then

I' = Min{Al Ty/puq}. (2.1b)

The effective length enters in the problem through the
definition of the elastic tension T,. As seen in the Introduc-
tion, this tension appears at the ‘freezing condition’, where
the imposed displacement is absorbed elastically by the
cable in a quasi-static way; in this perspective, the definition
given in Eq. (2.1b) seems to be the most natural one even for
the dynamical problem, as discussed in Section 4.

The cable’s curvature is defined by the function

e . q
L ®= 7. x1(5), (2.2a)

where y(s) is directly determined from the static configura-
tion; as it is shown in Section 4, the lateral harmonic displa-
cement v(s) is, in first approximation, proportional to the
curvature and so v(s) o< y(s). This result will be used
below.

Finally, the horizontal ocean current, projected in the
plane (x,z), is given by the vector

V(@) = Vexe(2(9))i, (2.2b)

where V. is the current intensity at the sea level and y.(z(s))
is the current profile along the cable.

2.1. Static parameters

Obviously, the dynamic response depends on the cable’s
static configuration and, in the context of the proposed
asymptotic approximation, all static information can be
synthesized in some few integral parameters to be intro-
duced next. The first two of them are defined by

1 (!

=7 Jo [x;(s)|"ds; n=23. (2.3a)

It is not difficult to explain the physical origin of these
integrals. In fact, since the lateral dynamic displacement is
proportional to the static curvature (v(s) o< y(s)), then the
inertia force, integrated along the suspended length, should
be proportional to I, in order to preserve the cable’s lateral
kinetic energy; for the same reason, the integrated viscous
damping should be proportional to /5 in order to preserve the
dissipated power in the lateral motion.

However, in the presence of a strong horizontal ocean
current V_ x.(z(s)) the dynamic viscous force is, in first
approximation, proportional to V_ x.(z(s)) X sinf(s) X v(s)
and then the dissipated power should be proportional to

the integral /., where

1 [
=7 jo Ixe(z(5)) sinb(s)| x3(s) ds. (2.3b)

It remains to define a parameter related to the restoring
forces. As mentioned in the Introduction, there are two
mechanisms for the cable to react to any imposed displace-
ment: the first, by stretching the cable; the second, by adjust-
ing the geometric configuration of the catenary. The ratio
between these two restoring forces is known to be crucial in
the cable dynamics and it is proportional to the coefficient
A? where (see Ref. [6])

EA 12 172
A:q—llz“z( ) ( ! ) . (2.3¢)
7 > \ T I+ 7

For a loose cable, where the tangent at the suspended end
is almost vertical (0(l) = m/2), one has gl = Ts and, since
EA/Ts > 1, then A > 1 in this situation; typically A =~ 50
for a loose cable. For a tight cable, where the angle with the
horizontal is small at the sea level (0(]) < 7/2), vertical
equilibrium implies in gl/Ts = sinf(l) < 1 and then A = 5.

Those are the only parameters that depend directly on the
static configuration of the cable, the remaining ones, to be
defined next, depending on the dynamic properties of the
cable and on the imposed excitation.

2.2. Dynamic parameters

For a heterogeneous cable, as a mooring line usually is,
the weight g(s), mass m(s), added mass m,(s), diameter D(s),
stiffness EA(s) and drag coefficient Cp(s) change along the
suspended length. Enforcing conservation of kinetic energy,
and recalling that v(s) oc x(s), the averaged mass and added
mass for the dynamic problem can be defined by the
expressions

1 [
(m:my) = I—;j (m(s): ma(s)})CA(s) ds,
0
l
p= [¥m. 1 J 4(s) ds: (2.42)
p lJo

1 J L ds

EA [ Jo EAGs)’

with D being the equivalent diameter and {g;EA} the aver-
aged weight and stiffness. In a similar way, enforcing

conservation of the dissipated power, the averaged drag
coefficients are defined by

11

Coo=17-7 J CD(S)—|X1( )| ds,
’ (2.4b)
11

Coe =17 [, 0 2 et sind o s,

where Cp is to be used in the absence of an ocean current
and Cp. when the ocean current is strong; a more
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appropriated definition for the drag force in an intermediate
situation is introduced in Section 4. The related damping
coefficients are given by the expressions

8 2Cpg pmDH4 Ts Iy oy
YT 3w mim g B D
(2.5)
_ 2Cp, pmD*/A 2V, I,
T m+ m, wD E’

L

with w being the frequency of the imposed displacement
and oy its rms value, see Eq. (2.7a).

As discussed in the Introduction, there are two time scales
related to the distinct mechanisms for the restoring forces;
the associated frequencies are

_om Ts o |EA
Pe = m+m,’ Q=TI 2.6)

The frequency w is the natural frequency of an horizon-
tal cable with length [ subjected to the traction T and with
mass m + m,; the frequency w. is the elastic axial frequency
of a cable with length [ + I, axial stiffness EA and mass m.
Obviously, they are not the actual natural frequencies of the
cable, neither they intended to be: they serve only as
reference values. In this context, in particular, it can be
checked that w/w. = (TYEA)"? < 1, as anticipated in the
Introduction.

From some simple considerations it is not difficult to
estimate the order of magnitude of w.. In fact, from the
equilibrium of a catenary one has Tg= gl/sinf(l) and,
since g = (m — m,)g for an homogeneous cable, then
w. = m(glh) 2 where the water depth & is assumed of
order of the suspended length /. It turns out that P, = 27/
w. =~ 2(hlg)"* = 20 s. for a water depth & =~ 1000 m and the
wave frequency w is of order of magnitude of w,., implying
in w/w. < 1. This is the essential assumption in the derived
asymptotic approximation for the dynamic tension, as
discussed in the Introduction and further elaborated in the
Section 4. Also, notice that the dynamic excitation is
important only in deep water: in shallow water (4 = 10 m)
one has, in general, w < w. and the cable response is
quasi-static.

2.3. Excitation parameters

The dynamic motion of the cable is excited by the displa-
cement U(t) = Uycos(wt) imposed at the suspended end S
in the tangent direction. Instead of using the displacement
amplitude U, the following parameters will be introduced

2
cl(s)<\/b2(.(2) + (400N ~ b(.())) +2c2(s)(\/b2((2) + 4LH0Na ~ b(.()))

here
Uy
b

gy

oy = (U*0)"* = UV, a= (2.7a)
where oy is the rms of the imposed displacement and a is
the normalized ‘wave envelop’. The reason for this is solely
editorial: Eq. (2.7a) can be extended directly to a random
excitation, to be addressed in an accompanying paper. The
elastic tension T, is defined accordingly by

Jy

Te=EAT

(2.7b)
while the information about the imposed wave frequency w
can be introduced through the non-dimensional parameter

T w
D=—|—)
iler)
Notice that for the same value of w/w. the reduced
frequency (2 is larger for a tight cable, where A is smaller.
As expected, this means that the ‘freezing situation’, where

the imposed displacement is absorbed elastically, is more
likely to occur in a tight cable than in a loose one.

(2.7¢)

2.4. The algebraic expression for the dynamic tension

As discussed in the Introduction, the dynamic tension is
essentially constant along the cable when w/w. < 1. Under
this same condition it is also possible to show that the lateral
dynamic displacement is, in first approximation, propor-
tional to the static curvature, or v(s) = Vy (s), where V is
the displacement amplitude and y(s) is defined in Eq.
(2.2a). Within this approximation, it follows that the rele-
vant dynamic variables are reduced to two discrete values,
the amplitudes of the dynamic tension and of the lateral
displacement. Integrating the equilibrium equations in the
transversal and axial directions, together with the equation
for the geometric compatibility, one obtains, with the help
of the integral parameters introduced in Section 2.1, two
algebraic equations with these two unknowns. Solving this
system the dynamic tension can be determined. The math-
ematical derivation is elaborated in Section 4, the final result
being given below. In this way, if the dynamic tension is
written in the form

Tp(s,f) = Tp(s) e ',

; (2.8a)
m(s) = 12 = ) e,

it can be shown that the non-dimensional dynamic tension
amplitude 7(s) is given by

172

(s) =

2.
44310% (2:80)
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with

1- 0%\
b(n>:( E )+z§,

2
_ / o © s
(s = (1 l+l’”(?e) 7)’

—_ 02 2. TP
Cz(s)=|:1+1 o 1 #(wﬂ) ;]+g§cl(s).

0% 1+r e
(2.8¢)

Notice that Egs. (2.8a)—(2.8c) already incorporates the
variation of the dynamic tension along the suspended
length. In general this variation is weak, since the term in
s/l is multiplied by the small parameter (w/w.)?, but in
certain circumstances, when (2 < 1, it may become impor-
tant, as discussed below.

It seems worthwhile at this point to analyze Eqgs. (2.8a)—
(2.8c) in some limit situations, where then the obtained
result can be more easily interpreted. In this way, consider
Eq. (2.8a) when 2 > 1 (but keeping w/w. < 1). With an
error of the form [1 + 0((w/we)2; 1/0%)] one has
{cis)=1; () =cys)=1+ gf} and so, from Eq. (2.8b),
it follows that 7(s) =a. Also, when oy/D > 1 one has
{o>1, see Eq. (2.5), and then from Eq. (2.8b) it follows,
with an error of the form [1 + O((w/w.)*; D/oy)], that again
7(s) = a. In both cases one obtains (see Eqs. (2.7a) and
(2.7b))

U,
|TD(S)| — EA-——"

T (wlw; Uy/D) > 1,  (2.9a)

that is exactly the result anticipated at the Introduction: the
elastic limit can be reached when either the imposed ampli-
tude or the wave frequency becomes large.

In the other limit, when {2 < 1, one has b(£)=1/
0*>1 and from Eq. (2.8b) it follows, with an error of
the form [1 + O(0%)], that

(s) = (01(S)§3a2 + Cz(S))man,
(2.9b)

2 2
ey(s) = [1 + (A%) %] +3c,(s). (Q<1)

There are two situations where {2 can become small:
one, when the imposed frequency is effectively low and
w/w, < 1; the other, when the cable is loose (A > 1) and
{2 can be small even when w/w, = O(1). The first case is of
little importance in deep water and, furthermore, this limit is
not well described by Eq. (2.9b): when w/w. <1 one
should use a quasi-static solution, as described in Ref. [2]
and discussed in Section 4. However, if A is so large that
A(wJw,) = O(1), as it may happen in a loose cable, the
dynamic tension is in fact small when compared with the
elastic tension T}, since 7 = O(£2%) < 1, but the variation of
7(s) along the suspended length cannot be disregarded, once

dc,/ds = O(1). Furthermore, although small when compared
to T, the dynamic tension may be comparable to the static
tension and should not be ignored.

The algebraic expression (2.8a)—(2.8c), albeit simple,
recovers qualitatively the main features of the dynamic
tension in a submerged cable. If it is also shown that it is
quantitatively consistent, then it provides an interesting
simplification for the proposed problem, with possible
imbrications in others directions too. The quantitative
aspect will be addressed next, the possible imbrications
being reserved to the accompanying papers.

3. Experimental and numerical verification of Eqs.
(2.82)-(2.8¢)

In this section the algebraic approximation (2.8a)—(2.8c)
for the amplitude of the dynamic tension is compared with
some experiments and with numerical results obtained from
two distinct time domain programs. Only a survey of this
rather extensive set of comparisons will be presented here,
the intention being to show the typical adherence among
these results and to draw attention, in certain particular
cases, to some observed disagreements, commentating
them in the light of the perturbations introduced on the
continuous models by the discretization.

3.1. Experimental results

In a research project sponsored by Petrobras, Ref. [1]
analyzed at the USP wavetank the dynamic behavior of
mooring lines; in the experiments, a chain, anchored in a
point on the wavetank floor, was excited dynamically at the
suspended end. The imposed motion was harmonic, the
displacement being either along a straight line or else circu-
lar, and the measured output was the total tension at the
suspended end. Two different chains, with relatively dis-
crepant properties, were tested in several geometric con-
figurations and the dynamic excitation varied too, in
amplitude, frequency and type of motion (if straight or
circular). Around a hundred different tests were made and,
obviously, only a small sample of them will be discussed
here. However, the results to be presented are typical, being
representative of all experiments realized.

The relevant physical properties of the two chains are
given in Table 1 and the static configuration can be char-
acterized by the geometric parameters (h; 6; It), where A is
the water depth, 6, = 6(/) is the angle at the suspended end
and [y the total chain length; since the friction on the wave-
tank floor can be ignored, I’ = Iy — L.

Table 1
Physical properties of the two chains (Ref. [1])

Chain EA(N) ¢gN/m) D (m) m (kg/m)  m, (kg/m) Cp
1 4763 0.360 0.0026  0.042 0.013 1.6
2 17664 0.865 0.0041  0.088 0.027 1.6
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Fig. 1. (a) Total tension at the suspended end. Experiments (+); Egs. (2.82)—(2.8¢c) (- - -). (a) UyD =7.91; (b) UyD = 14.33; (c) Uy/D = 24.21. Chain 2,
A =7.66. (Source: Ref. [1]). (b) Variation of tension in time: experiment (—); Egs. (2.82)-(2.8¢) (---) Uy=0.076 m; f=0.658. Chain 1, (h=

1.82 m;05 = 13.8%/r =28.73 m), A =2.6.

The first set of results, presented in Fig. 1a, shows the plot
of the maximum and minimum values of the total tension in
a cycle as a function of the imposed frequency f (Hz). The
tension has been normalized by the static value T, see
Eq. (2.1a), and the theoretical values have been determined
by the expression Ty min = 1 £ 7(D)(T/Ts), with 7(0)
given by Eqgs. (2.8a)—(2.8c) and T, by Eq. (2.7b); obviously,

when T, resulted negative in this expression then the value
Tmin =0 was taken, since the chain cannot support any
compression. In all tests of Fig. la chain 2 was used in
the static configuration given by (h=2.02 m; 5= 11.2°
It =20.3 m), and only the amplitude U, of the imposed
circular motion was changed, as defined in the figure
caption. The agreement between the experimental and
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theoretical values is quite good, even more if it is observed
that in several cases, identified by the result T,;, = O at the
suspended end, the chain slackens as a whole. This is really
a demanding test for the algebraic approximation: in fact,
the larger influence of the geometric nonlinearity is
expected to happen for a tight cable (small 6s) under strong
dynamic excitation, as in the cases tested, but the alge-
braic approximation does not include this nonlinearity,
the only nonlinear term in Eqgs. (2.8a)—(2.8¢c) being the
viscous dissipation, see Section 4. The observed concor-
dance shows that the geometric nonlinearity is, indeed,
of little concern for this class of problems. The only
point that deserves a further comment is the following:
as explained in Section 4, Egs. (2.8a)—(2.8c) ceases to
be valid in very low frequency, where a quasi-static solution
must be used; the two horizontal lines in Fig. la represent
just this solution. This low frequency correction has not
been incorporated in the final solution because it has little
importance in deep water.

In order to display the generality of the experi-
mental results and, at the same time, to point out
some more subtle aspects of the problem, Fig. 1b
shows, for a different chain in a distinct geometric
configuration, the variation in time of the total tension
at the suspended end. Again, a close agreement is observed,
indicating now that the cable’s response is in fact ‘harmo-
nic’, the experimental result not showing evidences of
higher harmonics.

This same problem was solved by a time domain
numerical program, see Fig. 2a. The overall response
is comparable to the experiment, although two peculia-
rities are conspicuous and should be commented: first, it
is now clear the evidences of higher harmonics; second,
the tension becomes negative in a short time interval, in
spite of the fact that the chain cannot support a
compressive force. Both phenomenons cannot be real,
since they do not appear in the experiments, and so
they must be due to the discretization. A possible expla-
nation for the observed higher harmonics is the impact
forces on the ‘lumped’ masses when they hit the
ground: they give rise then to high frequency oscilla-
tions that are propagated through the cable with a small
dissipation, unless the axial damping is assumed to be
very large. This may be indeed one of the resons why
numerical codes sometimes encounter difficulties to
converge when the sea floor is rigid, the numerical
integration becoming easier when the ground is assumed
‘soft’. These higher harmonics, although spurious in the
continuum problem, are innate in the discrete system and
s0, once generated; they interact with each other blurring the
tension signal. As an example, Fig. 2b shows, for a random
excitation, the time history of the touchdown tension of a
riser with EJ = 0.

Notice not only the large magnitude of the (unduly)
compression but also how the higher frequency components
apparently enhance the value of the maximum tension.
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Fig. 2. (a) Same as Fig. 1b but obtained from a time domain program
(Orcaflex). (b) Tension at the touchdown of an actual riser in random
excitation. EJ = 0. (c) Compressive force as a function of the mesh size
ds (same problem of (b)).

Furthermore, if EJ # 0, as it is usually, some compression
is acceptable, although it is not known a priori how much.
This is the main motivation of the accompanying paper on
dynamic compression.

Table 2
Parameters of the risers simulated by Orcaflex and Cable (friction
coefficient:u = 0.4; axial damping: {axiar = 10%)

D (m) m(kg/m)  BA (kN) EJ(Nm®)  Cp
(FR) 02160 67 1.92x10°  9.84 1.0
(SR) 02191 70 2.10x10° 9241 1.1
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Table 3

Parameters of the heterogeneous mooring line: Chain 1-Cable—Chain 2 (friction coefficient:u = 0.4; axial damping:{axiar, = 10%)

m (kg/m) m, (Kg/m) g (kN/m) EA (kN) D (m) Cp I. (m)
Chain 1 203 27.58 1.920 7.94 % 10° 0.095 2 3800
Cable 49 9.56 0.387 5.37x%10° 0.109 2 1000
Chain 2 160 21.56 1.513 6.27 % 10° 0.084 2 200
Table 4
Current profile on the simulations (z* = h—z; & = 1000 m)
Z" (m) 0 50 100 140 230 340 415 545 640 785 1000
V (m/s) 1.70 1.54 1.39 1.18 0.72 0.78 0.01 —-0.28 —0.36 —0.53 0.00

It is certainly expected that this numerical ill behavior
should disappear as the mesh size becomes thinner. As an
example, Fig. 2c retakes the problem of Fig. 2a, showing
that indeed the compressive force tends slowly to zero as the
mesh size diminishes. On the other hand, and this is shown
clearly in Fig. 2b, it is not uncommon to use, in a real
problem, a reasonably small mesh size and, in spite of
this, to obtain a response where high frequency oscillations
and a compression force above the ‘critical value’” appear
in a somewhat strong way, making difficult to assess the
correct behavior of the cable’s dynamic. It can be argued
that these differences are of little concern in a real design of
a cable, and one should agree with this observation in most
cases; however, they may become important when the
numerical solution is used as paradigm to verify the quality
of the analytical approximation, and this is the point of
concern here. More is going to be said about this question
in the Section 3.2.

3.2. Numerical results

Two cables, one representing a flexible riser (FR) and the
other a steel riser (SR), with typical parameters defined in
Table 2, were numerically simulated under distinct environ-
mental conditions using two different time domain
programs, Orcaflex and Cable respectively. In this section,
the obtained numerical results are compared with the alge-
braic approximation (2.8a)—(2.8c) in order to check not only
its validity but also to display some particular features that
deserve comments.

A heterogeneous mooring line, with properties defined in
Table 3, see Egs. (2.4a) and (2.4b), was also numerically
simulated and the result is here compared to Eqs. (2.8a)—
(2.8c). To complete the verification of the theoretical result
it would be necessary to check the behavior of a cable with
concentrated forces, due to either a buoy or a weight, but this
case has not been addressed in the numerical analysis. A
simple catenary configuration was assumed in all simulations.

The friction coefficient between the sea floor and the
cable and the axial damping factor were always the same,

% An analytical expression for this critical load P, is derived in the
second paper of this series. Obviously, for the chain one has that P, = 0.

respectively w = 0.4 and {sxar = 10%; also the cable’s
total length was so large that the effective length was almost
always® given by I' = Ty/ugq. The imposed motion at the
suspended end was circular, harmonic, with amplitude A
and period P = 27/w, and the static configuration was iden-
tified by the angle 65 at the suspended end. The horizontal
ocean current, when present, had a depth profile defined in
Table 4, typical of Campos Basin.

3.2.1. Numerical results: flexible riser (h = 1000 m)

Fig. 3a and b present, for the flexible riser, the dynamic
tension Tp at the touchdown as a function of the angle g of
the static configuration. The wave period was kept constant,
given by P=11.5s, and two distinct amplitudes for the
circular motion were assumed: A =2.77 and 5.54 m. The
water depth was 1000 m and the dynamic tension T, was
normalized by the tension (7, + Tg), where Ty is the static
tension at the touchdown and Tz = 10 tons is a reference
value given by the fabricant; obviously, the simple relation
Tp/Ty becomes unbounded when 65— /2 and it was thus
avoided. In Fig. 3b the angle 65 is the one observed in the
absence of a current; after the current is ‘turned on’ the static
configuration is changed and the parameters (2.8a)—(2.8¢c)
are then computed.

In both cases (w/o or w/ current) the agreement between
Egs. (2.82)—(2.8c) and the numerical results from Orcaflex
is fairly good for the smaller amplitude A = 2.77 m; for the
larger amplitude the general trend is similar but the discre-
pancies are obviously more apparent. Fig. 4a helps to
explain this fact: here the static configuration and the period
were kept constant (8s = 80.5°% P = 11.5 s) but the imposed
amplitude was changed. For the smaller amplitudes the
agreement among the numerical results themselves,
obtained from Cable and Orcaflex programs,* are good,
and so they are with Egs. (2.82)—(2.8c); however, as the
amplitude increases the concordance with Egs. (2.8a)—
(2.8c) deteriorates, in general, but so it does among the
numerical results. Furthermore, the algebraic approximation

* When this condition is not fulfilled the total length It is given in the
figure caption.

* Details about the Cable program can be found in Ref. [5] and some
discussion about the Orcaflex program in Ref. [7].
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Fig. 3. (a) Dynamic tension at the touchdown (FR) as a function of 5. (w/o current; P = 11.5 s). (—) Eqgs. (2.8a)—(2.8c); Orcaflex (O). (b) Dynamic tension at
the touch down (FR) as a function of 0s. (w/current; P = 11.5s). (—) Eqgs. (2.82)—(2.8c); Orcaflex (O).

predicts a response somewhere in between the two numer-
ical results. The impact forces on the discrete masses are
possibly the reason for the observed deterioration when the
amplitude increases: in this case, they generate at the touch-
down high frequencies oscillations that are propagated
along the cable with a relatively small damping,” and so
they are weakly attenuated. To check this assumption, the
highest point in Fig. 3a, corresponding to (A =5.54 m;

5 For a Rayleigh damping of the form dov/dr, the damping factor becomes
indeed very small in high frequency even when {axiaL = 10% for the basic
mode.

0s=80.5° P=11.5s), was simulated again using now an
axial damping three times larger. The obtained result, also
shown in Fig. 4a, indicates that with this higher damping the
concordance between Orcaflex and Egs. (2.82)—(2.8c) is
much better. Notice that in the Cable program the founda-
tion was assumed to be soft while in Orcaflex it was
assumed to be rigid and, also, that the discrepancies increase
just when Tp/Ty> 1, namely, when the cable becomes
dynamically compressed.

In the other hand, one should expect that the influence of
these higher harmonics diminishes when both the static and
dynamic tensions become large and the riser is not
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compressed at the touchdown. Fig. 4b gives support to this
conclusion, once it displays the dynamic tension at the
touchdown point as a function of the amplitude for
(65 =137.8°, P =11.5 s): although the maximum amplitude
is now twice the one imposed in the other case, the agree-
ment is very good here, among the numerical results them-
selves and with Egs. (2.8a)—(2.8¢c) too.

Fig. 5 presents the dynamic tension at the suspended end

(a)

normalized by the static tension 75 as a function of the
amplitude, keeping constant (6s=70% P=12s). The
agreement is again fair enough for the smaller amplitudes
but it becomes evidently discrepant for the larger ampli-
tudes. In this same figure a fourth curve was plotted,
named ‘Orcaflex filtered’: it corresponds to the sum of
the two first harmonics of the Orcaflex response.
Although the Orcaflex result seems to be lost for the
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Fig. 4. (a) Dynamic tension at the fouchdown (FR) as a function of amplitude (65 = 80.5°% P = 11.5 s.; w/o current): (—) Egs. (2.82)—(2.8¢); (O) Orcaflex;
(#) Cable; (@) Orcaflex with {axiar. = 30%. (Note: two first points of Cable and Orcaflex are coincident). (b) Dynamic tension at the touchdown (FR) as a
function of amplitude (65 = 37.8%; P = 11.5 s; w/o current); It = 2800): (—) Egs. (2.8a)—(2.8c); (O) Orcaflex; (#) Cable. (Note: last six points of Cable and

Orcaflex are coincident).
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Fig. 5. Dynamic tension at the suspended end (FR) as a function of amplitude (s = 70°; P = 12 s; w/o current): (—) Egs. (2.8a)—(2.8¢c); (-O-) Orcaflex; (-#-)

Cable; (- - -) Orcaflex Filtered.

highest amplitudes, since the dynamic tension decreases
then when A increases, it should be noticed the close
adherence between the filtered response and Egs. (2.8a)—
(2.8c), possibly indicating that the disagreement is due to
the high frequency components.

This conjecture can be better visualized with a look to the
corresponding time record in one period. Fig. 6a and b
present, for A =2 m, the total tension at the touchdown
and at the suspended end normalized by the respective
static tension as a function of the time. The agreement
between the two numerical results and Egs. (2.8a)-
(2.8c) is quite good here, although it should be observed
that it is less good at the suspended end: the Cable
result is a little bit off and the Orcaflex time series
shows evidences of a still incipient higher harmonics.
This trend has been almost always observed, the agree-
ment between the numerical results (and with
Egs. (2.82)—(2.8c)) becoming worse, in general, at the
suspended end. Fig. 6¢ and d repeat the same plots but
for A =4 m. Now Orcaflex results show the presence of
strong high frequencies oscillations while Cable results,
perhaps due to the soft foundation used, show a rela-
tively smooth time series. However, the experimental
results shown in Section 3.1 indicate that these high
frequencies oscillations are in fact spurious, the influ-
ence of the soil stiffness being important only for the
discrete systems (recall that in the experiments the fllor
was rigid). Fig. 6c and d show, again, that the agree-
ment is worse at the suspended end and that the ‘filtered
response’ is closer to Egs. (2.8a)—(2.8c).

3.2.2. Numerical results: steel riser (h =900 m)
Fig. 7a and b show the plot of the dynamic tension at the
touchdown point normalized by the static tension for a steel

riser (SR). In Fig. 7a the static configuration is kept constant
(05 =80.5°) and the tension is plotted as a function of the
frequency for different amplitudes; in Fig. 7b the period is
kept constant (P =8s) and the tension is plotted as a
function of g for different amplitudes. The agreement is
fairly good in general, the error having a tendency to be
magnified for the larger 0 (smaller 7)) in Fig. 7b.

Fig. 8 shows the plot of the dynamic tension at the
suspended end normalized by the static tension T as a
function of the amplitude A; in all cases (6= 70
P =12 s). The agreement between the two numerical results
and Eqgs. (2.82)—(2.8c¢) is again good for the smaller ampli-
tudes but they become widely discrepant for the larger
amplitudes, mainly the Cable result. The concordance
between Orcaflex and Egs. (2.8a)—(2.8c) is fair, although
the Orcaflex result shows a tendency to an inflexion point,
similar to the one observed in Fig. 5. Again, the behavior at
the suspended end is worse than at the touchdown point but
this is not restricted to expressions (2.8a)—(2.8c): as it is
clear from the material presented here, the numerical results
themselves become more discrepant at the suspended end
for a reason not yet well understood. A possible explanation
is the intense presence of high frequencies oscillations at
this point, perhaps due to the small damping in the axial
direction.

3.2.3. Numerical results: heterogeneous line (h = 1000 m)

The heterogeneous line defined in Table 3 was simulated
by Orcaflex in the condition (0s=58.5° P=10s) for
different amplitudes of the tangent motion. Fig. 9 shows
the comparison with Egs. (2.8a)—(2.8c) of the obtained
dynamic tension, normalized by the respective static
tension, both at the suspended end (TOP) and at the touch-
down point (TDP). The agreement is fair at the TDP, the
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Fig. 6. (a) Total tension at the fouchdown (FR) as function of time. (A =2 m; 5= 70° P = 12s; w/o current): (—) Egs. (2.82)—(2.8c); (-#-) Cable;
(-O-) Orcaflex; (- - -) Orcaflex Filtered. (b) Total tension at the suspended end (FR) as function of time. (A =2 m; 6s=70°; P =12s, w/o current):
(—) Eqgs. (2.82)—(2.8¢c); (-#-) Cable; (-O-) Orcaflex; (- - -) Orcaflex Filtered. (c) Total tension at the touchdown (FR) as a function of time. (A =4 m;
05 =70°% P = 12 s;w/o current): (—) Egs. (2.8a)—(2.8c); (-#-) Cable; (-O-) Orcaflex; (- - -) Orcaflex Filtered. (d) Total tension at the suspended end (FR) as
function of time. (A =4 m; 65 = 70°% P = 12 s; w/o current): (—) Egs. (2.8a)—(2.8c); (-#-) Cable; (-O-) Orcaflex; (- - -) Orcaflex Filtered.

difference increasing monotonically with the amplitude
although the trend is not changed above the point where
the line becomes dynamically compressed. At the TOP the
agreement is not as good for the smaller amplitudes, the
difference between Orcaflex and Egs. (2.8a)—(2.8c) now
decreasing monotonically with the amplitude.

3.3. Verification of Eqs. (2.8a)—(2.8c): conclusion

In this section, the algebraic expressions (2.8a)—(2.8c)

has been compared with experimental and numerical results.
The experiments, although restricted to tight configurations
of mooring lines, show a very good adherence to
Egs. (2.82)—(2.8c) in all cases (around a hundred) tested,
even in extreme situations. At the same time they make
evident a sort of numerical ill-behavior, also observed in
other situations, related to the presence of high frequency
oscillations and of a compression force in a cable with
EJ=0.

The numerical results, from two different programs and
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Fig. 6. (continued)

for three cables (flexible riser, steel riser and heterogeneous
mooring line), in distinct static configurations and under a
variety of dynamic excitation, show a general trend that can
be summarized as follows: for a small to mild amplitude of
the imposed motion, where the dynamic tension is of the
order of the static tension at most, the numerical results
agree among themselves as well with Egs. (2.8a)—(2.8c);
for the larger amplitudes, where then the dynamic tension
becomes greater than the static tension, the numerical
results diverge from Egs. (2.8a)—(2.8¢c) and equally among
themselves. Observing the close agreement between Egs.
(2.82)—(2.8c) and the experiments even in an extreme
condition, one would be tempted to rely more on Egs.
(2.8a)—(2.8c) than on the numerical solutions in these

extreme situations, although a more comprehensive experi-
mental program would certainly be welcomed to confirm
this impression. The agreement at the suspended end is in
general worse than at the touchdown point, a difficulty also
observed when comparing the numericl results themselves.
It is not clear why the numerical results show this tendency
at this point, a possible explanation is suggested from the
derivation of Egs. (2.8a)-(2.8c): the variation of the
dynamic tension along the suspended length is, as elabo-
rated in Section 4, a ‘second order’ correction and it appears
more strongly when the dynamic tensions are small. In this
situation a larger relative discrepancy seems to be more
likely expected even for the numerical solutions.

The spurious high frequency oscillations as well the
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Fig. 7. (a) Dynamic tension at the touchdown (SR) as a function of frequency (65 = 70°; w/o current): (—) Egs. (2.8a)—(2.8c); (-#-) Cable; (-0-) Orcaflex.
(b) Dynamic tension at the touchdown (SR) as function of 65 (P = 8 s; w/o current): (—) Egs. (2.82)—(2.8c¢); (O) Orcaflex; (#) Cable (note: cable and Orcaflex

are coincident at A = 0.9 m).

compression above the critical value, both caused by the
discretization, tend to disappear as the mesh size
diminishes. No effort was made in the present work to
advance further in this direction, the focus being
concentrated more to cover a wide range of situations
rather than a specific case in depth. Only one example
about the inflence of discretization was discussed here,
see Fig. 2c.

On the other hand, the algebraic approximation (2.8a)—
(2.8¢) has to be looked with caution when the suspended
length is so large that the assumption w/w. < 1 is not satis-
fied. However, this situation is unlikely to occur in a real
problem unless the material is intrinsically soft, as in the
case of the ‘synthetic cables’ that are being used lately. The

algebraic expression has to be revised in this case but this is
beyond the scope of the present work.

4. Mathematical derivation of Egs. (2.8a)—(2.8¢c)

As seen in the Introduction, the static configuration is
defined by the functions {6(s);T(s)}, where 6(s) is the
angle between the tangent to the cable and the horizontal
plane and 7(s) is the static tension. The dynamic variables
are given by

{a(s, 1); (s, 1); @(s,1); Tp(s, 1)},
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respectively, the axial displacement, the transversal dis-
placement, the dynamic variation of the angle 6(s) and the
dynamic tension. Assuming, as it seems reasonable, that
the dynamic displacement is small compared to either the
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Fig. 9. Dynamic tension at the TOP and TDP as a function of amplitude.
Heterogeneous Line. (6s = 58.5%; P = 10 s; w/o current): (—) Egs. (2.8a)—
(2.8¢); (-O-) Orcaflex; (-#-) Cable. (Note: Cable and Orcaflex are
coincidents at A =2 m, TDP).

suspended length [ or the static angle 6(s), the dynamic
equations can be derived ignoring the geometric non linear-
ity, writing them directly in terms of the static geometric
configuration. The experimental results shown in Section
3.1 gives support to such assumption and, in this context,
the only source of non-linearity is the damping term.
However, this parcel will be written in the ‘linear’ form

di(s,t) = —{(m+ ma)w(;—‘z(s, 1), (4.1a)

a proper definition for the nonlinear { will be given later in
Section 4.2. Then, the dynamic variables should satisfy the
set of linear equations (see Ref. [2])
00 oTp do .
mﬁ(& = K(S, 1 — T(S)E(S) é(s, 1),
2

(m + ma)|: %(s, 1+ {w(;—‘:(s, t)]

= %(s) Tp(s, 1) + i(T(s) 3(s, 1)), (4.1b)
ds as

Tp(s,t) _ da

de .
EA E(s, nH— E(s) V(s, 1),

v deo
B(s.0) = 2(5.0) + — (5)-(s. 1),
as ds

subjected to the following boundary conditions:

a(l, 1) = Uy-e', 0(1, 1) = Vel
(4.1c)

a=1',n =0, $(0,7) = 0.

In Eq. (4.1c) U, and V| are the amplitudes of the imposed
motion at the suspended end, in the axial and normal
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directions respectively, and the boundary conditions at the
sea floor deserve some further comments. In fact, although
the actual position of the instantaneous touchdown point is
of vital importance in the fatigue analysis of risers, see
Ref. [3], it can be shown, in first approximation, that the
transversal displacement can be taken zero at the static
touchdown point, as implied by Eq. (4.1c); more is going
to be said about the touchdown displacement at the end of
Section 4.3. Also, if there is no friction with the sea floor, the
axial displacement would be zero at the anchor A
placed at s= —Al; in the presence of a friction the
static axial displacement is zero for s < —I', with '
defined in Eq. (2.1b). One can say that the effective
anchor position in the static problem is at s = —I' and
this position must be preserved in the geometrically
linear dynamic problem; this explains the boundary
condition for the axial displacement at the sea floor.
Expressing the linear harmonic solution of Egs. (4.1a)—
(4.1¢) in the form

{aiCs, 1); 0G5, 1); @, 1) T (s, 1)} = {u(®); v(5); @(3); Tp(3)}-e',

5= % (4.22)
and introducing the non dimensional variables (see
Egs. (2.7a) and (2.7b) for the definition of oy, a and T,)

T; T
i) = 2 =1,
‘ (4.2b)
i(s) = @, v(s) = @,
Oy
the dynamic equation reads (see also Eq. (2.6))
I \*f w\%_ _ _d(da df _
(7)) 0= &5 - &)
()
T ( ds ds /)’

-1+ i()ﬂ'z(wﬂ)zﬁ(f)

C

EA [ dé _ d _(dv do _ _
= Ts{il T l/ E"TD(S) + %I:E(S)(E - gu(s))]},

(@ = #(j—”s‘ - gv) (4.20)
with

u(l) =a, (D) = (VylUy)a,

a(—1' =0, 750) = 0. (4.2d)

The asymptotic solution of Egs. (4.2¢) and (4.2d) will be
elaborated next.

4.1. Asymptotic solution

If the term proportional to the static deformation €e(s) is
ignored in the axial equilibrium equation one obtains, after a
further derivation with respect to s, that

(1+1,)2 d2(dﬁ do ) z(w)zdﬁ
—F ) 2\ T =) T ) =
l ds?> \ ds ds w.) ds

2( ) )2(dﬁ de ) 2( w )2 de _
= — 17 —_— —_— . — a7 —_— —_
w, s a5 w, ) ds "

and so

d*rp I\ o)\
J’_ R
&5 “2(1+l')(we>7"

l w\2do _
=737 772(;) 4 76,

If now (a)/ooe)2 is disregarded when compared to 1 in the
left hand side of the above equation6 then, with an error of
the form [1 + O(e; (w/w,)*)], one has

& 1 w\*do
@ I+l <_) a5 &V

On the sea floor, where 6(s) = 0, the dynamic tension is
constant, see Eq. (4.2¢), and so d7p/ds = 0 for ~-I'=s=0;
ifthe above equality is integrated from s = —1I’ to s = [, the
following expression is obtained for the derivative of the
dynamic tension at the suspended end:

dmp l »f 2J1d9___ _
ZDiy=— = 2 (3)-%(5) ds.
diz() l+l/7r(we> odi(s)v(s) *

The variation of the dynamic tension along the suspended
length is weak, once it is proportional to (w/w.)> and it can
be assumed of the form

() = 1(0) + L(1 + sin al H-[rp(1) — H(O)]5,  (4.32)

with

[ 2l do
[m() — T(0)] = — wz(wﬂ)J % 5)565) ds.

I+ ) Jo ds
(4.3b)

Now consider the equilibrium Eq. (4.2¢) in the transversal
direction, disregarding again the term proportional to €(s).
The error in this approximation will be analyzed in Section
4.3 of this section but one point should be observed here: the
higher order derivative in the transversal equation is lost in
this approximation and, with it, the imposed boundary
conditions on v(s); as it is usual, this gives rise to a boundary
layer correction near the extremities, briefly elaborated in

6 Recall that the variation of 7, along the suspended length has a relative
importance only when 7p < 1; if 7p = O(1) this variation is of secondary
importance since it is of order (w/w)* < 1, see Eq. (4.3b).
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Section 4.3. Ignoring here these localized corrections one
has

(— 1+1§)7T<w)v(s)

_EA 1 df L
=T T g PO+ B0 sinal () = O3]
The parcel (mp(1) — 7p(0)) is of order (w/w.)* < 1 and it

becomes relevant only when the dynamic tension 7p(0) is
also very small. As seen at the end of Section 2, this situa-
tion occurs for a ‘vertical cable’ (s = 7/2), where 7p < 1
since A > 1. However, in this case the term d6/ds(mp (1) —
7(0))-s/l in the above expression can be ignored by a
geometric argument: for a vertical cable the curvature d6/
ds is appreciable only in the vicinity of the touchdown point,
where then s// < 1. For a ‘non vertical cable’ the parameter
A decreases and the dynamic tension increases, turning
irrelevant the correction proportional to (7 (1) — m(0)).
As a conclusion, one has, with the help of Egs. (2.2a),
(2.3¢) and (2.7¢), that the transversal equilibrium equation
reduces to

1

(—1+iDQ%*) = s AR (%)-1p(0). (4.42)

Expression (4.4a) indicates that, in first approximation,

the transversal displacement is proportional to the static
curvature and thus

v(s) = 5-i-aVT-)(l (s), (4.4b)
gl I
With Vp being the non dimensional amplitude of the
lateral displacement. Notice that Eq. (4.4b) must be
corrected at the small boundary layers near the extremities
but these corrections have a small integral contribution for
the overall equilibrium of the cable. Placing Eq. (4.4b) into
Eq. (4.4a) one obtains the algebraic relation

(4.4¢)

(-1 +ip0?v, = 2O
a

A second relation can be obtained from the integra-
tion of the expression that defines 7p(s) in Eq. (4.2¢); in
fact, from this expression and Egs. (4.3a) and (4.3b) it
follows that

1
J 'TD(E) ds
=1'n

N Lol eV (Al
=7 [TD(O) 577 (m ;e) JO E(S)V(S) dS]

I+ Ydo
= T[a — ,[0 g(s)v(s) ds].

where the boundary conditions for the axial displace-
ment u(s) have been used. With an error of the form
[1+ O((wlwe)*)]

(0)

=1-Vr. (4.4d)
a
From Eq. (4.3b) it also follows that
1 [ o \?
L) = 101 =~ (2 ) v

<t

and again the same argument can be used: the variation of
the dynamic tension along the suspended length has a rela-
tive importance only when 7p(0) < 1 and, in this case, one

has
[ o \?
)
[+ w,
Now, if the damping factor { is given, the non dimen-
sional amplitude Vr and the normalized dynamic tension at
the tuchdown point 7(0) can be determined from the solu-

tion of the algebraic system Eqs. (4.4c) and (4.4d); the
dynamic tension 7p(s) along the cable is

1
—[mp(1) — (0)] =
a

1 2
) = (0 ~ a7 () 7.

e

0=s=1 (4.5)

A proper definition for the damping factor { will be
elaborated next.

4.2. A model for the viscous damping

The viscous drag force in the dynamic problem is given
by the known expression

1
dy@s,0) = 5 pCpD

V.(s) sinf(s) — g—f(s, t)|
. av
X (Vc(s) sinf(s) — E(s, t))

- % pCpD|V (s) sinf(s)|V (s) sin6(s), (4.6a)

Where V. (s) is the projection of the horizontal ocean current
on the cable’s plane. On the other hand, the dissipative force
was assumed, in this section, in form Eq. (4.1a) and the two
expressions can be related by imposing the equality of the
dissipated power in one cycle, namely

5 J <dv(s 1)- (s t)>ds = ; J <dL(s 1) — (s t)>ds

27w
() = = J f(o)dt.
27 Jo

Placing Eq. (4.1a) in the above integral, using Egs. (4.2b)
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and (4.4b) and the definition (2.3a), the following relation
can be derived

5 J <dv(s 1) — (s t)>ds

— g+ myo'( B Laoyval) 1
= —5{m+mow agaoﬂ 1) I

(4.6b)

If Vi(s) =

1 1
7 J <d (s, t) (s t)>ds

2 3 Ts 1 3
= ——pCDDw —I—ClO'U|VT| 13,
2

0 one obtains

3 ql
and then
8 2Cp pmDY4 Ts I; o
£ = alVilt, {y= — D PTZTT Is 3 Ou

3m m m+m, gl 3 D’
(4.7a)

In the other hand, for a strong current, when V_sinf(s) >
dv/dt, one has

i J <dv(s 1)- (s t)>ds

Ts 1 2
2pCDDV (1) ——CZO'U|VT|
ql I

and so

2CD p7TD/4 2V, I,
T m+m, ‘wD 12

(=l {= (4.7b)

For a moderated current the relative velocity in Eq. (4.6a)
becomes negative in part of the cycle and the expression for
{ is obviously more complicated; to preserve the simplicity,
the following definition for the damping coefficient was
assumed in this work

£ = (@ Vr]&)* + (L)% (4.7¢)

Notice here that since, in general, one has
{Uy/D; 2V /wD} > 1 therefore, in general, one must have
{ > 1:1in short, the viscous damping is super critical in
the cable’s dynamic. Placing now Eq. (4.7¢) into Eq.
(4.4c) and solving the system (4.4c) and (4.4d) one
obtains

showing that in fact the cable freezes (|Vy|— 0) when

either w or U, (see expression for ;) increases; using
this value for |Vy| in Eq. (4.7¢) the following expression
for the damping coefficient is obtained:

, 1 -0\, g02
e () ) -4
1, (1-0%Y
Jrg(c—<7g2 )) (4.8)

With Eq. (4.8) the system (4.4c) and (4.4d) can be solved
and, after some algebra, the result (2.8a)—(2.8c) is obtained.

4.3. Quasi-static solution and boundary layers

As has already been seen, the error in the approximation
for the axial equation is of the form [1 + O(e(s); (a)/we)z)]
and the intension now is to assess the error in the approx-
imation for the transversal equation. When 7p(s) = O(1) the
error is, indeed, of this same order of magnitude; however,
when 2% < 1 one has, as seen at the end of Section 2, that
p(s) = 0(.(22) and the error in this approximtion must be
reevaluated. In this case the approximation used is correct if
and only if

L > 3 -3
\ ) N~ N Ny

qliTs 0n? Ts/EA  Ts/gl
or (see Eq. (2.3¢))

v (3 i = of)
gl ) EA A?)

It follows then that the proposed dynamic approximation
is valid when 22 < 1 if and only if the inequality

2 1
wz(i) > 1(0r ™ = 0(0%) > 2) (4.92)
wc A
is satisfied simultaneously. In otherwords: when
9]
— = 0(1/m) (4.9b)
wc

the proposed approximation is not valid anymore but the
response is quasi-static then.

This solution is elaborated in Ref. [2] and only the final
answer wil be presented here; in this way, if 6(s) =
(ql/Ts)xo(s) and the integrals

(" X0
Jo=— ds, =0,1,2, 4.10
" Jo T)Ts " (410
are defined, the quasi static solution is given by
)
s Kt 9y
Uy Ts J,
(4.10b)

T :a'
QE Jl A2
N VAl
Jo |



J.A.P. Aranha, M.O. Pinto / Applied Ocean Research 23 (2001) 63-81 81

This result is consistent with Eq. (4.9a): since J, — J3 iy >
0, then 7o = 0(1/A%), showmg that the dynamic result
(2.82)—(2.8¢) diminishes with Q27 until the level O(1/A?) is
reached, when then one should switch to the quasi-static solu-
tion. To make the analysis simpler the following rule was used
to plot the theoretical curve in Fig. 1a: if 7,5 > Tqg then the
value 7(0) = 7,5) Was taken; if 7,5y < Tqg then 7p(0) = 7.
The experimental results confirm the adequacy of such simple
strategy.

Finally, the question of the transversal boundary condi-
tion (4.1c¢), lost in the dynamic approximation (2.8a)—(2.8c),
will be briefly addressed. To make more direct the
exposition more straightforward, the boundary layer in
the vicnity of the touchdown point will be worked out
below. In this case the transversal Eq. (4.2¢) is reduced
to (s=0)

2 2
e ra-ion(2)v= -2 L S0 o
S

T d§2 wc TS [+ l/
(4.11a)
Introducing the parameter p by the expression
1—if=q1+ 2"
(4.11b)

_|Is 24172, (i)
= /TO(1+§) " e

then Eq. (4.4b) is, in the jargon of the boundary layer theory,
an outer solution of Eq. (4.11a) with an error of order O(1/
pz), see Ref. [4]; obviously Eq. (4.4b) is a particular solu-
tion of the linear Eq. (4.11a), the total solution, satisfying
the boundary condition v(0) = 0, being given by
) 1 .

7S = — —aVrln () — xi(0)e ™. (4.11¢)
I

The dynamic angular displacement at the static touch-

down point is equal to

oy dv v Ts 1
@(0) = —L —(0) = ifavT

dxi
v = avi| o+ o)

(4.12a)
and, as shown in Ref. [3], if the instantaneous touphdown
point is at s = X(r) one must have 0(X(¢)) + ¢(0)-¢'’ = 0.

Since {6(0) = 0;d6/ds(0) = ¢/T,} then, if X(r) = X,e'”,
the amplitude X, of the horizontal displacement of the

touchdown point can be approximated by the expression

Yoo _To
L= w0
(TU TO 1 Xm ]
= — =S —avy| o) + :
w2 (BY L] o+ pro

(4.12b)

In the fatigue induced by the cyclic variation of the curva-
ture at the touchdown, the motion of this point, and thus the
amplitude X, is of crucial importance. The cyclic variation
of the curvature, obtained in Ref. [3], compares well with
some experiments, as discussed in Ref. [8], and Eq. (4.12b)
makes possible to estimate this variation analytically.

At the suspended end a similar analysis can be pursued
and the boundary condition v(I) = V,, can then be imposed.
Also, in a heterogeneous cable the curvature is discontinu-
ous when ¢(s) is and boundary layers occur at these discon-
tinuity points. Again, these local corrections do not affect
the overall dynamics of the cable and are of little practical
importance.
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