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Abstract
Annona coriacea Mart. is a Brazilian native species whose phytotoxicity was described, although there is no data about the 
compounds responsible for it. The aim of this study was bioprospecting A. coriacea in relation to phytotoxicity on the elonga-
tion of wheat coleoptiles and on germination of diaspores and initial growth of seedlings of standard target species (lettuce 
and tomato) and a weed (Urochloa decumbens (Stapf) R.D. Webster). For that, ethanolic extract of of A. coriacea was frac-
tionated affording 9 fractions, which were assayed on elongation wheat coleoptiles. Group G showed the highest inhibitory 
results and thus, was subjected to chromatographic separation furnishing the isolation of 11 flavonols: 1—Quercetin-3-O-
gentiobioside, 2—Quercetin-3-O-robinobioside, 3—Rutin, 4—Hyperin, 5—Isoquercitrin, 6—Biorobin, 7—Nicotiflorin, 
8—Keioside, 9—Narcissin, 10—Cacticin and 11—Isorhamnetin-3-O-glucoside. This is the first report of wheat coleoptile 
bioassay to all these compounds and it is also the first phytotoxicity results for 1, 2, 6, 8 and 10. Compounds 5, 7 and 11 
showed elevated phytotoxicity in wheat coleoptiles bioassay (IC50 0.22 mM,  r2 0.97; IC50 0.48 mM,  r2 0.93; IC50 0.28 mM, 
 r2 0.92, respectively). No correlation was found between the structure of the compounds and their activity. Compounds 5 
and 11 were therefore tested on lettuce, tomato and U. decumbens germination and initial growth of seedlings. They did 
not show phytotoxic effects on lettuce and tomato. By the other hand, compound 11 significantly reduced the germination 
of U. decumbens in almost all concentrations, with values between 50 and 65%, demonstrating its importance to studies 
focused on weed control. The higher structural complexity of diaspores, when compared to wheat coleoptile, is suggested 
as a possible explanation for stronger inhibitory effects of isolated flavonoids on coleoptile elongation, than on germination/
initial growth assays.
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1 Introduction

The Brazilian neotropical savanna (named Cerrado) is one of 
the most diverse environments in the world, with consider-
able vegetation heterogeneity. Nowadays, this domain has 
been suffering from strong deforestation, fragmentation and 

invasion of exotic species (Sano et al. 2008). Cerrado has 
about 12,000 plant species, but currently only 71 (0.6%) had 
their phytochemistry studied (Novaes et al. 2013a). Among 
these studies, several biological activities were evaluated 
and strong phytotoxic, mollusicidal, insecticide, fungicide 
and antibacterial activities were described. Annonaceae is 
one of the richest families among the wood components of 
the Cerrado (Batalha and Mantovani 2001). Xylopia aromat-
ica (Lam.) Mart. and Annona coriacea Mart. are the most 
studied species probably because of their high abundances 
(Novaes et al. 2016; Gatti et al. 2007). A. coriacea, popularly 
known as ‘araticum’, is a perennial shrub with edible fruits 
(Lorenzi 2008), native from the Brazilian savanna, found in 
southeast, south, and northeast areas of Brazil.
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Chemically, acetogenins (Yu et al. 1994; Silva et al. 1997, 
1998; Alves et al. 2014), polyphenols (Júnior et al. 2016), 
mono and sesquiterpenes (Siqueira et al. 2011), alkaloids 
(Machado et al. 2013) and flavonoids (Júnior et al. 2016; 
Novaes et al. 2018) are among the compounds already iden-
tified in A. coriacea. Biological activities have already been 
described for extracts. Leaf methanolic extract of the species 
showed insecticide (Freitas et al. 2014) and phytotoxic (For-
magio et al. 2010) activities, while ethanolic extract exhib-
ited antiprotozoal (Toledo et al. 2011), phytotoxic (Novaes 
et al. 2016), fungicide (Almeida-Apolonio et al. 2018) and 
cytoprotector (Júnior et al. 2016) actions. Ethanolic extracts 
of barks and flowers showed antioxidant (Camilo et al. 
2016) and fungicide (Almeida-Apolonio et al. 2018) effects, 
respectively. Alcoholic extracts of fruits and seeds showed 
insecticide (Costa et al. 2012), antiproliferative and anticho-
linesterase (Formagio et al. 2015), cytotoxic and enzymatic 
inhibitor (Brandão et al. 2011; Benites et al. 2015).

Allelopathy is a phenomenon defined as any direct or 
indirect effect caused by allelochemicals (secondary, or 
even primary, metabolites) from plants on other plants or 
microorganisms (Weir et al. 2004). This is an important 
ecological mechanism which influences plant dominance 
and succession, community formation, climax vegetation, 
crop management and productivity (Latif et al. 2017). The 
allelochemicals can be present in many plant organs and 
can be released in the environment by decomposition of 
residues, volatilization, and root exudation (Weston and 
Duke 2003). Studies on this area can be performed in the 
field (Inderjit and Weston 2000), as well as in laboratories. 
These latter studies are frequently called phytotoxic activ-
ity and can be used to provide indicatives of allelopathy in 
the field, including the identification of the allelochemicals 
responsible for this interaction (Inderjit and Weston 2000). 
These allelochemicals can be evaluated as mixtures or may 
be purified and tested as isolated compounds. Therefore, the 
assays will determine whether biological effects are syner-
gistic or related to a single compound, respectively (Reigosa 
et al. 2013). In both cases, the samples can be used as natu-
ral herbicides. These herbicides from natural sources are 
water soluble and free from halogenated molecules, have 
alternative paths of action, specific interactions with target 
plants, and are less dangerous to the environment (Macías 
et al. 2008).

Novaes et al. (2016) had studied the phytotoxic activ-
ity of extracts of four species of Annonaceae, including A. 
coriacea, native to the Brazilian savanna. The ethanol leaf 
extract of this species showed strong phytotoxic activity on 
germination and initial growth of two monocots, onion and 
Urochloa decumbens (Stapf) R.D. Webster (Poaceae), and 
moderate inhibitory activity on the germination and initial 
growth of lettuce and on the elongation of wheat coleoptiles. 
The presence of 11 glycosylated flavonols has been recently 

described in this extract (Novaes et al. 2018). Weston and 
Mathesius (2013) suggested that flavonoid glycosides as 
well as aglycones can be released in the soil by decomposi-
tion or exudation, and may exert activity in microbes, plants 
and animals. Therefore, since crude extract of A. coriacea 
presented phytotoxic effects over some species, we hypoth-
esized that some leaf phytotoxic compounds could act as 
allelochemicals in the soil and could, at least in part, explain 
the persistence of A. coriacea in plantations, besides be used 
as natural-origin herbicides. Thus, the main goals of this 
study were the bioprospection of some fractions of ethanolic 
extract from leaves of A. coriacea concerning their phyto-
toxicity, the isolation and purification of some compounds, 
and the examination of their potential bioactivity. For that, 
the most phytotoxic A. coriacea fractions was determined by 
using wheat elongated coleoptiles. It flavonols were identi-
fied and not only tested on this assay, but also on germina-
tion and initial growth of diaspores of standard target species 
(lettuce and tomato) and a weed (U. decumbens). Standard 
target species assays are very usual in studies of phytotoxic-
ity (Macias et al. 2000; Barbero et al. 2010; Novaes et al. 
2013a; Nebo et al. 2014; Galindo et al. 2017). U. decumbens 
is a very important invasive weed in Brazil (Novaes et al. 
2013b).

2  Material and methods

Extraction, isolation and identification of compounds of A. 
coriacea −  Four kilos from severaç leaves of five individu-
als of A. coriacea Mart. Were collected in the reforestation 
area of Instituto Florestal at Itirapina-SP-Brazil (− 22°23′52 
S, − 47°85′02 W). The voucher (SPF 213417) of the species 
was deposited at the Herbarium of the Universidade de São 
Paulo (SPF), in Brazil.

Leaves were completely dried at 40 °C and than, pow-
dered in a knife mill (30-mesh; Fortinox® STAR FT 80, 
Piracicaba, Brazil), affording about 1 kg of powdered dry 
leaves The crude extract was obtained by maceration with 
ethanol (2.5 L: 1 kg) during seven days (Novaes et al. 2016). 
The extract was filtered, completely dried using a rotary 
evaporator (25 g) and fractionated in an open silica column 
(0.06–0.02 mm) at atmospheric pressure. The eluent series 
in increasing polarity order was: hexane 100%, hexane/ethyl 
acetate 80/20, 60/40, 40/60, and 20/80%, ethyl acetate 100%, 
ethyl acetate/methanol 80/20, 60/40, 40/60, and 20/80% and 
methanol 100%. All fractions were concentrated and ana-
lyzed by thin layer chromatography (TLC), in chromato-
graphic plates (0.25 mm thickness) with fluorescent indica-
tors (Alugram Sil G/UV 254, Machery Angel). Plates were 
observed under UV light at λ 365 nm and revealed with 
sulfuric anisaldehyde and heated at 150 °C. Fractions were 
combined in nine groups: A (0.70 g), B (4.9 g), C (0.85 g), 



Phytotoxicity of glycosylated flavonols extracted from Annona coriacea (Annonaceae) on…

D (0.78 g), E (1.5 g), F (0.93 g), G (5.14 g), H (5.93 g) and 
I (2.56 g).

All groups were assayed. Since group G was significantly 
active at all concentrations tested, reaching over 60% of inhi-
bition at the highest concentration, further fractionation was 
performed. The isolation and identification were performed 
as described in Novaes et al. (2018) through semi-prepar-
ative HPLC—DAD (Agilent 1200), using Eclipse XDB 
C18 column (250 mm × 9.4 mm id, 5,0 µm particle) and 
a gradient of 0.1% acetic acid and acetonitrile as mobile 
phase, yielding 11 pure flavonoids: 1—Quercetin-3-O-gen-
tiobioside (375.6 mg), 2—Quercetin-3-O-robinobioside 
(82.8 mg), 3—Rutin (100.8 mg), 4—Hyperin (26.1 mg), 
5—Isoquercitrin (96.4  mg), 6—Biorobin (3.1  mg), 7 
-Nicotiflorin (21.4 mg), 8—Keioside (70.1 mg), 9—Nar-
cissin (650 mg), 10—Cacticin (3.5 mg) and 11—Isorham-
netin-3-O-glucoside (78 mg). The structure elucidation of 
compounds were done through UV/Vis spectroscopy proce-
dures (Mabry et al. 1970), acid hydrolysis (Markham 1982), 
and 1H and 13C NMR analysis.

Wheat coleoptile elongation bioassay –  Wheat diaspores 
(Triticum aestivum L.) were sown in Petri dishes lined with 
filter paper, moistened with water, and grown in the dark at 
25 ± 1 °C for 4 days (Barbero et al. 2010). After this period, 
etiolated coleoptiles were selected and placed in a Van der 
Weij guillotine, under green light. The apical 2 mm of the 
epicotyl were cut off and discarded. The following 4 mm 
of the coleoptiles were cut and selected for bioassays. The 
groups and the isolated compounds were diluted in phos-
phate-citrate buffer solution containing 2% sucrose and 0.5% 
DMSO (Nitsch and Nitsch 1956), at pH 5.6, to the final 
bioassay concentrations of 0.8, 0.4 and 0.2 mg  mL−1 for the 
groups and 1, 0.3, 0.1 and 0.03 mM for isolated compounds, 
usual in this bioassay (Novaes et al. 2013b; Rial et al. 2016). 
Five coleoptiles and 2 mL of each sample dilution were 
placed into a test tube (three tubes per dilution). Test tube 
of negative control without any sample, and positive control, 
using commercial herbicide glyphosate at same concentra-
tions replacing the samples were also done. All tubes were 
placed in a roller tube apparatus (STUART SB2) at 20 rpm 
for 24 h at 25 °C in the dark. After this period, coleoptile 
elongation was measured and the length evaluated as per-
centage differences from negative control.

Germination and seedlings initial growth –  Bioassays were 
performed as Macías et al. (2000), modified, and conducted 
using six-well microplates in which four wells were used as 
replicas, each one containing 8 diaspores of lettuce (Lactuca 
sativa L., cv. Grand Rapids), tomato (Solanum lycopersi-
cum L., cv. IPA6) and U. decumbens. The wells were lined 
with filter paper and moisturized with 1 mL of group G and 
isolated compounds diluted in buffer, composed by  10–2 M 

2-[N-morpholino]ethanesulfonic acid (MES), 1 M NaOH 
(pH 6.0) and 0.5% DMSO, at 0.8, 0.4 and 0.2 mg  mL−1 for 
group G and 1, 0.5, 0.25, 0.12 and 0.06 mM for isolated 
compounds. Negative (1 mL of buffer) and positive con-
trols, using commercial herbicide glyphosate at same con-
centrations replacing the samples were also run. The six-
well microplates were sealed with parafilm and incubated at 
25 °C in B.O.D. (FANEM 347-CDG), with photoperiod of 
12/12 h light/dark. Bioassays took 8 days. After this period, 
measures of germination rate of diaspores, and shoot and 
root length of the seedlings were performed and presented 
as percentage differences from negative control.

Statistics The experimental design in the laboratory was 
completely randomized. The statistical tests were performed 
using the free software Bioestat 5.0. The data normality was 
analyzed by Lilliefors test. Significant differences between 
results from negative control and those from the test sam-
ples were paired evaluated by Mann–Whitney (when average 
values were not normally distributed) and T test (when the 
average values were normally distributed), with the decision 
level at p < 0.05 (Zar 2010).

3  Results

All groups obtained from the ethanolic extract of A. coria-
cea, except groups B and F, showed significant phytotoxicity 
on the elongation of wheat coleoptiles (Fig. 1), at least at the 
highest concentration. The herbicide was much more active 
than any fraction and showed inhibitions between 90 and 
80%. Among the groups with higher phytotoxicity, group G 
stood out because of two factors: (1) the highest inhibition 
percentage, over 60% at the highest concentration and, (2) 
the higher yield (5.14 g). Therefore, group G was chosen 
for continuing assays. Group G also inhibited around 70% 
of U. decumbens germination rate with concentrations of 
0.8 mg  mL−1 and 0.4 mg  mL−1 (Fig. 2). However, no sig-
nificant effect was observed on initial growth of seedlings 
(Fig. 2).

Based on the results of group G on U. decumbens ger-
mination, further potential allelochemicals isolation was 
carried out on it. The group G afforded 11 glycosylated fla-
vonols, being five quercetin (1–5), two kaempferol (6–7) and 
four isorhamnetin derivatives (8–11), identified as: Querce-
tin-3-O-gentiobioside (1), Quercetin-3-O-robinobioside 
(2), Rutin (3), Hyperin (4), Isoquercitrin (5), Biorobin (6), 
Nicotiflorin (7), Keioside (8), Narcissin (9), Cacticin (10) 
and Isorhamnetin-3-O-glucoside (11) (Novaes et al. 2018).

Wheat coleoptile elongation bioassay was performed with 
all isolated flavonols at 1 mM (Fig. 3). Only the compounds 
5, 7, 11 and the herbicide inhibited significantly the coleop-
tiles elongation at this higher concentration. Therefore, 
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three other low concentrations were also tested. The her-
bicide inhibited about 80% of wheat coleoptile elongation 
at all studied concentrations, while the inhibition was dose-
dependent with the flavonols. Compounds 5 and 11 showed 
similar phytotoxicity, about 70% of inhibition at 1 mM. 
Both compounds were more active than 7. The lowest IC50 
was obtained for 5 (IC50 0.22 mM,  r2 0.97), followed by 
11 (IC50 0.28 mM,  r2 0.92) and 7 (IC50 0.48 mM,  r2 0.93). 

Since compounds 5 and 11 showed the lowest values of IC50 
on the elongation of the coleoptiles, they were also tested 
on germination and initial growth of tomato (Fig. 4), lettuce 
(Fig. 5) and U. decumbens (Fig. 6).

None of the compounds have significantly affected the 
germination or the initial growth of tomato (Fig. 4). For 
lettuce, however, compounds 5 and 11 stimulated shoot 
initial growth at almost all concentrations (Fig. 5). This 

Fig. 1  Percentage of stimulation/inhibition of wheat coleoptile elongation threatened with groups (A–I) obtained after column chromatography 
of ethanolic extract of Annona coriacea and the herbicide, in relation to negative control. Asterisks indicate significant differences in relation to 
negative control (p < 0.05)

Fig. 2  Percentage of stimula-
tion/inhibition of germination 
and initial growth (shoots and 
roots) of Urochloa decum-
bens threatened with group G 
obtained after column chroma-
tography of ethanolic extract 
of Annona coriacea, in relation 
to negative control. Negative 
results correspond to inhibition, 
while positive results corre-
spond to stimulation. Asterisks 
indicate significant differences 
between treatments and negative 
control (p < 0.05)
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stimulation reached 60% in the case of compound 11 at 
0.5 mM. Shoot growth of lettuce was significantly inhibited 
only by the intermediated concentrations of 5 (1 mM) and 11 
(0.05 mM). None of the concentrations of 5 and 11 affected 
its shoot growth.

Compounds 5 and 11 presented completely different 
effects on germination and initial growth of U. decumbens 
(Fig. 6). Compound 5 had almost none effect on it, except 
for the significant increase of shoot growth when applied at 
0.25 mM. By the other hand, compound 11 inhibited sig-
nificantly the germination of this species by 50% and 65% 
in almost all concentrations, despite elevated standard-devi-
ations. Compound 11 was significant stimulatory on shoot 
growth at 0.25 and 0.06 mM and on root growth at 0.06 mM.

Comparing the effects of compounds 5 and 11 on coleop-
tile elongation and germination/initial growth assays, 
although both presented significant inhibition on the former 
(Fig. 3), only compound 11 exhibit some effect on the later 
assay using U. decumbens (Fig. 6).

The herbicide presented a dramatic effect on the germina-
tion and initial growth of the three target species. The ger-
mination of the three target species was inhibited in 100% in 
all concentrations of it, except the lowest one (Figs. 4, 5, 6). 
At 0.06 mM, the herbicide reduced germination of tomato in 
70 and 100% of U. decumbensand therefore there is no result 
of its influence on shoot and root growth (Fig. 6). No signifi-
cant effect of it was observed for lettuce (Fig. 5). However, 
for both tomato and lettuce, the few diaspores germinated 
presented no shoots and had strongly reduced roots, reaching 

75 and 90% of lower length, respectively, in the presence of 
the lowest concentration of the herbicide (Figs. 4, 5).

4  Discussion

Almost all groups at 0.8 mg  mL−1, presented higher inhibi-
tion percentage than that previously observed for the leaf 
crude extract (around 40%—Novaes et al. 2016), specially 
groups D, E, G and I. Although group G showed strong 
phytotoxicity on the elongation of wheat coleoptiles and 
germination rate of U. decumbens, no significant effect was 
observed on initial growth of seedlings. This species is an 
aggressive weed in Brazil, which besides its invasiveness 
in fields, also shows easy adaptation to the soils of the Bra-
zilian savanna (Alvim et al. 1990) and allelopathic poten-
tial (Souza et al. 2003). Novaes et al. (2016) observed over 
70% of inhibition of germination and also on shoot and root 
lengths when diaspores of U. decumbens were grown with 
crude leaf extract of Annona coriacea. The difference of 
results between the leaf crude extract and group G on the 
growth of the weed seedlings could be probably because 
some active compounds responsible for this effect may have 
been placed in other groups after fractionation of the extract.

The good germination results of Group G on U. decum-
bens justified its prospection for allelochemicals which could 
be used as natural origin pesticides in future. Since 2009, 
Brazil is the largest consumer of pesticides in the world 
(INCA 2015). The indiscriminate and often misguided use 

Fig. 3  Percentage of stimulation/inhibition of wheat coleoptile elongation threatened with the flavonols isolated from group G obtained after 
column chromatography of ethanolic extract of Annona coriacea and the herbicide, in relation to negative control. Negative results correspond 
to inhibition, while positive results correspond to stimulation. Asterisks indicate significant differences between treatments and negative control 
(p < 0.05). 1 (Quercetin-3-O-gentiobioside), 2 (Quercetin-3-O-robinobioside), 3 (Rutin), 4 (Hyperin), 5 (Isoquercitrin), 6 (Biorobin), 7 (Nicoti-
florin), 8 (Keioside), 9 (Narcissin), 10 (Cacticin) and 11 (Isorhamnetin-3-O-glucoside)
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of these products have been responsible for intoxication of 
human beings, especially workers who make their applica-
tion in the field, and biological communities (INCA 2015). 
Thus, the search for natural pesticides, which are biodegrad-
able and do not produce contaminants such as synthetic 
products, is of fundamental importance.

The group G afforded 11 glycosylated flavonols, as pre-
sented before (Novaes et al. 2018). The flavonol occurrence 
in Annonaceae species was already described by Santos and 

Salatino (2000). Compounds 5, 7 and 11 significantly affect 
the elongation of wheat coleoptiles. Novaes et al. (2013b), 
Nebo et al. (2014), Watanabe et al. (2014), and Marsni et al. 
(2015) described phytotoxic activity of many flavonoids on 
the elongation of wheat coleoptiles. Most of the compounds 
showed effects between 0 and 70% of inhibition, even in the 
highest concentrations, as 1 mM. Some aglycones, however, 
were very active. The flavone (2-phenyl-4H-1-benzopyran-
4-one) showed almost 100% inhibition in concentrations 

Fig. 4  Percentage of stimula-
tion/inhibition of germination 
and initial growth (shoots and 
roots) of tomato threatened with 
the flavonols 5 (Isoquercitrin) 
and 11 (Isoramnetin-3-O-glu-
coside) isolated from ethanolic 
extract of Annona coriacea 
and the herbicide, in relation 
to negative control. Negative 
results correspond to inhibition, 
while positive results corre-
spond to stimulation. Asterisks 
indicate significant differences 
between treatments and negative 
control (p < 0.05)
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between 0.1 and 1 mM (Nebo et al. 2014), while heliannone 
B showed 100% inhibition at 1 mM, but had strong reduc-
tion of activity in concentrations lower than 0.3 mM (Marsni 
et al. 2015). Here, the three compounds with the highest 

activity were, respectively, a quercetin, a kaempferol and an 
isorhamnetin glycosides, and their sugars were a glucose (5 
and 11), and a glucose connected to a rhamnose (7), what is 
also present in other compounds without activity. Therefore, 

Fig. 5  Percentage of stimula-
tion/inhibition of germination 
and initial growth (shoots and 
roots) of lettuce treated with 
the flavonols 5 (Isoquercitrin) 
and 11 (Isoramnetin-3-O-glu-
coside) of the ethanolic extract 
of Annona coriacea and the 
herbicide, in relation to nega-
tive control. Asterisks indicate 
significant differences between 
treatments and negative control 
(p < 0.05)
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at least in this work, there was no correlation between the 
structures and the activities.

Compounds 5 and 11 affected the elongation of wheat 
coleoptiles close to those exhibited by the herbicide. These 
compounds did not show important results on tomato and 
lettuce germination and seedling growth. Compounds 5 and 
11 presented completely different effects on U. decumbens: 
compound 5 had almost no effect on it, and compound 11 

significantly affected its germination, showing elevated 
standard-deviations. High standard-deviations are expected 
for results using U. decumbens since it is a wild species 
and present wide intrinsic variation. At first, germination 
should be less affected by phytotoxic compounds than plant 
growth because of the barrier provided by seed, especially 
in those of larger endosperm (Soltys et al. 2012). However, 
this was not our case. Reduction of weed germination is 

Fig. 6  Percentage of stimula-
tion/inhibition of germination 
and initial growth (shoots and 
roots) of Urochloa decumbens 
threatened with the flavonols 
5 (Isoquercitrin) and 11 
(Isoramnetin-3-O-glucoside) of 
the ethanolic extract of Annona 
coriacea and the herbicide, in 
relation to negative control. 
Asterisks indicate significant 
differences between treatments 
and negative control (p < 0.05)
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especially important to farmers interested in their control. 
Other authors have already reported the same effect on this 
weed (Novaes et al. 2016; Rial et al. 2016).

One possible explanation for this difference between the 
results of compounds 5 and 11 could be related to the dis-
tinct complexity of the biological systems in both assays. 
While coleoptile assay evolves the activity of a single tissue 
with less differentiated cells, germination and initial growth 
assays are developed on more complex systems, evolving the 
development of a new individual, which could also show 
complex defense responses against stressful environment 
(Gniazdowska et al. 2015), in our case, the presence of an 
allelochemical.

Phytotoxicity of the compounds 5 and 11 have been stud-
ied before on standard target species. Parvez et al. (2004) 
observed a decrease of 70% on the initial growth of Arabi-
dopsis thaliana in the presence of 5. Contradicting our 
results, Almeida et al. (2008) observed 60% of inhibition of 
lettuce root elongation when exposed to compound 5. For 
these authors, flavonoids with a catechol group, like com-
pound 5, are responsible for changes on cellular membrane 
permeability and modify the radicular lengthening needed 
for root protrusion. Compound 11, isolated from leaves of 
Melilotus neapolitana Ten. (Fabaceae) by Esposito et al. 
(2008) showed no effect on coexisting species of Mediter-
ranean herbaceous plant community, Petrorhagia velutina 
(Guss.) P.W. Ball & Heywood (Caryophyllaceae), Dacty-
lis hispanica Roth, and Phleum subulatum (Savi) Asch. & 
Graebn. (Poaceae).

Although some effect of compounds 5 and 11 were 
observed on germination/initial growth with the three tar-
get species used (tomato, lettuce and U. decumbens), they 
were much less expressive than those previously found with 
ethanolic crude leaf extract on Annona coriacea (Novaes 
et al. 2016). With the crude extract, germination inhibition 
was around 60–70% and the initial development of shoots 
and roots were also reduced for all the three target-species. 
These differences between the results could be due to the 
joint action of the compounds when they are together in 
the extract. Joint action is the set of interactions that can 
occur when compounds are mixed and they can show syn-
ergic, additive or antagonist activities (Inderjit et al. 2002). 
These phenomena have been studied in elongation of wheat 
coleoptiles and antioxidant assays (Garcia et al. 2015; Rial 
et al 2016; Galindo et al. 2017), but there is no data proven 
it in germination and growth bioassays. Garcia et al. (2015) 
showed that binary mixtures of polymethoxyflavones of cit-
rus showed synergistic effects on the elongation of wheat 
coleoptiles and antioxidant assays, whilst Rial et al. (2016) 
showed that the joint action of sesquiterpene lactones iso-
lated from Cynara cardunculus L. (Asteraceae) were, pre-
dominantly, additive of inhibitory activity on the coleoptiles. 
To be more certain of additive or synergic activities between 

5 and 11, experiments of binary mixtures of the compounds, 
with different variations of concentrations, as performed by 
these authors, would be necessary, especially in germination 
and growth bioassays.

Concluding, the groups D, E, G and I of A. coriacea 
extract showed higher inhibitory activities on elongation of 
wheat coleoptiles than that observed for the crude extract. 
Eleven flavonols were isolated from group G and, as far as 
we know, this is the first report of wheat coleoptile elonga-
tion bioassay to all the compounds and it is also the first 
phytotoxicity results for five of them. There was no appar-
ent correlation between the structure of the compounds and 
their activity in the present study. While isoquercitrin (5) and 
isorhamnetin-3-O-glucoside (11) showed elevated phytotox-
icity in wheat coleoptiles elongation bioassay, they had no 
effect or were mainly stimulatory to germination and initial 
growth of lettuce and tomato. Only 11 was inhibitory to U. 
decumbens germination, demonstrating its importance to 
studies focused on weed control. The higher structural com-
plexity of diaspores, when compared to wheat coleoptile, is 
suggested as a possible explanation for distinct effects of iso-
lated flavonoids on coleoptile elongation and germination/
initial growth assays. There were also differences between 
the activity of the isolated compounds and the crude extract 
of A. coriacea on the target plants and it could have resulted 
from joint action of the compounds, which shall be tested in 
further experiments.
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