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We have studied, using double ratio of QCD (spectral) sum rules, the ratio between the masses of Tcc and
X(3872) assuming that they are respectively described by the D − D∗ and D − D̄∗ molecular currents. We
found (within our approximation) that the masses of these two states are almost degenerate. Since the
pion exchange interaction between these mesons is exactly the same, we conclude that if the observed
X(3872) meson is a D D̄∗ + c.c. molecule, then the D D∗ molecule should also exist with approximately
the same mass. An extension of the analysis to the b-quark case leads to the same conclusion. We also
study the SU(3) breakings for the T s

Q Q /T Q Q mass ratios. Motivated by the recent Belle observation of
two Zb states, we revise our determination of Xb by combining results from exponential and FESR sum
rules.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The existence of exotic hadrons is a long-standing problem. By
exotic we mean a state whose quantum numbers and main prop-
erties cannot be explained by a simple quark–antiquark or three-
quark configuration.

The X(3872) resonance (assumed to be an 1++ axial vector me-
son) has, indeed, stimulated many activities in the physics of hadrons.
It was discovered by BELLE in B-decays [1], and confirmed by
BaBar [2], CDF [3] and D0 [4]. It is rather narrow, with a width
� 2.3 MeV. Its most popular picture which consists of a molecular
configuration, D D̄∗ + D̄ D∗ , with J P C = 1++ , has been attributed to
the narrow (� 2.3 MeV width) X(3872).1

The case of the four-quark state (Q Q ūd̄) with quantum num-
bers I = 0, J = 1 and P = +1 which, following Ref. [6], we call
T Q Q , is especially interesting. As already noted previously [6,7],
the Tbb or Tcc states with J P = 1+ cannot split into a pair of two
B̄ or two D mesons which is restricted to J P = 0+,2+, . . . . If their
masses are below the B̄ B̄∗ or D Dπ thresholds, these decays are
also forbidden. As a result, T Q Q becomes stable with respect to
strong interaction, and must decay radiatively, or even weakly if
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the mass becomes lower than the threshold made of two pseu-
doscalar mesons.

2. T Q Q from potential models

In constituent models with a flavor-independent central poten-
tial, the stability of (Q Q q̄q̄) configurations comes from a favorable
effect when the charge-conjugation symmetry is broken, as noted
many years ago [8]. This is the same mechanism by which, in QED,
the loosely bound positronium molecule evolves into the very sta-
ble hydrogen molecule.

It is worth noting that in the large mQ limit, the light degrees
of freedom cannot resolve the closely bound Q Q system. This re-
sults in bound states similar to the Λ̄Q states, with Q Q playing
the role of the heavy antiquark [9].

The (Q Q q̄q̄) states have been studied using a variety of sim-
ple or elaborated potential models [7,8,10–12]. The corresponding
four-body problem is very delicate. For instance, an expansion on
harmonic-oscillator states was used in [11]. It is efficient for deep
binding but converges very slowly for weak binding. If truncated,
this expansion may fail to demonstrate stability with potentials
that do bind, because it lacks explicit (Q q̄) − (Q q̄) components,
which are important near threshold [7], and are included in the
Gaussian expansion sketched in [12] and systematically developed
in [6]. See, also, Ref. [13] for a discussion about the four-quark
problem. All authors agree that such states become bound when
the quark over the antiquark mass ratio becomes sufficiently large.
Detailed four-body calculations, using a pairwise central potential
supplemented by a chromomagnetic interaction, indicate that Tbb
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is rather well bound, and Tcc possibly bound by a few MeV below
D D∗ . For instance, the prediction of Ref. [6] is, in units of MeV:

MTcc = 3876–3905, MTbb = 10519–10651. (1)

A non-pairwise confinement has also been considered [14], in-
spired by the large coupling regime of QCD, where it is shown
[15] that it is more favorable to build stable tetraquarks. In this
improved quark model, as well as in conventional quark models, it
is found that (Q Q q̄q̄) has an energy lower than (Q Q̄ qq̄).

Another variant was considered in [16], with a chiral potential
model, which includes meson-exchange forces between quarks, in-
stead of the chromomagnetic interaction.

The existence of a D D̄∗ + D̄ D∗ molecule was predicted in
Ref. [17] on the basis of the pion-exchange dynamics.2 Here, the
pion is exchanged between the hadrons, as in the Yukawa the-
ory of nuclear forces. The D D∗π and D̄ D̄∗π vertices are identical,
as well as the D∗D∗π and D̄∗ D̄∗π ones. There is only an over-
all change of sign, due to the G-parity of the pion. Therefore, if the
pion-exchange dynamics3 is able to bind the D D̄∗ + D̄ D∗ molecule,
the same is true for the D D∗ molecule. The difference between
these two states can only come from the short-range part of the
interaction.

3. T Q Q from QCD (spectral) sum rules

The first study of tetraquarks with two heavy quarks within
QCD (spectral) sum rules (QCDSR) was done in [19] by using
diquark–antidiquark current. This study is revisited and improved
in the present Letter. Our aim is also to compare in detail the
(Q Q q̄q̄) and (Q Q̄ qq̄) configurations. Such a comparison is at-
tempted in Ref. [20], where the authors study heavy tetraquarks
using a crude color-magnetic interaction, with flavor symme-
try breaking corrections. They assume that the Belle resonance,
X(3872), is a cqc̄q̄ tetraquark, and use its mass as input to deter-
mine the mass of other tetraquark states. They obtain, in units of
MeV:

MTcc � 3966, MTbb � 10372, (2)

in agreement with the previous results in Eq. (1) and the ones
from QCD (spectral) sum rule, in units of GeV [19]:

MTcc = 4.2 ± 0.2, MTbb = 10.2 ± 0.3. (3)

The short-range part of the interaction can be tested by the QCD
(spectral) sum rules approach [21–23]. Therefore, in this work, we
study the ratio of the masses of the Tcc and X(3872) states, by
using the double ratios of sum rules (DRSR) introduced in [24],
which is widely applied for accurate determinations of the ratios of
couplings and masses [25–31] and form factors [32]. This accuracy
is reached due to partial cancellations of the systematics of the
method and of the QCD corrections in the DRSR. More recently, the
DRSR was used to study different possible currents for the X(3872)

[27]. It was found that (within the accuracy of the method) the
different structures (3̄ − 3 and 6̄ − 6 tetraquarks and D D̄∗ + D̄ D∗
molecule) lead to the same prediction for the mass. This result
could indicate that the short-range part of the interaction alone
may not be sufficient to reveal the nature of the X(3872).

2 For further references on this approach, see e.g. [18].
3 Usually, the G parity rule transforms an attractive potential into a repulsive one.

Here, however, it only changes the sign of the transition potential D D̄∗ → D∗ D̄ , and
thus just a phase in the two-component bound state wave function.
3.1. Two-point functions and forms of the sum rules

The two-point functions of the X(3872) (assumed to be an 1++
axial vector meson) and the Tcc (assumed to be a J P = 1+ state)
is defined as:

Π
μν
i (q) ≡ i

∫
d4x eiq.x〈0|T [

jμi (x) jνi
†
(0)

]|0〉

= −Π1i
(
q2)(gμν − qμqν

q2

)
+ Π0i

(
q2)qμqν

q2
, (4)

where i = X , Tcc . The two invariants, Π1 and Π0, appearing in
Eq. (4) are independent and have respectively the quantum num-
bers of the spin 1 and 0 mesons.

We assume that the X(3872) and Tcc states are described by
the molecular currents:

jμX (x) =
(

g

Λ

)2

eff

1√
2

[(
q̄a(x)γ5ca(x)c̄b(x)γ μqb(x)

)
− (

q̄a(x)γ μca(x)c̄b(x)γ5qb(x)
)]

(5)

and

jμTcc
(x) =

(
g′

Λ

)2

eff

(
q̄a(x)γ5ca(x)q̄b(x)γ μcb(x)

)
, (6)

where a and b are color indices.
In the molecule assignment, it is assumed that there is an ef-

fective local current and the meson pairs are weakly bound by a
van der Vaals force in a Fermi-like theory with a strength (g/Λ)2

eff
which has nothing to do with the quarks and gluons inside each
meson.

Due to its analyticity, the correlation function, Π1i in Eq. (4),
can be written in terms of a dispersion relation:

Π1i
(
q2) =

∞∫
4m2

c

ds
ρi(s)

s − q2
+ · · · , (7)

where πρi(s) ≡ Im[Π1i(s)] is the spectral function.
The sum rule is obtained by evaluating the correlation function

in Eq. (4) in two ways: using the operator product expansion (OPE)
and using the information from hadronic phenomenology. In the
OPE side we work at leading order of perturbation theory in αs ,
and we consider the contributions from condensates up to dimen-
sion six. In the phenomenological side, the correlation function is
estimated by inserting intermediate states for the X and Tcc states
via their couplings λi to the molecular currents:

〈0| jμi |Mi〉 = λiε
μ, (8)

where Mi ≡ X, Tcc , jμi are the currents in Eqs. (5) and (6).
Using the ansatz: “one resonance” ⊕ “QCD continuum”, where

the QCD continuum comes from the discontinuity of the QCD dia-
grams from a continuum threshold tc , the phenomenological side
of Eq. (4) can be written as:

Π
phen
μν

(
q2) = λ2

i

M2
i − q2

(
−gμν + qμqν

M2
i

)
+ · · · , (9)

where the Lorentz structure gμν projects out the 1+ state. The
dots denote higher axial-vector resonance contributions that will
be parametrized, as usual, by the QCD continuum. After making an
inverse-Laplace (or Borel) transform on both sides, and transferring
the continuum contribution to the QCD side, the moment sum rule
and its ratio read:
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Fi(τ ) ≡ λ2
i e−M2

i τ =
tc∫

4m2
c

ds e−sτ ρi(s),

Ri(τ ) ≡ − d

dτ
log Fi(τ ) � M2

i (10)

where τ ≡ 1/M2 is the sum rule variable with M being the
inverse-Laplace (or Borel) mass. In the following, we shall work
with the DRSR [24]:

rTcc/X ≡
√

RTcc

R X
� MTcc

M X
. (11)

3.2. QCD expression of the spectral functions

The QCD expressions of the spectral densities of the two-point
correlator associated to the current in Eq. (5) are given in Ref. [33].
Up to dimension-six condensates the expressions associated to the
current in Eq. (6), in the structure gμν are:

ρ(s) = ρpert(s) + ρ〈q̄q〉(s) + ρ〈G2〉(s) + ρmix(s) + ρ〈q̄q〉2
(s), (12)

with

ρpert(s)

= 1

3.213π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

[
(α + β)m2

c − αβs
]3

× [
2m2

c

(
13α2 + 13αβ + 7α + 5

) − 15αβs(1 + α + β)
]
,

ρ〈q̄q〉(s) = −mc〈q̄q〉
26π4

αmax∫
αmin

dα

α

1−α∫
βmin

dβ

β2
(1 + α + β)

× [
(α + β)m2

c − αβs
]2

,

ρ〈G2〉(s) = 〈g2G2〉
213.32π6

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β3

{
12αβ(5α + 5β − 3)

× [
(α + β)m2

c − αβs
]2 + m4

c (1 − α − β)2α2

× (5 + α + β) + m2
c (1 − α − β)

[
9α2(2 + 3α + 4β)

+ αβ(2 + 2α + 11β) + 15α − 2β
]

× [
(α + β)m2

c − αβs
]}

,

ρmix(s) = −mc〈q̄gσ .Gq〉
3.28π4

{
7

αmax∫
αmin

dα

α(1 − α)

[
m2

c − α(1 − α)s
]

−
αmax∫

αmin

dα

α

1−α∫
βmin

dβ

β2

[
12α2 + 17αβ − β

]

× [
(α + β)m2

c − αβs
]}

,

ρ〈q̄q〉2
(s) = ρ〈q̄q〉2

3.26π2

αmax∫
αmin

dα
[
13m2

c − 5α(1 − α)s
]
, (13)

where: mc , 〈g2G2〉, 〈q̄q〉, 〈q̄gσ .Gq〉 are respectively the charm
quark mass, gluon condensate, light quark and mixed condensates;
Table 1
QCD input parameters. For the heavy quark masses, we use the range spanned by
the running M S mass mQ (M Q ) and the on-shell mass from QCD (spectral) sum
rules compiled in pages 602, 603 of the book in [23]. The values of Λ and μ̂q

have been obtained from αs(Mτ ) = 0.325(8) [38] and from the running masses:
(mu + md)(2) = 7.9(3) MeV [39]. The original errors have been multiplied by 2 for
a conservative estimate of the errors.

Parameters Values Ref.

Λ(n f = 4) (324 ± 15) MeV [38,40]
μ̂q (263 ± 7) MeV [23,39]
m̂s (0.114 ± 0.021) GeV [23,39,40]
mc (1.23 ∼ 1.47) GeV [23,39–43]
mb (4.2 ∼ 4.7) GeV [23,39–42]
m2

0 (0.8 ± 0.2) GeV2 [28,44,45]
〈αs G2〉 (6 ± 2) × 10−2 GeV4 [25,38,46–51]
ραs〈d̄d〉2 (4.5 ± 0.3) × 10−4 GeV6 [38,44,46]

ρ indicates the violation of the four-quark vacuum saturation. The
integration limits are given by:

αmin = 1

2
(1 − v), αmax = 1

2
(1 + v),

βmin = αm2
c /

(
sα − m2

c

)
(14)

where v is the c-quark velocity:

v ≡
√

1 − 4m2
c /s. (15)

3.3. Tcc/X ratio of masses

In the following, we shall extract the mass ratio Tcc/X using
the DRSR in Eq. (11). For the numerical analysis we shall introduce
the renormalization group invariant quantities m̂s and μ̂q [34,35]:

m̄s(τ ) = m̂s

(− log
√

τΛ)−2/β1
,

〈q̄q〉(τ ) = −μ̂3
q(− log

√
τΛ)−2/β1 ,

〈q̄gσ .Gq〉(τ ) = −m2
0μ̂

3
q(− log

√
τΛ)−1/3β1 , (16)

where β1 = −(1/2)(11 − 2n/3) is the first coefficient of the β

function for n flavors. We have used the quark mass and conden-
sate anomalous dimensions reported in [23]. We shall use the QCD
parameters in Table 1. At the scale where we shall work, and us-
ing the parameters in Table 1, we deduce: ρ = 2.1 ± 0.2, which
controls the deviation from the factorization of the four-quark con-
densates. We shall not include the 1/q2 term discussed in [36,37],
which is consistent with the LO approximation used here as the
latter has been motivated by a phenomenological parametrization
of the larger order terms of the QCD series.

Using QCD (spectral) sum rules, one can usually estimate the
mass of the X-meson, from the ratio R X in Eq. (10), which is
related to the spectral densities obtained from the current (5).
A tetraquark current for the X(3872) was used in Ref. [26]. At the
sum rule stability point and using a slightly different (though con-
sistent) set of QCD parameters than in Table 1, one obtains, with a
good accuracy, for mc = 1.26 GeV [26]4:

M X � √
R X = (3925 ± 127) MeV, (17)

and the correlated continuum threshold value fixed simultaneously
by the Laplace and finite energy sum rules (FESR) sum rules:
√

tc � (4.15 ± 0.03) GeV. (18)

4 The use of mc = 1.47 GeV increases the central value by about (160–200) MeV.
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Fig. 1. The double ratio rTcc/X defined in Eq. (11) as a function of τ for
√

tc =
4.15 GeV and for two values of mc = 1.23 (solid line) and 1.47 GeV (dashed line).

In Ref. [27] it was obtained that the DRSR for the tetraquark cur-
rent and for the molecular current is:

rmol/3 =
√

Rmol

R3
� 1.00, (19)

with a negligible error. Therefore, the result in Eq. (18) is the same
for the current in Eq. (5). Although the uncertainty in Eq. (17) is
still large, considering the fact that this result was obtained in a
Borel region where there is pole dominance and OPE convergence,
one can say that the QCD sum rules supports the existence of such
a state and that the value obtained for M X is in reasonable agree-
ment with the experimental candidate [40]:

M X |exp = (3872.2 ± 0.8) MeV. (20)

We now study the DRSR of the Tcc/X defined in Eq. (11). In
Fig. 1, we show the τ -dependence of the ratio for

√
tc = 4.15 GeV

and for two values of mc = 1.23 GeV and 1.47 GeV. From Fig. 1
one can see that there is a τ -stability around τ � 0.4 GeV−2 and
for this value of τ , we get:

rTcc/X = 1.00 ± 0.01. (21)

In Fig. 2, we show the tc-dependence of the ratio for τ =
0.4 GeV−2 and for two values of mc = 1.23 GeV and 1.47 GeV.
From this figure one can see that the ratio increases with tc . How-
ever, considering the large range of tc presented in the figure, the
ratio does not differ more than 3% from 1.

Our analysis has shown that the D D̄∗ + c.c. and D D∗ currents
lead to the same mass predictions within the accuracy of the ap-
proach. The accuracy of the DRSR is bigger than the normal QCDSR
because the DRSR are less sensitive to the exact value and defi-
nition of the heavy quark mass and to the QCD continuum con-
tributions. As mentioned before, this accuracy is reached due to
partial cancellations of the systematics of the method and of the
QCD corrections in the DRSR. Therefore, if the observed X(3872) is
a molecular D D̄∗ + c.c. state its molecular cousin D D∗ should also
be a bound state. Its mass can be obtained by using the experi-
mental mass for the X(3872) in Eq. (21):

MTcc = (3872.2 ± 39.5) MeV. (22)
Fig. 2. The double ratio rTcc/X as a function of tc for τ = 0.4 GeV−2 and for two
values of mc = 1.23 (solid line) and 1.47 GeV (dashed line).

Fig. 3. Same as Fig. 1 for rTbb/Xb for
√

tc = 10.5 GeV and for two values of mb = 4.2
(solid line) and 4.7 GeV (dashed line).

3.4. Tbb/Xb ratio of masses

Using the same interpolating field in Eqs. (5) and (6) with the
charm quark replaced by the bottom one, we can analyse the
DRSR:

rTbb/Xb ≡
√

RTbb

R Xb

� MTbb

M Xb

. (23)

In Fig. 3, we show the τ -dependence of the ratio in Eq. (23) for√
tc = 10.5 GeV and for two values of mb . From this figure one can

see the ratio is very stable. The same happens for the dependence
of this ratio with tc , as can be seen by Fig. 4. We get:

rTbb/Xb = 1.00. (24)

Therefore, we can predict the degeneracy between the masses of
the Tbb and of the Xb given in Eq. (25).
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Fig. 4. Same as Fig. 2 for rTbb/Xb for τ = 0.2 GeV−2 and for two values of mb = 4.2
(solid line) and 4.7 GeV (dashed line).

Fig. 5. M Xb in GeV as a function of τ in GeV−2 from Laplace sum rule for mb =
4.7 GeV and

√
tc = 11 GeV: long dashed (red): (1) = perturbative (Pert) contribu-

tion; small dashed (blue): (2) = Pert + 〈d̄d〉 + 〈αs G2〉 contributions (the one of the
gluon condensate is relatively negligible); continuous (olive): (3) = (2)+mixed con-
densate 〈gd̄Gd〉; medium dashed (black): (4) = (3)+〈d̄d〉2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this Letter.)

Fig. 6. M Xb in GeV as a function of
√

tc in GeV from FESR (dashed curve) and the
value at the τ -stability from Laplace sum rule for mb = 4.7 GeV. The OPE has been
truncated at D = 5.

4. Revisiting the determination of the Xb mass

The Xb was studied in Ref. [26]. At the sum rule stability point
and using the perturbative M S-mass mb(mb) = 4.24 GeV, they get:

10.06 GeV � M Xb � 10.50 GeV, (25)

for 10.2 GeV � √
tc � 10.8 GeV, while combining the Laplace sum

rule with FESR, they obtain a slightly lower but more precise value:

M Xb = (10.14 ± 0.10) GeV. (26)

We complete the previous analysis by using here the value of the
on-shell mass mb = 4.7 GeV due to the ambiguous definition of the
quark mass used as we work to leading order of radiative correc-
tions. For a close comparison with the analysis in [26], we shall
work with the two-point function associated to the four-quark
current.5 We notice that the contribution of the D = 6 conden-
sate 〈q̄q〉2 destabilizes the result [medium dashed (black) curve],6

which is restored if one adds the D = 8 condensate given in [26].
However, we refrain to add such a term due to the eventual un-
certainties for controlling the high-dimension condensate contri-
butions (violation of factorization, complete D = 8 contributions)
and find safer to limit the analysis to the D = 5 contribution like
in Ref. [26]. In this way, the ratio of sum rules present τ -stability
at about 0.1 GeV−2 (continuous curve in Fig. 5). We show in Fig. 6
the tc-behavior of M Xb versus the continuum threshold tc , where
a common solution is obtained in units of GeV:

M Xb = 10.50 ∼ 10.78 for
√

tc = 10.5 ∼ 11.0, (27)

which combined with the result in Eq. (26) leads to the conserva-
tive range of values:

M Xb = 10.14 ∼ 10.78 for
√

tc ≈ M X ′
b
= 10.5 ∼ 11.0, (28)

where one can notice the relatively small mass-difference between√
tc and M Xb eventually signaling the nearby location of the radial

excitations as mentioned in [26].
Very recently the Belle Collaboration studied the Υ (5S) →

Υ (nS)π± and Υ (5S) → hb(mP )π± (n = 1,2,3 and m = 1,2) de-
cay processes looking for resonant substructures. They found two
narrow states in units of MeV:

M Zb = 10610 and M Z ′
b
= 10650, (29)

with a hadronic width in units of MeV:

ΓZb = 15.6 ± 2.5 and ΓZ ′
b
= 14.4 ± 3.2, (30)

respectively [52]. The analysis of the Zb states decay in the chan-
nel Z+

b → Υ (2S)π+ favors the J P = 1+ assignment, which is the
same as the one of the Xb , although Xb has positive charge conju-
gation and the neutral partner of Zb should have negative charge
conjugation.

Considering the errors in Eq. (28) and the small mass difference
between Xb and

√
tc , it is difficult to identify the two observed Zb

states with the Xb .

5. SU(3) mass-splittings

We extend the previous analysis to study the ratio between the
strange T s

cc (ccs̄s̄) and non-strange Tcc states.

5 The result using the D D̄∗ molecule current would be the same as we have
shown in [27] that the masses obtained from the four-quark and molecule currents
are degenerate.

6 We have neglected the contribution of the triple gluon condensate 〈g3 fabc G3〉
due to the (1/16π2)2 loop factor suppression compared to 〈q̄q〉2.
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Fig. 7. Different QCD contributions to the DRSR rT s
cc/Tcc

defined in Eq. (32) for
√

tc =
4.15 GeV and mc = 1.23 GeV: (1) = Pert + ms: dot-dashed (maroon); (2) = (1) +
〈q̄q〉: long-dashed (magenta); (3) = (2) + 〈αs G2〉: dotted (blue); (4) = (3) + 〈gq̄Gq〉:
dashed (red); (5) = (4) + 〈q̄q〉2: continuous (black). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
Letter.)

The QCD expression for the spectral function proportional to ms

for the current in Eq. (6) is:

ρms (s) = ms

28π4

αmax∫
αmin

dα

α

{
〈s̄s〉7[m2

c − α(1 − α)s]2

(1 − α)

+
1−α∫

βmin

dβ

β

[
(α + β)m2

c − αβs
]

×
[
〈s̄s〉(m2

c (21 + α + β) − 6
[
(α + β)m2

c − αβs
])

− mc

2π2αβ2
(3 + α + β)(1 − α − β)

× [
(α + β)m2

c − αβs
]2

]}
. (31)

We start by studying the DRSR:

rT s
cc/Tcc

≡
√

RT s
cc

RTcc

� MT s
cc

MTcc

. (32)

We study the convergence of the DRSR versus τ in Fig. 7, where
the show the strength of the different contributions in the OPE.
We note that we have τ -stability around τ = 0.2 GeV−2, while the
OPE breaks down for τ � 0.5 GeV−2.

In Fig. 8, we show the τ -dependence of the ratio in Eq. (32),
for

√
tc = 4.15 GeV and for two values of mc . From this figure one

can deduce around the τ -stability:

rT s
cc/Tcc

= 0.95 ∼ 0.98, (33)

which gives a smaller mass for T s
cc than for Tcc . This result is simi-

lar to the result obtained for X s in Ref. [26]. However, in this case,
the decrease in the mass is even bigger than the obtained for X s:
rX s/X = 0.984 ± 0.009. This result is consistent with what is ob-
tained from the DRSR:
Fig. 8. Same as Fig. 1 for rT s
cc/Tcc

defined in Eq. (32) for
√

tc = 4.15 GeV and for two
values of mc = 1.23 (solid line) and 1.47 GeV (dashed line).

Fig. 9. Same as Fig. 1 for rT s
cc/Xs . The solid and dashed lines are for mc = 1.23 and

1.47 GeV respectively.

rT s
cc/Xs ≡

√
RT s

cc

R Xs
� MT s

cc

M Xs
, (34)

as can be seen in Fig. 9.
In Fig. 9 we have used tc = 4.15 GeV. However, the result is

very stable as a function of tc , as can be seen in Fig. 10.
Since for the T s

cc state, considered as a Ds D∗
s molecule, there is

no allowed pion exchange, one cannot conclude, from the analysis
above, that the T s

cc should be more deeply bound than the Tcc . On
the contrary, if the pion exchange is important for binding the two
mesons, the T s

cc may not be bound.

6. Conclusion

In conclusion, we have studied the mass of the Tcc using double
ratios of sum rules (DRSR), which are more accurate than the usual
simple ratios used in the literature. We found that the molecu-
lar currents D D̄∗ + c.c. and D D∗ lead to (almost) the same mass
predictions within the accuracy of the method. Since the pion
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Fig. 10. Same as Fig. 2 for rT s
cc/Xs . The solid and dashed lines are for mc = 1.23 and

1.47 GeV respectively.

exchange interaction between these mesons is exactly the same,
we conclude that if the observed X(3872) meson is a D D̄∗ + c.c.
molecule, then the D D∗ molecule should also exist with approx-
imately the same mass. A recent estimate of the production rate
indicates that these states could be seen in LHC experiments [53].

We have also studied the double ratio rTbb/Xb using molecular
currents B̄ B̄∗ and B B̄∗ + c.c. for Tbb and Xb respectively. In this
case the degeneracy between the two masses is even better than
in the charm case. Therefore, we also conclude for the bottom case
that if a molecular state B B̄∗ + c.c. exist, then the B̄ B̄∗ molecule
should also exist with the same mass.

Acknowledgements

This work has been partly supported by the CNRS-FAPESP pro-
gram, by CNPq-Brazil and by the CNRS-IN2P3 within the project
Non-perturbative QCD and Hadron Physics. We thank R.M. Albu-
querque for checking some of the QCD expressions of the two-
point correlator.

References

[1] S.-K. Choi, et al., Belle Collaboration, Phys. Rev. Lett. 91 (2003) 262001.
[2] B. Aubert, et al., BaBar Collaboration, Phys. Rev. D 71 (2005) 071103.
[3] D. Acosta, et al., CDF II Collaboration, Phys. Rev. Lett. 93 (2004) 072001.
[4] V.M. Abazov, et al., D0 Collaboration, Phys. Rev. Lett. 93 (2004) 162002.
[5] M. Nielsen, F.S. Navarra, S.H. Lee, Phys. Rept. 497 (2010) 41.
[6] D. Janc, M. Rosina, Few Body Sust. 35 (2004) 175.
[7] S. Zouzou, B. Silvestre-Brac, C. Gignoux, J.M. Richard, Z. Phys. C 30 (1986) 457.
[8] J.P. Ader, J.M. Richard, P. Taxil, Phys. Rev. D 25 (1982) 2370;

L. Heller, J.A. Tjon, Phys. Rev. D 35 (1987) 969.
[9] H.J. Lipkin, Phys. Lett. B 172 (1986) 242;

C.-K. Chow, Phys. Rev. D 51 (1995) 3541.
[10] J. Vijande, A. Valcarce, K. Tsushima, Phys. Rev. D 74 (2006) 054018.
[11] B. Silvestre-Brac, C. Semay, Z. Phys. C 57 (1993) 273;

B. Silvestre-Brac, C. Semay, Z. Phys. C 59 (1993) 457;
C. Semay, B. Silvestre-Brac, Z. Phys. C 61 (1994) 271.

[12] D.M. Brink, Fl. Stancu, Phys. Rev. D 57 (1998) 6778.
[13] J. Vijande, A. Valcarce, N. Barnea, Phys. Rev. D 79 (2009) 074010, arXiv:

0903.2949 [hep-ph].
[14] J. Carlson, V.R. Pandharipande, Phys. Rev. D 43 (1991) 1652.
[15] J. Vijande, A. Valcarce, J.M. Richard, Phys. Rev. D 76 (2007) 114013.
[16] S. Pepin, Fl. Stancu, M. Genovese, J.M. Richard, Phys. Lett. B 393 (1997) 119.
[17] N.A. Törnqvist, Z. Phys. C 61 (1994) 525.
[18] E.S. Swanson, Phys. Rept. 429 (2006) 243;

J.M. Richard, talk given at QCD 05 (Montpellier, 4–8th July 2005), Nucl. Phys. B
(Proc. Suppl.) 164 (2007) 131, hep-ph/0601043.

[19] F.S. Navarra, M. Nielsen, S.H. Lee, Phys. Lett. B 649 (2007) 166.
[20] Y. Cui, X.-L. Chen, W.-Z. Deng, S.-L. Zhu, High Energy Phys. Nucl. Phys. 31 (2007)

7.
[21] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147 (1979) 385.
[22] L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127 (1985) 1.
[23] For a review and references to original works, see e.g., S. Narison, Cambridge

Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2002) 1, arXiv:hep-ph/0205006;
S. Narison, World Sci. Lect. Notes Phys. 26 (1989) 1;
S. Narison, Acta Phys. Pol. B 26 (1995) 687;
S. Narison, Riv. Nuov. Cim. 10N2 (1987) 1;
S. Narison, Phys. Rept. 84 (1982) 263.

[24] S. Narison, Phys. Lett. B 210 (1988) 238.
[25] S. Narison, Phys. Lett. B 387 (1996) 162.
[26] R.D. Matheus, S. Narison, M. Nielsen, J.M. Richard, Phys. Rev. D 75 (2007)

014005.
[27] S. Narison, F.S. Navarra, M. Nielsen, Phys. Rev. D 83 (2011) 016004.
[28] S. Narison, Phys. Lett. B 605 (2005) 319.
[29] S. Narison, Phys. Lett. B 322 (1994) 327.
[30] S. Narison, Phys. Rev. D 74 (2006) 034013;

S. Narison, Phys. Lett. B 358 (1995) 113;
S. Narison, Phys. Lett. B 466 (1999) 345.

[31] R.M. Albuquerque, S. Narison, M. Nielsen, Phys. Lett. B 684 (2010) 236;
R.M. Albuquerque, S. Narison, Phys. Lett. B 694 (2010) 217.

[32] S. Narison, Phys. Lett. B 337 (1994) 166;
S. Narison, Phys. Lett. B 668 (2008) 308.

[33] R.D. Matheus, F.S. Navarra, M. Nielsen, C.M. Zanetti, Phys. Rev. D 80 (2009)
056002.

[34] E.G. Floratos, S. Narison, E. de Rafael, Nucl. Phys. B 155 (1979) 155.
[35] S. Narison, R. Tarrach, Phys. Lett. B 125 (1983) 217.
[36] K. Chetyrkin, S. Narison, V.I. Zakharov, Nucl. Phys. B 550 (1999) 353;

S. Narison, V.I. Zakharov, Phys. Lett. B 522 (2001) 266;
S. Narison, V.I. Zakharov, Phys. Lett. B 679 (2009) 355.

[37] For reviews, see V.I. Zakharov, Nucl. Phys. B (Proc. Suppl.) 164 (2007) 240;
S. Narison, Nucl. Phys. B (Proc. Suppl.) 164 (2007) 225.

[38] S. Narison, Phys. Lett. B 673 (2009) 30.
[39] For reviews, see S. Narison, Phys. Rev. D 74 (2006) 034013, arXiv:hep-

ph/0202200;
S. Narison, Phys. Lett. B 216 (1989) 191;
S. Narison, H.G. Dosch, Phys. Lett. B 417 (1998) 173;
S. Narison, N. Paver, E. de Rafael, D. Treleani, Nucl. Phys. B 212 (1983) 365;
S. Narison, E. de Rafael, Phys. Lett. B 103 (1981) 57;
C. Becchi, S. Narison, E. de Rafael, F.J. Yndurain, Z. Phys. C 8 (1981) 335.

[40] C. Amsler, et al., Phys. Lett. B 667 (2008) 1.
[41] S. Narison, Phys. Lett. B 693 (2010) 559, and references therein;

S. Narison, arXiv:1105.2922 [hep-ph];
S. Narison, arXiv:1105.5070 [hep-ph].

[42] S. Narison, Phys. Lett. B 197 (1987) 405;
S. Narison, Phys. Lett. B 341 (1994) 73;
S. Narison, Phys. Lett. B 520 (2001) 115.

[43] B.L. Ioffe, K.N. Zyablyuk, Eur. Phys. J. C 27 (2003) 229;
B.L. Ioffe, Prog. Part. Nucl. Phys. 56 (2006) 232.

[44] Y. Chung, et al., Z. Phys. C 25 (1984) 151;
H.G. Dosch, Non-Perturbative Methods, Montpellier, 1985;
H.G. Dosch, M. Jamin, S. Narison, Phys. Lett. B 220 (1989) 251.

[45] B.L. Ioffe, Nucl. Phys. B 188 (1981) 317;
B.L. Ioffe, Nucl. Phys. B 191 (1981) 591;
A.A. Ovchinnikov, A.A. Pivovarov, Yad. Fiz. 48 (1988) 1135.

[46] G. Launer, S. Narison, R. Tarrach, Z. Phys. C 26 (1984) 433.
[47] S. Narison, Phys. Lett. B 300 (1993) 293.
[48] R.A. Bertlmann, G. Launer, E. de Rafael, Nucl. Phys. B 250 (1985) 61;

R.A. Bertlmann, et al., Z. Phys. C 39 (1988) 231.
[49] F.J. Yndurain, Phys. Rept. 320 (1999) 287, arXiv:hep-ph/9903457.
[50] J.S. Bell, R.A. Bertlmann, Nucl. Phys. B 227 (1983) 435;

R.A. Bertlmann, Acta Phys. Austriaca 53 (1981) 305;
R.A. Bertlmann, H. Neufeld, Z. Phys. C 27 (1985) 437.

[51] S. Narison, Phys. Lett. B 361 (1995) 121;
S. Narison, Phys. Lett. B 624 (2005) 223.

[52] I. Adachi, et al., Belle Collaboration, arXiv:1105.4583.
[53] Yu-qi Chen, Su-zhi Wu, arXiv:1101.4568 [hep-ph].


	Relation between Tcc,bb and Xc,b from QCD
	1 Introduction
	2 TQQ from potential models
	3 TQQ from QCD (spectral) sum rules
	3.1 Two-point functions and forms of the sum rules
	3.2 QCD expression of the spectral functions
	3.3 Tcc/X ratio of masses
	3.4 Tbb/Xb ratio of masses

	4 Revisiting the determination of the Xb mass
	5 SU(3) mass-splittings
	6 Conclusion
	Acknowledgements
	References


