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Abstract: In this paper, we extend the Lomax–Rayleigh distribution to increase its kurtosis. The
construction of this distribution is based on the idea of the Slash distribution, that is, its representation
is based on the quotient of two independent random variables, one being a random variable with a
Lomax–Rayleigh distribution and the other a beta(q, 1). Based on the representation of this family,
we study its basic properties, such as moments, coefficients of skewness, and kurtosis. We perform
statistical inference using the methods of moments and maximum likelihood. To illustrate this
methodology, we apply it to two real data sets.
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1. Introduction

Non-negative data modeling has grown exponentially, as many real data sets follow
this pattern. Distributions with positive support are mainly used in the areas of engineering,
reliability, survival analysis, and failure time. An important distribution found in positive
phenomena, such as life-testing experiments, reliability analysis, communication theory,
physical sciences, engineering, medical imaging science, applied statistics, and clinical
studies, is the Rayleigh distribution, initially introduced by Johnson et al. [1]. Another
important distribution in this type of phenomenon is the Lomax distribution, also known
as the second-order Pareto distribution. Applications of this model include lifetime data,
business failure data, and economic and actuarial modeling. Cordeiro et al. [2] proposed
a family of univariate, positively supported distributions generated by Lomax random
variables, which they defined as generating Lomax-G distributions.

The novelty of this work is to introduce a new model with heavy tails. In actuarial
statistics, distributions of this type have proven to be the best option for heavy-tailed
financial data, which is why they are of great interest to actuaries. Olmos et al. [3] presented
a heavy right-tailed distribution with real data application to the Survey of Consumer
Finances (SCF); Zhao et al. [4] presented a new family of heavy-tailed distributions,
useful for modeling financial data; Riad et al. [5] introduced the new Kayva–Manoharan
Lomax model, with a real data application related to HT insurance loss; and Afify et al. [6]
defined the exponential power-weighted model to model financial data. Other types of
studies based on heavy-tailed models can be found in the literature. In practice, the most
interesting heavy-tailed distributions are those that have a finite mean and a divergent
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variance. Cococcioni et al. [7] provided a LogNormal distribution that has a finite mean and
a variance that converges to a well-defined infinite value. On the other hand, Xu et al. [8]
provided two robust estimators, the ridge log truncated M-estimator and the elastic net
log-truncated M-estimator.

Venegas et al. [9] introduced the Lomax–Rayleigh (LR) heavy-tailed distribution,
considering G as the cumulative distribution function (cdf) of the Rayleigh model.

The probability density function (pdf) of a random variable X with distribution LR,
which is denoted as X ∼ LR(θ, α), can be expressed as

fX(x; θ, α) =
2αθαx

(θ + x2)
α+1 , x > 0, (1)

where θ > 0 and α > 0 are the scale and shape parameters, respectively.
On the other hand, the canonical Slash distribution is stochastically defined as the

ratio of two independent random variables: one standard normal and the other a power of
a uniform (0, 1), that is,

Y =
X

U1/α
,

where X ∼ N(0, 1) and U ∼ U(0, 1) are independent and α > 0. This distribution has
heavier tails than the normal distribution, that is, it has greater kurtosis. The properties
of this family are discussed by Rogers and Tukey [10] and Mosteller and Tukey [11]. The
location, scale, and maximum likelihood (ML) estimators are discussed by Kafadar [12].
Wang and Genton [13] provide a multivariate version of the Slash distribution and a multi-
variate skew version. Gómez et al. [14] extend this family using the family of univariate
and multivariate elliptic distributions. Recent works by Olmos et al. [15,16], Actias [17],
Gómez et al. [18], Barrios et al. [19], and Arendarczyk et al. [20] use a methodology similar
to the Slash distribution to extend different models. The objective of this work is to extend
the LR distribution in such a way that this new distribution has greater flexibility in its kur-
tosis using the Slash procedure, using an LR random variable in the numerator and a beta
random variable in the denominator. We call this new model Slash Lomax–Rayleigh (SLR).

The structure of this article is as follows. Section 2 presents the representation of
the family and produces the Slash Lomax–Rayleigh PDF, moments, and coefficients of
asymmetry and kurtosis. In Section 3, inferences are drawn using the moments and ML
estimation methods. Section 4 consists of a simulation study to observe the behavior of
the ML estimates of the parameters. Two applications to real data sets are discussed in
Section 5. Finally, Section 6 summarizes the main conclusions of this study.

2. The Slash Lomax–Rayleigh Model

In this section, we discuss the stochastic representation of the SLR model, including
its PDF, CDF, and some properties of the model.

2.1. Stochastic Representation

Definition 1. A random variable Z has an SLR distribution with parameters θ > 0 and α > 0 if
it can be represented by the ratio:

Z =
X
Y

(2)

where X ∼ LR(θ, α) and Y ∼ Beta(α, 1) are two independent random variables. We denote this as
Z ∼ SLR(θ, α).

2.2. PDF, CDF, Hazard Function, and Other Properties

Proposition 1. Let Z ∼ SLR(θ, α). Then, the PDF of Z is given by:

fZ(z; θ, α) = α2θ
α
2 z−(α+1)B

(
z2

θ + z2 ;
α

2
+ 1,

α

2

)
, z > 0, (3)
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where θ > 0 and α > 0, and B(w; a, b) =
∫ w

0 ua−1(1− u)b−1du is the incomplete beta function.

Proof. Using the PDF given in (1) and the stochastic representation given in (2), the PDF
associated with Z is given by:

fZ(z; θ, α) =
∫ 1

0
v fX,Y(zv, v) dv,

since X and Y are independent. Then, fX,Y(zv, v) = fX(zv) fY(v), and given that X ∼
LR(θ, α) and Y ∼ beta(α, 1), we obtain:

fZ(z; θ, α) = 2α2θαz
∫ 1

0

vα+1

(θ + (zv)2)α+1 dv.

After making the change of variable u = (zv)2

θ , we obtain:

fZ(z; θ, α) = α2θ
α
2 z−(α+1)

∫ z2
θ

0

u
α
2

(1 + u)α+1 du.

In this latter integral, we use the change of variable w =
u

1 + u
, where dw = du/(1 + u)2.

Substituting this, we have

fZ(z; θ, α) = α2θ
α
2 z−(α+1)

∫ z2
θ

0

u
α
2

(1 + u)α+1 du,

= α2θ
α
2 z−(α+1)

∫ z2
θ

0

(
u

1 + u

) α
2
(1 + u)−

α
2 +1 du

(1 + u)2 ,

= α2θ
α
2 z−(α+1)

∫ z2

θ+z2

0
w

α
2 (1− w)

α
2−1dw,

and the result is obtained.

Proposition 2. Let Z ∼ SLR(θ, α). Then, the CDF of Z is given by:

FZ(z; θ, α) = 1− θα(θ + z2)−α − αθ
α
2 p0(z), z > 0,

where θ > 0, α > 0 and pj(z) = z−(α+j)B
(

z2

θ+z2 ; α
2 + 1, α

2

)
, j ∈ Z.

Proof. Using the definition of the CDF and integration by parts, the result is obtained.

Proposition 3. The hazard function of Z is given by:

hZ(z; θ, α) =
α2 p1(z)

θα/2(θ + z2)−α + αp0(z)
, z > 0,

where θ > 0 and α > 0.

Proof. Using the definition of the hazard function

hZ(z; θ, α) =
fZ(x; θ, α)

1− FZ(x; θ, α)
,

the result follows immediately.

Figure 1 illustrates the PDF, CDF, and hazard function of the SLR(θ, α) model for some
combinations of θ and α.
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Figure 1. (a) PDF, (b) CDF, and (c) hazard function of the SLR(θ, α) distribution with different
combinations of θ and α.

Proposition 4. If Z|T = t ∼ LR(θt−2, α) and T ∼ beta(α, 1), then Z ∼ SLR(θ, α).

Proof. The marginal distribution of Z can be calculated as:

fZ(z; θ, α) =
∫ 1

0
fZ|T(y|t) fT(t)dt = 2α2θα

∫ 1

0

ztα+1

(θ + (zt)2)α+1 dt.

Using the change of variables in Proposition 1, we obtain Equation (3).

Proposition 5. Let Z ∼ SLR(θ, α). Then, W = aZ ∼ SLR(a2θ, α) for all a > 0.

Proof. The proof follows directly by using the change of variable method.

We know that any distribution of probability is specified by its CDF F(t), which is a
heavy right-tailed distribution (see Rolski et al. [21]) if

lim sup
t→∞

(
− log(1− F(t))

t

)
= 0.

The following result shows that the SLR distribution is a heavy right-tailed distribution.

Proposition 6. The CDF of the random variable T ∼ SLR(θ, α) is a heavy right-tailed distribution.

Proof. By applying L’Hopital’s rule to the upper limit and substituting Equation (3),
we obtain:

lim sup
t→∞

(
− log(1− F(t))

t

)
= lim sup

t→∞

(
fT(t; θ, α)

1− FT(t; θ, α)

)
= lim supt→∞

α2 p1(t)
θα/2(θ+t2)−α+αp0(t)

,

and by again applying L’Hopital’s rule, we obtain:

= lim sup
t→∞

α2t−1B
(

t2

θ + t2 ;
α

2
+ 1,

α

2

)
θα/2

(
θ
t + t

)−α
+ αB

(
t2

θ + t2 ;
α

2
+ 1,

α

2

) = 0.

2.3. Moments

The following proposition presents the moments of the SLR distribution.
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Proposition 7. Let Z ∼ SLR(θ, α). For r = 1, 2, . . . and α > r, the r-th moment of Z is given by:

µr = E(Zr) =
αθr/2

α− r
Mr(α),

where Mr = Mr(α) =
Γ
(
α− r

2
)
Γ
( r

2 + 1
)

Γ(α)
.

Proof. Using the stochastic representation provided in Equation (2), we directly obtain:

µr = E(Zr) = E(XrY−r) = E(Xr)E(Y−r),

where E(Y−r) =
α

α− r
, α > r, and E(Xr) =

θ
r
2 Γ
(
α− r

2
)
Γ
( r

2 + 1
)

Γ(α)
is the r-th moment of the

LR(θ, α) distribution.

Corollary 1. If Z ∼ SLR(θ, α), then,

1. µ1 = E(Z) =
αθ1/2

α− 1
M1, α > 1;

2. µ2 = E(Z2) =
αθ

α− 2
M2, α > 2;

3. µ3 = E(Z3) =
αθ3/2

α− 3
M3, α > 3;

4. µ4 = E(Z4) =
αθ2

α− 4
M4, α > 4;

5. Var(Z) = αθ

(
1

α− 2
M2 −

α

(α− 1)2 M2
1

)
, α > 2.

Proof. The proof follows directly from Proposition 7.

Corollary 2. Let Z ∼ SLR(θ, α). Then, the skewness coefficient (
√

β1) and kurtosis coefficient
(β2) are:

√
β1 =

√
α− 2{(α− 1)3(α− 2)M3 − 3αM1M2(α− 1)2(α− 3) + 2α2(α− 2)(α− 3)M3

1}√
α(α− 3){(α− 1)2M2 − α(α− 2)M2

1}3/2
, α > 3,

β2 =
(α− 1)3(α− 2)2 A + 3(α− 2)(α− 3)(α− 4)α2B
α(α− 3)(α− 4){(α− 1)2M2 − α(α− 2)M2

1}2
, α > 4,

where A = A(α) = (α− 1)(α− 3)M4 − 4α(α− 4)M1M3 y B = B(α) = 2(α− 1)2M2
1 M2 −

α(α− 2)M4
1.

Proof. From the definition of the skewness and kurtosis coefficients, we have:

√
β1 =

µ3 − 3µ2µ1 + 2µ3
1

(µ2 − µ2
1)

3/2
and β2 =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ2

1)
2

.

By replacing µ1, µ2, µ3, and µ4 presented in Corollary 1, the result is obtained.

Remark 1. The moments of the SLR distribution are primarily influenced by the moments of the
LR(θ, α) model, as demonstrated in Proposition 7. The graphs in Figure 2 illustrate the skewness and
kurtosis coefficients of the SLR and LR models, with different values of the parameter α while keeping
the parameter θ = 1 constant. The figure highlights the impact of the parameter α, indicating
the significant influence of the SLR model on its kurtosis and skewness, surpassing the LR model,
which already exhibits heavy tails. Consequently, as α decreases, both models exhibit higher values
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of the skewness and kurtosis coefficients, with the SLR model outperforming the LR model. This
observation is also evident in Table 1.
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Figure 2. (a) Skewness coefficient and (b) kurtosis coefficient for the SLR(θ, α) model.

Table 1. Some skewness and kurtosis values for different values of the parameter α.

α 5 5.5 6 7 10 20√
β1 2.142 1.826 1.613 1.349 1.018 0.777

β2 19.029 12.727 9.763 7.065 4.796 3.718

2.4. Incomplete Moments

Proposition 8. Let Z ∼ SLR(θ, α). Then, the k-th incomplete moment is given by

Tk(z) =
α2

k− α

[
θα/2 p−k(z)− θk/2B

(
z2

θ + z2 ;
k
2
+ 1, α− k

2

)]
, 2α > k, k = 0, 1, . . . .

Proof. By definition, the k-th incomplete moment of the SLR model is given by:

Tk(z) = E(Zk | Z < z) =
∫ z

0
tk f (t; θ, α)dt,

and using integration by parts, the result is obtained.

Especially for k = 0, 1, we have:

T0(z) = F(z), T1(z) =
α2

1− α

[
θα/2 p−1(z)− θ1/2B

(
z2

θ + z2 ;
3
2

, α− 1
2

)]
.

2.5. The Lorenz Curve and the Gini Index

The standard definition of the Lorenz curve [22] is provided in terms of the first
incomplete moment and the expected value of Z. Specifically, for the SLR model, the
following closed-form expression is obtained

L(p) =
1
µ

∫ z

0
t f (t)dt =

1
µ

T1(z)

=
α2

µ(1− α)

[
θα/2 p−1(z)− θ1/2B

(
z2

θ + z2 ;
3
2

, α− 1
2

)]
.
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The Gini index, also known as the Gini coefficient (see [23,24]), is a statistical dispersion
mean associated with the Lorenz curve, intended to represent income inequality, wealth
inequality, or consumption inequality within a nation or social group. The Gini index is
defined as:

G(θ, α) = 1− 1
µ

∫ ∞

0
[1− F(z; θ, α)]2dz.

Proposition 9. Let Z ∼ SLR(θ, α). Then, the Gini index is given by:

G(θ, α) = 1− 1
µ

∫ ∞

0
[1− T0(z)]

2dz

= 1− θα/2

µ

∫ ∞

0

[
(θ + z2)−α + αθ−

α
2 p0(z)

]2
dz.

Proof. By definition, the proof is direct.

Proposition 10. Let Z ∼ SLR(θ, α). The mode of Z is obtained as the solution to the following
non-linear equation in relation to z:

2θα/2(θ + z2)−(α+1) − (α + 1)p0(z) = 0.

Proof. The result is obtained by deriving the logarithm of the PDF for the SLR model and
setting it equal to zero.

Table 2 provides the numerical values of the mode for θ = 1 and α = 1, 3, 5, 7, 9, and 12.

Table 2. Numerical values of the mode for θ = 1 associated with the SLR distribution.

α Mode

1 0.824
3 0.462
5 0.348
7 0.288
9 0.251
12 0.215

2.6. Order Statistics

Order statistics have a wide range of applications in physical and life sciences (see
Balakrishnan and Cohen [25]). From a statistical perspective, they allow the computation
of useful functions such as the sample range and the sample median. The following result
states the PDF of the k-th order statistic from an SLR random sample of size n, which is
arranged in a non-decreasing order.

Proposition 11. Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be independent and identically SLR-distributed
random variables. Then, for k = 1, 2, ..., n, the PDF of the k-th order statistics Zk:n is given by:

fk:n(z) =
n!α2θα/2 p1(z)
(k− 1)!(n− k)!

[
1− θα(θ + z2)−α − αθα/2 p0(z)

]k−1[
θα(θ + z2)−α + αθα/2 p0(z)

]n−k
.

Proof. The above expression is obtained using the following formula (see Casella and
Berger [26])

fk:n(z) =
n!

(k− 1)!(n− k)!
f (z)(F(z))k−1[1− F(z)]n−k, k = 1, 2, . . . , n,

where f (z) and F(z) are the PDF and CDF of Z ∼ SLR(θ, α).
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Corollary 3. Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be independent and identically SLR-distributed
random variables. Then:

1. The PDF of the first-order statistic Z1:n is given by:

f1:n(z) = nα2θα p1(z)
[
θα/2(θ + z2)−α + αp0(z)

]n−1
.

2. The PDF of the n-th order statistic Zn:n is given by:

fn:n(z) = nα2θα/2 p1(z)
[
1− θα(θ + z1)−α − αθα/2 p0(z)

]n−1
.

Proof. The proof follows directly from Proposition 11.

3. Inference

In this section, the problem of estimating the parameters of the SLR distribution is
addressed. First, we apply the moments method for estimating the parameters, and then
the ML method.

3.1. Moment Estimators

Let Z1, Z2, . . . , Zn be a random sample from Z ∼ SLR(θ, α). The moment estimators
are obtained as the solution to equations E(Zj) = Zj for j = 1, 2, where Zj = n−1 ∑n

i=1 zj
i

denotes the j-th sample moment. By solving E(Z) = Z for θ, we obtain:

θ̂M =
Z2

(α̂M − 1)2

α̂2
M M2

1(α̂M)
, (4)

which depends on the solution to α, say α̂M. Therefore, by using (4) and replacing the
second population moment, the following equation is obtained

Z2
(α̂M − 1)2M2(α̂M)− α̂M(α̂M − 1)M2

1(α̂M)Z2 = 0.

This equation can be solved numerically using the R-4.3.1. software [27].

3.2. ML Estimators

For z1, . . . , zn, a random sample from the SLR(θ, α) model, the log-likelihood function
is given by:

`(ψ) = 2nα +
nα

2
log(θ)− (α + 1)

n

∑
i=1

log(zi) +
n

∑
i=1

log B(zi), (5)

where B(zi) = B

(
z2

i
θ + z2 ;

α

2
+ 1,

α

2

)
and ψ = (θ, α). The ML equations are given by:

n

∑
i=1

Bθ(zi)

B(zi)
= −nα

2θ
(6)

2n +
n
2

log(θ) +
n

∑
i=1

Bα(zi)

B(zi)
=

n

∑
i=1

log(zi) (7)

where Bθ(zi) =
∂B(zi)

∂θ
and Bα(zi) =

∂B(zi)

∂α
.

The ML estimators (MLEs) can be obtained by solving the likelihood Equations (6) and (7).
The solution for these equations can be obtained using numerical methods such as the Newton–
Raphson procedure. Alternative maximization techniques could also be applied, for instance,
the proposal by MacDonald [28]. It is important to note that the computational cost of finding
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the ML estimates can be high in certain cases, as the equations depend on the incomplete
beta function.

3.3. Observed Information Matrix

The asymptotic variance of the MLEs, say ψ̂ = (θ̂, α̂), can be estimated using the
Fisher information matrix, defined as I(ψ) = −E

[
∂2`(ψ)/∂ψ∂ψ>

]
, where `(ψ) is the

log-likelihood function of the SLR model provided in (5). Recall that under the conditions
of regularity,

I(ψ)−1/2(ψ̂−ψ
) D→ N2(02, I2), as n→ +∞,

where D represents convergence in the distribution, and N2(02, I2) denotes the standard
bivariate normal distribution. The elements of the matrix −∂2`(ψ)/∂ψ∂ψ> are given by
Iθθ = −∂2`(ψ)/∂θ2, Iαθ = −∂2`(ψ)/∂α∂θ, and Iαα = −∂2`(ψ)/∂α2. Explicitly, we have:

Iθθ = − nα

2θ2 +
n

∑
i=1

Bθθ(zi)B(zi)− B2
θ(zi)

B2(zi)
,

Iαθ =
n
2θ

+
n

∑
i=1

Bθα(zi)B(zi)− Bθ(zi)Bα(zi)

B2(zi)
,

Iαα =
n

∑
i=1

Bαα(zi)B(zi)− B2
α(zi)

B2(zi)
.

where Bθθ(zi) =
∂2B(zi)

∂θ2 , Bαα(zi) =
∂2B(zi)

∂α2 , and Bθα(zi) =
∂2B(zi)

∂θ∂α
.

In practice, it is not possible to obtain the expected value of previous expressions in
a closed form. Therefore, the covariance matrix of the MLEs, I(ψ)−1, can be estimated
consistently by I(ψ̂)−1, where I(ψ̂) denotes the observed information matrix, which is
obtained as

I(ψ̂) = − ∂2`(ψ)

∂ψ∂ψ>

∣∣∣∣∣
ψ=ψ̂

.

The asymptotic variances of θ̂ and α̂ are estimated by the diagonal elements of I(ψ̂)−1,
and their standard errors by the square root of the asymptotic variances.

4. Simulation Study

Using the stochastic representation provided in (2), it is possible to generate random
numbers from the SLR(θ, α) distribution using Algorithm 1.

This scheme was used to perform two simulation studies. The first assessed the
recovery parameters provided by the MLEs. The second evaluated the performance of
different criteria in model selection.

Algorithm 1 Simulating values from the SLR(θ, α) distribution

1: Simulate U1, U2 ∼ U(0, 1).
2: Calculate X =

√
θ[(1−U1)−1/α − 1].

3: Calculate Z = X
U1/α

2
.

4: Return Z. Z ∼ SLR(θ, α).

4.1. Recovery Parameters

We used the following sequence to perform a simulation study to evaluate the behavior
of the MLEs for the SLR model in finite samples. For θ, we fixed two values: 1 and 10.
For α, we fixed three values: 1, 2, and 3. For the sample size, we fixed three values: 100,
200, and 500. For each combination of θ, α, and n, we simulated 1000 replicas of that size
and calculated the MLEs and their standard errors. Table 3 summarizes the mean bias
of each estimator (bias), the mean of the standard errors (SE), the estimated root mean
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squared error (RMSE), and the coverage percentages at 95% (CP). Note that as the sample
size increased, the bias, SE, and RMSE decreased, suggesting that the MLEs for the SLR
model exhibited acceptable behavior, even in finite samples. Moreover, the SE and RMSE
approached each other as the sample size increased, suggesting that the variance of the
estimators was well estimated. Finally, the CP approached the nominal value as n increased,
suggesting that the asymptotic normality of the MLEs for the SLR model was reasonable,
even in finite samples.

Table 3. Estimated bias, SE, and RMSE of the MLEs for the SLR model in finite samples.

True Value n = 100 n = 200 n = 500
θ α Estim. Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

1

1 θ̂ 0.1437 0.4563 0.5292 0.8970 0.0418 0.2929 0.3174 0.9100 0.0175 0.1730 0.1924 0.9240
σ̂ 0.0270 0.1287 0.1380 0.9210 0.0083 0.0883 0.0902 0.9250 0.0008 0.0534 0.0566 0.9350

2 θ̂ 0.1739 0.4910 0.6288 0.9340 0.0793 0.3130 0.3483 0.9450 0.0278 0.1858 0.1968 0.9470
σ̂ 0.1136 0.3858 0.4428 0.9500 0.0587 0.2576 0.2832 0.9520 0.0181 0.1561 0.1622 0.9490

3 θ̂ 0.2152 0.5945 0.7354 0.9300 0.1068 0.3532 0.3980 0.9480 0.0399 0.2046 0.2087 0.9590
σ̂ 0.2703 0.8385 1.0074 0.9620 0.1357 0.5158 0.5614 0.9560 0.0530 0.3061 0.3159 0.9550

10

1 θ̂ 1.0928 4.6147 4.9835 0.9200 0.6209 3.0987 3.1515 0.9430 0.3235 1.9047 1.9843 0.9490
σ̂ 0.0215 0.1316 0.1361 0.9560 0.0091 0.0904 0.0908 0.9460 0.0075 0.0569 0.0570 0.9480

2 θ̂ 1.8062 4.9530 6.2205 0.9420 0.6775 3.0951 3.3442 0.9550 0.3048 1.8784 1.9640 0.9510
σ̂ 0.1246 0.3904 0.4693 0.9610 0.0508 0.2559 0.2748 0.9540 0.0200 0.1571 0.1630 0.9480

3 θ̂ 2.3098 6.0022 7.1093 0.9380 1.0098 3.5086 3.6259 0.9560 0.3798 2.0444 2.1095 0.9540
σ̂ 0.3110 0.8537 1.0266 0.9570 0.1285 0.5135 0.5295 0.9550 0.0468 0.3054 0.3111 0.9520

4.2. Assessing Model Selection Criteria

In this section, we assess different model selection criteria, such as the Akaike in-
formation criterion (AIC) (see Akaike [29]), Bayesian information criterion (BIC) (see
Schwarz [30]), and Vuong test [31], to decide between the SLR model and competing
models, such as the Lomax–Rayleigh (see Venegas et al. [9]), Weibull (W), inverse Gaussian
(IG), and Slash Half-Normal (SHN) distributions. The data were drawn from the SLR with
the same parameter combinations as in the previous study. Table 4 reports the percentage
of occurrences where the AIC and BIC favored the SLR model over the corresponding
competitor. The Vuong test was used to test the hypothesis

H0 : f (z; θ̂, α̂) = g(z; θ̂∗, α̂∗) versus H1 : f (z; θ̂, α̂) 6= g(z; θ̂∗, α̂∗),

where f (·; θ, α) denotes the PDF of the SLR model, θ̂ and α̂ represent the MLEs for θ and
α in the SLR model, g(z; θ∗, α∗) is the PDF of the competing model, and θ̂∗ and α̂∗ are the
MLEs for that model. The decision is made at a 5% significance level. Table 4 shows the
percentage of cases where the AIC and BIC chose the SLR over the LR, W, IG, and SHN
models. In addition, the row labeled “Vuong” corresponds to the percentage of cases where
the Vuong test rejected the previously stated null hypothesis. In such cases, there would
be evidence that the SLR model was preferable to the competing model (note that if the
null hypothesis was not rejected, this does not mean that there was no preference for the
alternative model, but rather that both models provided an equally good fit). The first
conclusion is that for a greater sample size, the AIC, BIC, and Vuong tests increase the
preference for the SLR. Conversely, the AIC and BIC work well to differentiate between the
SLR and the W, IG, and SHN models. However, a considerable sample size is needed to
differentiate between the SLR and LR models.
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Table 4. Percentage of cases where the AIC and BIC selected the SLR model over the indicated
model. The Vuong test corresponds to the percentage of instances where the null hypothesis that the
log-likelihood of the SLR model was equal to that of the indicated model was rejected.

n = 100 n = 200 n = 500
θ α LR W IG SHN LR W IG SHN LR W IG SHN

1

1
AIC 0.64 1.00 0.84 0.92 0.64 1.00 0.95 0.97 0.65 1.00 1.00 1.00
BIC 0.64 1.00 0.84 0.92 0.64 1.00 0.95 0.97 0.65 1.00 1.00 1.00

Vuong 0.33 0.89 0.20 0.45 0.35 1.00 0.43 0.59 0.39 1.00 0.83 0.86

2
AIC 0.47 0.98 0.84 0.97 0.48 1.00 0.94 1.00 0.50 1.00 1.00 1.00
BIC 0.47 0.98 0.84 0.97 0.48 1.00 0.94 1.00 0.50 1.00 1.00 1.00

Vuong 0.38 0.59 0.18 0.60 0.41 0.84 0.30 0.78 0.45 1.00 0.69 0.98

3
AIC 0.44 0.91 0.86 0.98 0.49 0.98 0.97 1.00 0.49 1.00 1.00 1.00
BIC 0.44 0.91 0.86 0.98 0.49 0.98 0.97 1.00 0.49 1.00 1.00 1.00

Vuong 0.41 0.32 0.17 0.64 0.44 0.55 0.30 0.88 0.47 0.89 0.73 0.99

10

1
AIC 0.62 1.00 0.83 0.94 0.61 1.00 0.96 0.97 0.64 1.00 1.00 1.00
BIC 0.62 1.00 0.83 0.94 0.61 1.00 0.96 0.97 0.64 1.00 1.00 1.00

Vuong 0.31 0.91 0.21 0.48 0.32 0.99 0.47 0.60 0.37 1.00 0.84 0.89

2
AIC 0.48 0.97 0.83 0.97 0.52 1.00 0.94 1.00 0.51 1.00 1.00 1.00
BIC 0.48 0.97 0.83 0.97 0.52 1.00 0.94 1.00 0.51 1.00 1.00 1.00

Vuong 0.35 0.60 0.19 0.58 0.37 0.85 0.32 0.80 0.38 1.00 0.71 0.99

3
AIC 0.41 0.92 0.85 0.98 0.45 0.98 0.96 1.00 0.47 1.00 1.00 1.00
BIC 0.41 0.92 0.85 0.98 0.45 0.98 0.96 1.00 0.47 1.00 1.00 1.00

Vuong 0.39 0.30 0.18 0.64 0.42 0.53 0.34 0.85 0.46 0.90 0.72 1.00

5. Applications

In this section, we present two relevant applications to illustrate the superior perfor-
mance of the SLR model in comparison with other proposals in the literature.

5.1. Application 1

The first data set was drawn from a study carried out by the US Department of
Veterans Affairs, which measured survival time (in days). The study included 137 patients
with advanced lung cancer. This data set was presented by Kalbfleisch and Prentice [32]
and is available in the R-4.3.1 software “survival” package [33], labeled as “veteran”.
Table 5 shows the descriptive statistics of the data, where

√
b1 and b2 are, respectively, the

coefficients of asymmetry and kurtosis of the sample.
The proposed SLR model was compared with some distributions from the literature,

using the AIC and BIC, as well as the Vuong test. One distribution fit the data better than
the other distribution when the values of the AIC and BIC were lower. On the other hand,
if the p-value for the Vuong test was lower than 0.05, this suggests that the corresponding
model produced a different PDF compared to that of the SLR model. The distributions we
used to compare with the model proposed in this work were the IG, LR, and Slash Fréchet
model (SFr) (see Castillo et al. [34]).

The PDF of the SFr distribution is given by:

f (y; θ, α) =
α

yα+1 Γ
(

1− α

θ
, y−θ

)
, y, θ, α > 0,

where θ > α, and Γ(a, t) =
∫ ∞

t
wa−1e−wdw is the incomplete gamma function.

Table 6 shows the MLEs for the four models and their SEs (standard errors), as well
as their AIC and BIC values, and the results of the Vuong test. Note that the AIC and
BIC values were lower for the SLR distribution, and the results of the Vuong test suggest
that the three models produced a different PDF compared to that of the SLR model for
these data.
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Figure 3 shows a histogram of the lung cancer data fitted to the SLR model and the
empirical CDF. The graphs confirm the results in Table 6. Therefore, the SLR distribution
provides a better fit for the lung cancer data compared to other distributions in the literature.
To illustrate the differences in the possible decisions that can be made based on the four
fitted models, we calculated the probability of a survival time of at least 4 months for
patients of this type. The estimations (and their 95% confidence intervals computed using
the delta method) were 0.343 (0.279–0.408) for the SLR, 0.336 (0.261–0.410) for LR, 0.319
(0.259–0.380) for SFr, and 0.279 (0.232–0.326) for IG models. Note that all the models
underestimated the referred probability in comparison with the SLR model.

Table 5. Descriptive statistics for the data set of patients with lung cancer.

n X S2 √
b1 b2

137 121.628 24,906.12 3.092 15.554

Using the results from Section 3.1, the moment estimates were computed and were
as follows: θ̂M = 12,103.743 and α̂M = 2.509. These were used as the initial values for
computing the ML estimates.
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Figure 3. SLR model adjusted using the ML method for the veteran data.

Table 6. Estimated parameters and their standard errors (in parentheses) for the SLR, LR, SFr, and IG
models for the lung cancer data set. The AIC and BIC values are also presented.

Parameter SLR LR SFr IG

θ̂
630.939

(223.857)
1043.268
(855.508) 0.772 (0.110) 24.443 (2.953)

α̂ 1.029 (0.112) 0.497 (0.142) 0.339 (0.037) 121.829 (23.277)

Log-likelihood −802.71 −804.49 −872.47 −816.67
AIC 1609.43 1612.99 1748.95 1637.35
BIC 1615.27 1618.83 1754.79 1643.19

Vuong test (p-value) − −2.60 (0.009) −13.81 (<0.001) −2.05 (0.040)

5.2. Application 2

In the second application, we included a comparison of the SLR model with the Slash
Half-Normal (SHN) distribution (see Olmos et al. [15]), the PDF of which is given by:

f (z; θ, α) = α

√
2α

π
θαΓ
(

α + 1
2

)
z−(α+1)G

(
z2,

α + 1
2

,
1

2θ2

)
z, θ, α > 0.
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where G is the CDF of the gamma distribution. The data set is available in the R-4.3.1
software “survival” package [33], labeled as “gbsg”, and contains data from a clinical trial
performed between 1984 and 1989 by the German Breast Cancer Study Group (GBSG) on
686 breast cancer patients with positive ganglia. In this study, the variable of interest was
the number of positive lymph ganglia in each patient (see Shumacher et al. [35] for a more
detailed description). Table 7 shows the descriptive statistics of the data, where

√
b1 and b2

are, respectively, the coefficients of asymmetry and kurtosis of the sample. Table 8 shows
the MLEs for the four models and their SEs (standard errors), as well as their AIC and
BIC values, and the results for the Vuong test. Again, the SLR model exhibited the lowest
AIC and BIC values, and the results of the Vuong test suggest that the three competing
models produced different PDFs compared to that of the SLR distribution. Figure 4 shows
a histogram of the breast cancer data fitted to the SLR model and the empirical CDF.
The graphs confirm the results in Table 8. Therefore, the SLR distribution provides a better
fit for the breast cancer data compared to other distributions in the literature.

Table 7. Descriptive statistics for the breast cancer patients data set.

n X S2 √
b1 b2

686 5.0102 29.981 2.878 16.208

Using the results from Section 3.1, the moment estimates were computed and were as
follows: θ̂M = 25.878 and α̂M = 2.739. These were used as the initial values for computing
the ML estimates. Again, to illustrate the differences in the decisions obtained using these
models, we show the estimated probability of finding more than 20 positive lymph ganglia
in patients of this kind. The estimations and their 95% confidence intervals were 0.045
(0.033–0.057) for SLR, 0.043 (0.031–0.057) for LR, 0.029 (0.018–0.041) for SHN, and 0.014
(0.009–0.020) for W models. In all the cases, the models underestimated the probability in
comparison with the SLR model.
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Figure 4. SLR model fitted by the ML method for gbsg data.
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Table 8. Estimated parameters and their standard errors (in parentheses) for the SLR, LR, SHN, and
W models for the breast cancer data set. The AIC and BIC are also presented.

Parameter SLR LR SHN W

θ̂ 4.715 (0.777) 5.584 (0.789) 3.250 (0.238) 5.156 (0.196)
α̂ 1.493 (0.089) 0.730 (0.052) 1.926 (0.203) 1.067 (0.029)

Log-likelihood −1748.00 −1749.81 −1790.61 −1788.88
AIC 3500.00 3503.61 3585.22 3581.76
BIC 3509.07 3512.68 3594.28 3590.82

Vuong test (p-value) − −4.18 (<0.001) −6.88 (<0.001) −3.78 (<0.001)

6. Final Discussion

This paper presents a study of the SLR distribution with two parameters. Some
properties are shown, and the performance is compared to other known distributions with
two parameters by fitting two data sets using ML estimations. The SLR distribution is a
viable alternative for fitting data with positive asymmetry and atypical observations. Some
other characteristics of the SLR distribution are:

• The SLR distribution has a closed expression and depends on the incomplete beta
function.

• The SLR distribution has a heavy right tail.
• The SLR distribution can also be represented as a mixed scale between the LR and

beta distributions.
• The CDF, hazard function, moments, and incomplete moments are explicit and are

represented by known functions.
• The asymmetry and kurtosis coefficients of the SLR distribution have greater ranges

than the coefficients of the LR distribution.
• The applications show that the SLR distribution is a good alternative when the data

present positive asymmetry with a heavy right tail; this is confirmed by the AIC and
BIC model selection criteria.

Author Contributions: Conceptualization, K.I.S., I.E.C. and H.W.G.; methodology, D.I.G. and H.W.G.;
software, I.E.C.; formal analysis, K.I.S., H.W.G. and O.V.; investigation, K.I.S. and I.E.C.; writing—
original draft preparation, K.I.S. and D.I.G.; writing—review and editing, O.V. and D.I.G.; fund-
ing acquisition, O.V. and H.W.G. All authors have read and agreed to the published version of
the manuscript.

Funding: The research of H.W. Gómez was supported by Semillero UA-2023.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available in Applications 1 and 2 in the R-4.3.1 software
“survival” package [33].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1995; Volume 1.
2. Cordeiro, G.M.; Cristino, C.T.; Hashimoto, E.M.; Ortega, E.M. The beta generalized Rayleigh distribution with applications to

lifetime data. Stat. Pap. 2013, 54, 133–161. [CrossRef]
3. Olmos, N.M.; Gómez-Déniz, E.; Venegas, O. The Heavy-Tailed Gleser Model: Properties, Estimation, and Applications.

Mathematics 2022, 10, 4577. [CrossRef]
4. Zhao, J.; Ahmad, Z.; Mahmoudi, E.; Hafez, E.H.; El-Din, M.M.M. A New Class of Heavy-Tailed Distributions: Modeling and

Simulating Actuarial Measures. Complexity 2021, 2021, 5580228. [CrossRef]
5. Riad, F.H.; Radwan, A.; Almetwally, E.M.; Elgarhy, M. A new heavy tailed distribution with actuarial measures. J. Radiat. Res.

Appl. Sci. 2023, 16, 100562. [CrossRef]

http://doi.org/10.1007/s00362-011-0415-0
http://dx.doi.org/10.3390/math10234577
http://dx.doi.org/10.1155/2021/5580228
http://dx.doi.org/10.1016/j.jrras.2023.100562


Mathematics 2023, 11, 4626 15 of 15

6. Afify, A.Z.; Pescim, R.R.; Cordeiro, G.M.; Mahran, H.A. A New Heavy-Tailed Exponential Distribution: Inference, Regression
Model and Applications. Pak. J. Stat. Oper. Res. 2023, 19, 395–411. [CrossRef]

7. Cococcioni, M.; Fiorini, F.; Pagano, M. Modelling Heavy Tailed Phenomena Using a LogNormal Distribution Having a Numerically
Verifiable Infinite Variance. Mathematics 2023, 11, 1758. [CrossRef]

8. Xu, L.; Yao, Q.; Zhang, H. Non-Asymptotic Guarantees for Robust Statistical Learning under Infinite Variance Assumption. J.
Mach. Learn. Res. 2023, 24, 1–46.

9. Venegas, O.; Iriarte, Y.A.; Astorga, J.M.; Gómez, H.W. Lomax-Rayleigh Distribution with an Application. Appl. Math. Inf. Sci.
2019, 13, 741–748. [CrossRef]

10. Rogers, W.H.; Tukey, J.W. Understanding some long-tailed symmetrical distributions. Stat. Neerl. 2019, 26, 211–226. [CrossRef]
11. Mosteller, F.; Tukey, J.W. Data Analysis and Regression. A Second Course in Statistics; Addison-Wesley: Reading, MA, USA, 1977.
12. Kafadar, K. A biweight approach to the one-sample problem. J. Am. Stat. Assoc. 1982, 77, 416–424. [CrossRef]
13. Wang, J.; Genton, M. The multivariate skew-slash distribution. J. Stat. Plan. Inference 2006, 136, 209–220. [CrossRef]
14. Gómez, H.W.; Quintana, F.A.; Torres, F.J. A new family of slash-distributions with elliptical contours. Stat. Probab. Lett. 2007, 77,

717–725. [CrossRef]
15. Olmos, N.M.; Varela, H.; Gómez, H.W.; Bolfarine, H. An extension of the half-normal distribution. Stat. Pap. 2012, 53, 875–886.

[CrossRef]
16. Olmos, N.M.; Varela, H.; Bolfarine, H.; Gómez, H.W. An extension of the generalized half-normal distribution. Stat. Pap. 2014, 55,

967–981. [CrossRef]
17. Acitas, S.; Arslan, T.; Senoglu, B. Slash Maxwell Distribution: Definition, Modified Maximum Likelihood Estimation and

Applications. Gazi Univ. J. Sci. 2020, 33, 249–263. [CrossRef]
18. Gómez, H.J.; Gallardo, D.I.; Santoro, K.I. Slash Truncation Positive Normal Distribution and its Estimation Based on the EM

Algorithm. Symmetry 2021, 13, 2164. [CrossRef]
19. Barrios, L.; Gómez, Y.M.; Venegas, O.; Barranco-Chamorro, I.; Gómez, H.W. The Slashed Power Half-Normal Distribution with

Applications. Mathematics 2022, 10, 1528. [CrossRef]
20. Arendarczyk, M.; Kozubowski, T.J.; Panorska, A.K. Slash distributions, generalized convolutions, and extremes. Ann. Ins. Stat.

Math. 2023, 74, 593–617. [CrossRef]
21. Rolski, T.; Schmidli, H.; Schmidt, V.; Teugel, J. Stochastic Processes for Insurance and Finance; John Wiley & Sons: Hoboken, NJ, USA, 1999.
22. Lorenz, M.O. Methods of measuring the concentration of wealth. J. Am. Stat. Assoc. 1905, 9, 209–219.
23. Gini, C. On the measurement of concentration and variability of characters. Metron 2005, 63, 1–38.
24. Gini, C. Measurement of inequality of incomes. Econ. J. 1921, 31, 124–126. [CrossRef]
25. Balakrishnan, N.; Cohen, C.A. Order Statistics and Inference: Estimation Methods; Statistical Modeling and Decision Science; Elsevier

Science: Amsterdam, The Netherlands, 1991.
26. Casella, G.; Berger, R.L. Statistical Inference; Duxbury: Pacific Grove, CA, USA, 2002.
27. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2023. Available online: https://www.R-project.org/ (accessed on 12 October 2023).
28. MacDonald, I.L. Does Newton-Raphson really fail? Stat. Methods Med. Res. 2014, 23, 308–311. [CrossRef] [PubMed]
29. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]
30. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
31. Vuong, Q.H. Likelihood Ratio Tests for Model Selection and non-nested Hypotheses. Econometrica 1989, 57, 307–333. [CrossRef]
32. Kalbfleisch, J.D.; Prentice, R.L. The Statistical Analysis of Failure Time Data; John Wiley and Sons: New York, NY, USA, 1980.
33. Therneau, T. A Package for Survival Analysis in R; R Package Version 3.5-7; R Foundation for Statistical Computing: Vienna, Austria,

2023. Available online: https://cran.r-project.org/package=survival (accessed on 12 March 2023).
34. Castillo, J.S.; Rojas, M.A.; Reyes, J. A More Flexible Extension of the Fréchet Distribution Based on the Incomplete Gamma

Function and Applications. Symmetry 2023, 15, 1608. [CrossRef]
35. Schumacher, M.; Bastert, G.; Bojar, H.; Hübner, K.; Olschewski, M.; Sauerbrei, W.; Schmoor, C.; Beyerle, C.; Neumann, R.L.;

Rauschecker, H.F. Randomized 2× 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive
breast cancer patients. German Breast Cancer Study Group. J. Clin. Oncol. 1994, 12, 2086–2093. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.18187/pjsor.v19i3.4230
http://dx.doi.org/10.3390/math11071758
http://dx.doi.org/10.18576/amis/130506
http://dx.doi.org/10.1111/j.1467-9574.1972.tb00191.x
http://dx.doi.org/10.1080/01621459.1982.10477827
http://dx.doi.org/10.1016/j.jspi.2004.06.023
http://dx.doi.org/10.1016/j.spl.2006.11.006
http://dx.doi.org/10.1007/s00362-011-0391-4
http://dx.doi.org/10.1007/s00362-013-0546-6
http://dx.doi.org/10.35378/gujs.539929
http://dx.doi.org/10.3390/sym13112164
http://dx.doi.org/10.3390/math10091528
http://dx.doi.org/10.1007/s10463-022-00858-y
http://dx.doi.org/10.2307/2223319
https://www.R-project.org/
http://dx.doi.org/10.1177/0962280213497329
http://www.ncbi.nlm.nih.gov/pubmed/24837788
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.2307/1912557
https://cran.r-project.org/package=survival
http://dx.doi.org/10.3390/sym15081608
http://dx.doi.org/10.1200/JCO.1994.12.10.2086

	Introduction
	The Slash Lomax–Rayleigh Model
	Stochastic Representation
	PDF, CDF, Hazard Function, and Other Properties
	Moments
	Incomplete Moments
	The Lorenz Curve and the Gini Index
	Order Statistics

	Inference
	Moment Estimators
	ML Estimators
	Observed Information Matrix

	Simulation Study
	Recovery Parameters
	Assessing Model Selection Criteria

	Applications
	Application 1
	Application 2

	Final Discussion
	References

