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In this paper, it is shown that the slow drift force spectrum of a floating body, 
obtained from the exact quadratic transfer function, is flat in the low-frequency 
range of interest and can be written in the form SF(~) = &Y(O) + O(,u’), where SF(O) 
can be computed from the known drift force coefficient in harmonic waves and 
the wave energy spectrum. It is also shown here that a special and normally used 
form of Newman’s approximation for the exact quadratic transfer function has an 
error of the form [l + O(p’)] at low frequencies. Copyright ‘Q 1996 Elsevier 
Science Ltd. 

1 INTRODUCTION 

Low-frequency wave excitation on a floating body can 
be described by the so-called quadratic transfer function 
T(fl,; &), namely the force that appears at the 
‘difference frequency’ AR = D&21, in the second-order 
interaction between two harmonic waves with unit 
amplitude and frequencies Ri and 02, respectively. 

The numerical computation of T(R1; D,) is difficult, 
since one needs to evaluate not only the quadratic 
interaction of the linear potential, but also to compute 
the second-order potential at the difference frequency 
AR. Observing that practical interest is focused on small 
values of A0, Newman’ proposed the approximation 
T(Q, fin,) E T(D, + aAR; R, + aAn) E D(R1 + crAQ), 
with 0 5 o 5 1 and D(. . .) being the drift force 
coefficient in harmonic waves. 

If T(Ri; R2) is known, one can compute the low- 
frequency force spectrum ,Sr(AD) and so the pertinent 
parameters of the response. In particular, if the low- 
frequency damping is small in the horizontal x-motion, 

its RMS value is given by the expression 

where R, is the small natural frequency, < is the 
percentage of the critical damping and R the restoring 
coefficient. In the context of this paper, the important 
point in the above expression is to make clear that the 
function Sr(. . .) needs to be computed only for small 
values of its argument. 

The purpose of this paper is to show that dSF/dfl is 
zero at R =0 and so SF(n) is ‘flat’ in the region of 
interest. If fro is the typical wave frequency, for example 
the sea spectrum peak frequency, one can introduce the 
variables: 

w = R/R, 

Pn = Wflo 

p = AR/R0 (lb) 
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Interest is centered in determining &(. . .) at frequen- 
cies p S pn < 1, since usually pn G 0.1 or smaller. It is 
shown here that in this range of frequency one has 

SF(p) = sF(o) + o(p’)> PL<< 1, @aI 

with 

SF(O) = 8 
J 

O” S2(w)02(w) dw (2b) 
0 

In the above integral, S(w) is the wave energy spectrum 
and D(w) is the drift force coefficient, namely, the drift 
force for a harmonic wave with unit amplitude. 

The result expressed in eqn (2a) is general, it does not 
depend on any hydrodynamic approximation besides 
the usual ones (potential flow corrected to second-order 
in the wave amplitude) and it is valid for all six 
generalized low-frequency forces acting on the floating 
body. As will be seen next, this result depends only on 
the formal structure of the quadratic transfer function 
T(w,; ~2) and the definition of &?(w). 

2 DEMONSTRATION OF EQN (2a) 

Let QJx, t) = &(x)e-tit, j= 1, 2, be the total linear 
potential related to the radiation-diffraction problem of 
a harmonic wave with frequency wj and unit amplitude. 
The coupling between $(x, t) and Q;(x, t), where (*) 
stands for the complex conjugate, produces, at the 
second order, a force of the form T(w,; w2)ei(W2-wI)‘; the 
coupling between @2(x, t) and @y(x, 1) produces the 
force T(wZ; wi)e i(w1+‘2)r. One then obtains the known 
relation 

m; w2) = T”(w2; 4) (3) 

The result expressed in eqn (2a) depends solely on this 
Hermitian property of the quadratic transfer function. 
In fact, if one writes 

it 

+l; ~2) = p(wl; ~2) + iQ(wl; ~2) (44 

follows, from eqn (3), that 

P(w; w+p) = P(w+p; w) 

Q(w; w + PL) = -Q&J + PU; WI (4b) 

If D(w) is the drift force for a harmonic wave with unit 
amplitude then, from the definition of the quadratic 
transfer function and from eqn (4b), one obtains 

P(w; w) = D(w) 

Q(w; w) = 0 (9 

If the first expression in eqn (4b) is derived with respect 
to b and p is made equal to zero afterwards, one has 

g(w; w) =E(w; w) (44 

Deriving now the first relation in eqn (4c) with respect to 

w one gets 

S(w) =$w; w) +E(w; W) = 2S(u; w) 

and so 

g(w; w) = g(w) 
From eqns (4a), (4c) and (4e) one obtains the result 

-$w: w+P)121,,~o=wJg(4 

(44 

Following Kim and Yue,* the low-frequency spectrum 
SF(p) is defined by the convolution-like integral 

sF(p) = 8 
J 

O” S(w)S(w + p) 1 T(w; w + /.A) I2 dw (6) 
0 

If the above expression is derived with respect to ~1 and ,Q 
is taken equal to zero afterwards, one gets, with the help 
of eqns (4c) and (5) 

3 (0) = 8 j; [S(w) 2 (w)D2(w) 

+ S2(w)D(w) g (w)] dw 

=4 $ [S2(w)D2(w)]dw = 0 

since S(0) = S(cc ) = 0. Equation (2a) follows 
from this equality and from eqns (4c) and (6). 

From eqns (4c) and (4e) it follows also that 

directly 

P2@J; w + P) = D2(w) + b(w) g (w)] p + O(p2) 

Q2h w + cl) = G2) 
Placing these relations in the expression that defines the 
quadratic transfer function one obtains 

IT@; L4.J + p>12 = D2(w) + 
( 

2D(w$(w)) 5 + O(p2) 

and so 

(T(w; w+p)(‘=D2(w+;) +O(p2), p< 1 (7) 

This is one of the possible ways to express Newman’s 
approximation, corresponding to taking 
]T(w; w + p)] = D(w + p/2); other approximations, for 
example 1 T(w; w + p) I = D(w), have an error of order p, 
and so are less precise. 

3 CONCLUSIONS 

It has been shown in this paper that the exact second- 
order low-frequency force spectrum is flat in the 
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frequency range of interest and its value can be well 
approximated by a single number, defined in eqn (2b); 
this value depends only on the sea spectrum S(w) and on 
the drift force coefficient D(w) in harmonic waves. Apart 
from its numerical simplicity, this result may have some 
importance from a more practical point of view, since it 
shows that it is hopeless to try to detune the mooring 
line system from an eventual frequency where the 
excitation would be higher. Once the force spectrum is 
flat, the excitation is the same across the entire 
frequency range of practical interest. 

dSr/dp= 0 at p = 0 and some of them show a sharp 
disagreement with the force spectrum computed with 
Newman’s approximation JT(w; w + p)J E D(w + b/2). 
Apparently, the quadratic transfer function used in this 
numerical work does not satisfy the Hermitian property 
[eqn (3)] since, otherwise, the related force spectrum 
would also be ‘flat’ and coincident, in the small p range, 
with the force spectrum computed from Newman’s 
approximation. 

It has been shown also that within the family of 
Newman’s approximation there is one instance which is 
more precise, with an error of order O(p*), the 
remaining ones have an larger error, of O(p). 
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