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Simulation and optimization framework for evaluating the robustness of low-impact 
development placement solutions under climate change in a small urban catchment
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and Marcio Hofheinz Giacomonia

aSchool of Civil & Environmental Engineering, and Construction Management, The University of Texas at San Antonio, San Antonio, Texas, USA; bSao 
Carlos School of Engineering, University of Sao Paulo, São Carlos, Brazil

ABSTRACT
The lack of acceptable temporal resolution of climate projections hinders proper assessment of the future 
performance of low-impact development (LID) systems in small catchments when continuous simula
tions are required (e.g. to evaluate infiltration). This study applied a simulation optimization approach to 
maximize infiltration with LIDs at minimum costs in a small urban catchment (0.67 km2). We coupled the 
Storm Water Management Model (SWMM) with the Nondominated Sorting Genetic Algorithm II (NSGA-II) 
to determine near-optimal locations of bioretentions, green roofs, and permeable pavements. The 
temporal resolution of rainfall projections was disaggregated from 24 hours to 15 minutes using the 
Bartlett-Lewis rectangular method to evaluate the performance and robustness of the optimized solu
tions under different budgets and climate scenarios. Results suggest that LIDs can mitigate climate 
change impacts with relatively inexpensive solutions. However, the robustness analysis showed that 
climate change could compromise the expected performance of LIDs sized with historical rainfall.
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1 Introduction

Climate change is likely to magnify the frequency and severity 
of droughts (Nam et al. 2015, Heinemann et al. 2017, Marcos- 
Garcia et al. 2017, Ahmed et al. 2018, Ayanlade et al. 2018, 
Wang et al. 2018), while increasing the frequency and intensity 
of extreme rainfall (Aich et al. 2016, Shrestha et al. 2016, 
Clavet-Gaumont et al. 2017, Yin et al. 2018, Gao et al. 2020). 
As a consequence of a drier future climate, aquifer recharge 
capacity can be reduced (Shrestha et al. 2016), thus impacting 
water availability, particularly in regions where aquifers are the 
primary source of freshwater supply. On the other hand, flood 
events can become more frequent and hazardous (Sun et al.  
2016, 2017, do Lago et al. 2021). Low-impact development 
(LID) uses stormwater control measures (SCMs) to reestablish 
the pre-development hydrological conditions by increasing 
infiltration, reducing pollutants in the source (Fletcher et al.  
2013), and restoring ecosystem services (Batalini de Macedo 
et al. 2022). Furthermore, LID can alleviate the impacts of 
climate change (Charlesworth 2010, Fletcher et al. 2013, de 
Macedo et al. 2021). LID can help restore aquifer recharge by 
promoting infiltration, especially in a drier climate when the 
water table is low, and a higher fraction of infiltrated volume 
can be converted into recharge (Mooers et al. 2018).

The ability of LID to alleviate the impacts of urbanization 
and climate change depends on suitable design and placement 
(Refsgaard et al. 2013), as well as proper long-term mainte
nance (Brown and Hunt 2012, de Macedo et al. 2017). 
Furthermore, upstream land use modifications and climate 

change can also affect the efficiency of LID practices (Carolus 
et al. 2020, Batalini de Macedo et al. 2022), evidencing the 
necessity to estimate LID’s future performance under different 
scenarios. Assessing the most cost-effective combination of 
LID controls in an urban watershed is challenging due to the 
size of the decision space: multiple possible locations, types of 
SCMs, and design characteristics (e.g. areas, volumes, materi
als, etc.). In addition, the multiple LID benefits also add com
plexity to decision making, as different placements and 
types of SCMs contribute differently to achieving specific 
hydrological objectives. For instance, the most cost-effective 
LID configurations designed to reduce runoff volume are likely 
not the same as those when the goal is to improve stormwater 
quality or enhance ecosystem services.

Simulation models and optimization algorithms can be 
used to identify the number, location, and types of LID systems 
to be installed in a watershed (Helmi et al. 2019). Studies in the 
literature have used simulation and optimization algorithms to 
optimize LID implementation. Most studies seek to minimize 
peak flows, runoff volumes, and pollutant loads (Baek et al.  
2015, Eckart et al. 2018, Huang et al. 2018, Helmi et al. 2019, 
Tansar et al. 2022). The Non-dominated Sorting Genetic 
Algorithm II (NSGAII) is one common algorithm used to 
optimize LID placement. For instance, Giacomoni and 
Joseph (2017) evaluated the tradeoff between cost and hydro
logical metrics such as peak flow, runoff volume, and hydro
logical footprint residence (HFR) with the use of NSGA-II, 
where the HFR metric is the integral of the flooded area over 
the event time (Giacomoni et al. 2012). Kumar et al. (2022) 
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coupled the Storm Water Management Model (SWMM) with 
NSGA-II to find the optimum number of LIDs for flood 
control. Azari and Tabesh (2022) maximized the sustainability 
index of LIDs (which included reliability, resiliency, and vul
nerability indices) by coupling NSGA-II with SWMM. Most 
optimization studies focused on reducing peak flows and run
off volumes (Taghizadeh et al. 2021), with a few focusing on 
improving water quality (Baek et al. 2015, Taghizadeh et al.  
2021). Despite the abundance of studies optimizing LIDs, the 
surveyed literature indicates a lack of investigations looking to 
optimize infiltration, which is one of the major objectives of 
many LID-SCMs.

Although optimized LID systems have been shown to be 
effective in improving water quality and restoring aspects of 
the pre-development flow regime, their robustness is less 
understood due to the uncertainties of climate change (Wang 
et al. 2020). The literature on climate change has proposed 
methods for managing future climate uncertainties through 
a multi-model probabilistic approach, which incorporates dif
ferent scenarios based on various climate projections 
(Kundzewicz et al. 2018). For instance, Liu et al. (2017) used 
rainfall projections from 17 general climate models (GCMs) to 
optimize the cost–benefit ratio of LIDs in an urban catchment. 
Moreover, robustness metrics could be used to address these 
uncertainties by evaluating the performance of water infra
structures under different scenarios. A robust structure per
forms satisfactorily under various sets of plausible conditions 
other than what it was designed for (Herman et al. 2015, 
McPhail et al. 2018). For instance, Kasprzyk et al. (2013) 
used the robustness metrics to optimize a water supply system, 
using a simulation and optimization approach to identify 
plausible solutions with a high level of performance under 
different future conditions and to facilitate the decision mak
ing process. Ng et al. (2020) optimized a drainage system using 
multiple possible design storms to minimize floods and costs 
through pipe expansion and the use of LID-SCMs. Giese et al. 
(2019) evaluated the robustness of green infrastructure at 
a watershed scale and concluded that the green infrastructure 
could help mitigate the increased runoff induced by climate 
change by enhancing groundwater infiltration and evapotran
spiration. These examples show how robustness can support 
decision makers when uncertainties is significant.

In the available literature, most studies use design storms 
for evaluating the robustness of LIDs under climate change for 
different return periods (Yu et al. 2022); however, design 
storms are unsuitable for modeling and optimization of infil
tration. Furthermore, literature is still scarce on detailed meth
ods for evaluating LIDs with continuous simulation, especially 
for micro-drainage where high temporal resolution of rainfall 
data is required. Micro-drainage refers to a localized, small- 
scale stormwater management approach that focuses on con
trolling and treating runoff from precipitation events at or near 
its source. Although it is possible to obtain three-hour rainfall 
data from regional climate models (RCMs) (Sim et al. 2018), 
a shorter temporal resolution may still be required. For 
instance, Berne et al. (2004) recommend a temporal resolution 
of five minutes for catchments on the order of 1000 ha and 
a three-minute resolution for catchments on the order of 
100 ha.

Our investigation showed that the existing literature lacks 
methods to optimize and evaluate solutions under climate 
uncertainties concerning infiltration. Therefore, this article 
applies a simulation-optimization framework to investigate 
the capabilities of LID placement solutions to mitigate climate 
change impacts on infiltration, in particular. This study imple
mented a multi-objective optimization to enhance the cost– 
benefit ratio of LIDs to increase infiltration in an urban 
watershed in San Antonio, Texas, located on top of the 
Edwards Aquifer recharge zone. Climate change projections 
suggest groundwater recharge is likely to decrease in Texas 
(Yoon et al. 2018), and LID implementation can help to 
mitigate climate change’s adverse impacts by enhancing 
infiltration.

A multi-objective optimization to minimize cost and peak 
flow was also performed for comparative analysis of the typical 
objectives found in the literature. The robustness of the opti
mized solutions was evaluated against different future climate 
scenarios using 25 years of continuous simulation. The pro
jected rainfall patterns were bias-corrected and disaggregated 
to be suitable for a small-scale catchment. This article presents 
the following novel contributions to the field of LID and 
stormwater management: (1) a detailed description of 
a modeling framework for evaluating mitigating effects of 
LIDs under climate change with continuous simulation in 
a catchment with a short time of concentration; (2) an inves
tigation of tradeoffs between infiltration, flood control, and 
implementation costs; and (3) incorporated climate uncer
tainty and robustness to evaluate the optimized cost- 
infiltration and cost-peak solutions.

This paper is divided into three main sections: 
Methodology, Results and discussion, and Summary and con
clusions. In the Methodology section, we describe the hydro
logical model used in our study and how we processed the 
climate data as inputs. Next, we explain how we coupled the 
hydrological model with an optimization algorithm to find 
cost-effective solutions for placing LIDs. The final sub- 
section of the Methodology describes how we evaluated the 
solutions to address the challenge of climate uncertainty. In the 
Results and discussion section, we analyze the LID solutions 
for different budgets and demonstrate how the type and loca
tion of LIDs contribute to achieving various hydrological 
goals, such as improving infiltration or reducing peak flow. 
We then evaluate the performance and resilience of the solu
tions under different climate scenarios. Finally, the Summary 
and conclusions section presents the paper’s main findings and 
highlights our methods’ limitations. We also discuss future 
directions and research opportunities.

2 Methodology

The overall methodology is suitable for application in any 
catchment, and consists of (1) collecting and treating climate 
data, (2) optimizing the location of LIDs, and (3) evaluating 
the optimized solutions (Fig. 1).

First, bias correction of rainfall projected by climate models 
should be performed. Then, the historical observed rainfall 
data is used to calibrate and validate the parameters of the 
bias correction. Due to a large number of climate models, 
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representative projections were selected based on the valida
tion of the bias-corrected models. The outputs of climate 
models usually present a coarser temporal resolution, which 
is unsuitable for simulating smaller catchments with a short 
time of concentration. Therefore, the representative was dis
aggregated into rainfall series with finer temporal resolution 
using the Bartlett-Lewis rectangular pulse method (Rodriguez- 
Iturbe et al. 1987, Rodriguez-Iturbe et al. 1988). This disag
gregation was also applied to the historical period to avoid 
biases when comparing the current and future conditions.

Second, we used the NSGA-II algorithm connected to 
SWMM to optimize the cost–benefit ratio of LID placement. 
We optimized the hydrological benefits of LIDs in improving 
infiltration at a minimum cost (IC). We also minimized peak 
flow and costs (PC) for comparison purposes, which is 
a common multi-objective used for LID placement problems. 
To reduce the optimization time, only one representative year 
and event from the disaggregated historical series were used 
for IC and PC, respectively.

Finally, we selected optimized solutions based on imple
mentation costs to estimate their performance under different 
climate scenarios. The solutions were evaluated based on the 
hydrological benefits of investing in LIDs and their robustness 
against different climate scenarios.

2.1 Study area and hydrological modeling

We exemplify the application of the above methodology in the 
main campus of the University of Texas at San Antonio 
(UTSA), located on top of the Edwards Aquifer’s Recharge 
Zone (EARZ), which is the primary source of drinking water 

within the region. The watershed is 0.67 km2 with an average 
slope of 5%. The area is 62.5% impervious, including approxi
mately 80 institutional buildings and housing three athletic 
fields and eight parking lots. The studied area is classified 
under Köppen-Geiger climate Cfa, with a historical average 
precipitation of approximately 780 mm and a mean annual 
temperature of 21°C (Peel et al. 2007, Zarezadeh 2017).

The Environmental Protection Agency (EPA) SWMM 
(Rossman and Bernagros 2019) version 5.1014 was used to 
simulate the UTSA main campus watershed (Zarezadeh  
2017), which was sub-divided into 163 sub-catchments. 
SWMM was used as it is one of the most popular and trustable 
hydrological models applied to evaluate LID practices (Zhang 
et al. 2014). The SWMM model was built using a 1 m resolution 
digital elevation model created with data from a light detection 
and ranging (LiDAR) survey (TNRIS 2020). The campus sewer 
system is separated, and the drainage network was modeled in 
SWMM with 3805 m drainage conduits with 93 junctions 
composed of circular sewers, rectangular sewers, and irregular 
open-channel swales (Fig. 2). The irregular channel section 
includes a bioswale of approximately 200 m in the upstream 
portion, while the remainder is a natural segment. The irre
gular section also contains two culverts not modeled with 
SWMM. The model also incorporates one sand filter basin 
with no seepage loss due to an impermeable liner, which is 
a regulatory requirement. The sand filter basin’s location and 
drainage area are shown in Fig. 2. The curve number (CN) 
model (Cronshey 1986) was used to estimate infiltration, with 
an average CN of 89, and the kinematic wave method was used 
to route surface runoff using a 15-second time step. The 
evaporation rate was calculated using minimum and 

Figure 1. Methodology flowchart. The three main steps are (1) treating climate data, (2) optimizing LID placement, and (3) evaluating the solutions.
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maximum temperatures with the Hargreaves method 
(Hargreaves and Samani 1982). The evaporation is significant 
in this study to recover the infiltration capacity of the sub- 
catchments during the dry days in the continuous simulation. 
Zarezadeh (2017) calibrated the model considering Nash- 
Sutcliffe efficiency (NSE), percent bias (PBIAS), and coeffi
cient of determination (R2). The NSE presented values of 0.84 
and 0.91 for flow and depth, considered satisfactory according 
to Moriasi et al. (2007). Likewise, R2 values were also satisfac
tory, with values of 0.86 and 0.77 for the same analysis. 
However, PBIAS presented a relatively poorer result when 
compared to NSE and R2, with values of −10 and 0.33 for 
flow and depth calibrations.

The land use map of the UTSA main campus was exam
ined to identify potential locations for implementing Green 
Roof (GR), permeable pavement (PP) and brioretention 
(BR). GR was included in this study for two reasons, despite 
not promoting direct infiltration into the soil. First, GR is 
a common type of LID contributing to peak flow reduction, 
one of the objectives evaluated. Second, we wanted to eval
uate whether GR could contribute to increasing infiltration 
indirectly. By reducing the peak flow, GR reduces the runoff 
velocity downstream, potentially increasing the proportion 
of runoff volume that is being infiltrated. We optimized the 

combination of GR, PP, and BR as these are some of the 
most popular types of LIDs that are used to treat storm
water, are most commonly studied in the literature (Wang 
et al. 2017) and provide different functionality with unique 
contributions to the drainage system (Rodriguez et al. 2021). 
While PP and GR are responsible for treating and conveying 
stormwater from parking lots and roofs (in the source), BR 
is an end-of-pipe type of LID that treats stormwater from 
upstream areas. Therefore, these LIDs generally do not 
compete in terms of area selection.

The size of GR and PP was determined according to the 
maximum area of roof spaces and parking lots in each sub- 
catchment. It was assumed that BR would occupy a maximum 
of 5% of the total sub-catchment area, with a minimum of 
10 m2 of continuous pervious area, following the San Antonio 
River Basin LID Technical Design Guidance Manual (Dorman 
et al. 2019). The percentage of impervious area and the max
imum capacity of each LID type are presented in Fig. 3. The 
land use analysis shows that GRs could be implemented in 
several sub-catchments (Fig. 3(b)), while PPs are concentrated 
in the north and south-central parts of the campus (Fig. 3(c)). 
The characteristics of each LID were selected within the 
recommended range (Rossman and Bernagros 2019) and are 
listed in Table 1.

Figure 2. SWMM model of the UTSA main campus.
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2.2 Climate change and rainfall scenarios

2.2.1 Climate models and bias correction
Rainfall projections from 32 GCMs downscaled with the 
Bias-Correction and Constructed Analogs version 2 
(BCCAv2), and 19 with the Localized Analogs (LOCA), 
were obtained from the World Climate Research 
Programme (WCRP)’s Coupled Model Intercomparison 
Project Phase 5 (CMIP5) (Bureau of Reclamation 2013), 
totaling 51 different projections for Representative 

Concentration Pathway (RCP) 4.5 and RCP 8.5. The list of 
all GCMs is presented in the Supplementary material (Table 
S1). The minimum and maximum temperatures were also 
acquired for each of these models to simulate evaporation, 
all downscaled using the same approaches.

The rainfall data were acquired from 1950 to 1999 
(historical) and from 2075 to 2099 (future), since previous 
analysis has suggested this future period will be the driest 
in this century (Giacomoni et al. 2019). The historical data 

Figure 3. The maximum capacity of (a) BR, (b) GR, and (c) PP in each sub-catchment as a fraction of the area, and (d) percentage of imperviousness.

Table 1. Layer characteristics of BR, PP, and GR.

Layer Parameter BR PP GR

Surface Berm height (mm) 0 0 0
Vegetation volume fraction 0.15 0 0.15
Roughness (Manning’s N) 0.15 0.02 0.15
Slope 1% 1% 30%

Soil/pavement Thickness (mm) 500 130 120
Void ratio 0.50 0.15 0.50
Permeability (mm/h) – 2500 –
Conductivity (mm/h) 13 – 13
Suction head (mm) 90 – 90
Clogging factor – 0 –

Storage Thickness (mm) 200 300 40
Void ratio 0.75 0.75 0.50
Seepage rate (mm/h) 13 250 –
Clogging factor 0 0 –
Roughness (Manning’s n) – – 0.25
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was used to compare the models to the observed rainfall 
data for the same period (Station ID: GHCND.: 
USW00012921; Lat.: 29.54429°, Long.: −98.48395°). An 
additional bias correction was performed for precipitation 
with the daily bias correction (DBC) method (Mpelasoka 
and Chiew 2009). This hybrid method combines the local 
intensity (LOCI) (Schmidli et al. 2007) and daily transla
tion (DT) (Mearns et al. 2009) bias corrections. Details of 
the bias correction applied to these projections are best 
described by do Lago et al. (2021).

2.2.2 Rainfall scenarios
A period of 25 years of historical data and the climate models 
for both the 1975–1999 and 2075–2099 periods were disaggre
gated from one-day to 15-minute resolution using the Bartlett- 
Lewis rectangular pulse (Rodriguez-Iturbe et al. 1987, 1988) 
with adjusting procedure method, implemented in the 
HyetosMinute R package (Kossieris et al. 2018). This method 
can be summarized in four steps: (1) the Poisson process (of 
rate λ) starts a storm with one cell; (2) a random number η is 
selected for each storm event from a gamma distribution of 
mean α/ν and variance α/ν2; (3) secondary cells can be added 
to the event, with their start dictated by a Poisson process (of 
rate ηk). The duration of the event is selected from exponen
tially distributed average time (1/ηΦ), after which no pulses 
can be added; (4) the cells are rectangular pulses with height 
and duration, which were randomly selected from an expo
nential distribution with mean μx and 1/ η, respectively. In this 
study, we used the Bartlett-Lewis method with the cell inten
sity varying with storm duration under constant ι = μx/η 
(Kaczmarska 2014). The final storm is given by the sum of all 
pulses (Rodriguez-Iturbe et al. 1987, 1988). A total of six 
parameters had to be estimated: λ (d−1), φ, ι (mm/d), κ, α, 
and ν (d). Ten years of observed 15-minute rainfall series (2000 
to 2010) were used to calibrate the parameters considering the 
mean, variance, lag 1 covariance, and proportion of dry cells of 
the series. Although these characteristics might be nonstation
ary, we assumed they are constant over time and valid for 
future climates due to the lack of long-term rainfall series 
with higher temporal resolution in San Antonio. This assump
tion limits the full representation of future precipitation, as the 
temporal evolution of sub-daily characteristics is not consid
ered. The evolutionary annealing-simplex optimization 
method implemented in the HyetosMinute package was used 
to estimate the parameters. A total of eleven 15-minute rainfall 
time series were generated: one historical (1975 to 1999) and 
10 future projections (five for RCP 4.5 and five for RCP 8.5, 
from 2075 to 2099). The five models with the smallest error in 
the number of wet days and precipitation average – from the 
validation results of the bias-corrected precipitation – were 
selected to represent the future conditions. Accordingly, mod
els with poorer performance in predicting climate character
istics were excluded to simplify the analysis.

2.3 Problem statement and optimization algorithm

In this article, the problem can be described as where in an 
urban watershed LID-SCMs such as BR, PP, and GR should be 
installed to maximize infiltration and minimize peak flow 

while ensuring installation and maintenance costs are kept at 
a minimum. A multi-objective optimization approach is 
applied to address this question, generating near-optimum 
solutions to identify the potential tradeoffs between the objec
tive functions described by Equations (1) to (3). Two optimi
zation problems are proposed: (1) minimize costs and peak 
flow (PC), and (2) minimize costs while maximizing infiltra
tion (IC): 

where pij is a binary decision variable for installing a LID j at 
the sub-catchment i; Aij is the surface area (m2) of the LID j at 
the sub-catchment i; M is the number of LID types; N is the 
number of sub-catchments in a watershed; N ($/m2) includes 
the unit net present cost of implementation and maintenance 
of the LID j; and mj ($) is a minimum implementation cost of 
LID j, which is independent of the structure size. Examples of 
such costs include permitting and regulatory fees, site investi
gations such as infiltration tests (to determine the suitability to 
installing the LID) and professional fees (hiring consultants, 
engineers or architects to assist on the design phase). In this 
article, we tested the implementation of three LIDs (M ¼ 3): 
BR (j ¼ 1Þ, PP (j ¼ 2Þ, and GR (j ¼ 3Þ, with c values of $49.9/ 
m2, $84.7/m2, and $81.2/m2 for c, and m values of $10,052, 
$3,750, and $20,824 for BR, PP and GR, respectively. These are 
national value guides for c and m in the US (Rossman and 
Bernagros 2019), but the figures can be easily updated to 
represent local costs. The encoding of each solution follows 
a similar approach to that implemented by Giacomoni and 
Joseph (2017) and Ogidan and Giacomoni (2016). A solution 
is represented by a vector chromosome with dimension 
N �M. For each sub-catchment, one gene defines whether 
a particular type of LID will be installed (variable N �M 
in Equation 1).

SWMM is a physically-based model which can be computa
tionally demanding, especially in models representing many sub- 
catchments with multiple distributed parameters (Shahrokh 
Hamedani et al. 2023). This disadvantage can be exacerbated 
when multiple runs (Giacomoni and Joseph 2017) and long 
continuous simulations are required. Because the IC required 
continuous simulation, we selected one representative year to 
optimize infiltration. Simulating the representative year, instead 
of the 25 years used for evaluating LID solutions, significantly 
reduced computation time and enabled us to perform the IC 
optimization. The year 1993, with annual precipitation of 
818 mm (comparable to the 813 mm of average annual precipita
tion for the whole 1975–1999 period), was selected as the 
representative year. The average maximum and minimum tem
peratures for the 1975–1999 period were 26.8 and 14.9°C, respec
tively, while the values were 26.7 and 14.4°C for 1993. Matching 
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the minimum and maximum temperatures is also relevant for 
optimizing IC, as they were used to compute evaporation and 
could potentially affect the recovery of infiltration capacity of the 
sub-catchments. So, IPost LID is the total annual infiltration volume 
measured after LID systems have been implemented for the 
representative year (1993). The PC optimization was performed 
for the event (from the 1975–1999 period) that generated the 
greatest peak flow with total LID capacity on the UTSA campus, 
representing the worst LID performance. This event generated 
115 mm of rain during seven hours on 7 October 1981. Qp

Post LID 

is the resultant peak flow of this event after LID placement.
The NSGA-II (Deb et al. 2002) was used to solve these two 

multi-objective problems. The NSGA-II uses three main 
operators during the search: (1) non-dominated sorting that 
classifies the solutions in fronts, (2) crowding distance to 
diversify the solutions and expand the search horizon, and 
(3) elitism to hasten the search by enabling the propagation 
of good solutions to new generations. The NSGA-II has been 
applied successfully to many water resource optimization pro
blems, including LID placement (Giacomoni and Joseph 2017, 
Dong et al. 2020), water allocation during droughts (Tsai et al.  
2019), distribution and control of storage tanks (Fu et al.  
2010), rehabilitation of sewer pipe networks (Yazdi et al.  
2017, Ngamalieu-Nengoue et al. 2019) and location of water 
level sensors (Ogie et al. 2017) among many others. In this 
study, NSGA-II was implemented in Java v. 1.8.0 and the 
optimization was performed over 30 trials to avoid trapping 
in local near-optimums. These trials were run in parallel in 
a high-performance computer research cluster (SHAMU), an 
asset operated by the Research Computing Support Group of 
the UTSA Office of Information Technology. The optimiza
tion was performed with 100 generations and a population size 
of 20 individuals, with mutation and crossover rates of 0.1 and 
0.9, respectively. Previous analysis showed no significant 
improvement in optimized results for a larger number of 
generations and population size but with a significant increase 
in computation time, extrapolating the time limit on the 
SHAMU Cluster.

2.4 Simulation scenarios and robustness

The RCP 4.5 and 8.5 climate change scenarios were compared 
with historical periods to evaluate the impacts of climate 
change on the hydrological cycle of the UTSA main campus. 
Each scenario was evaluated using 25 years of continuous 
simulation for historical conditions and each selected climate 
model for RCP 4.5 and 8.5, for the same land use. The 15- 
minute disaggregated rainfall series were used in the contin
uous simulation. The following variables were assessed in each 
simulated scenario: discharge peak flow and runoff, flood, and 
infiltration volumes. The Wilcoxon test (Wilcoxon 1992) with 
a significance level of 5% was performed to examine whether 
the hydrological conditions were statistically different under 
climate change scenarios compared to historical rainfall 
regimes. The selected solutions obtained from IC and PC 
were also evaluated with 25 years of continuous simulation 
for historical conditions and the future projected climates. The 
discharge peak and annual average runoff, flood, and 

infiltration volumes were determined for each solution to 
evaluate their mitigation capacities as a function of implemen
tation costs.

Finally, we calculated each LID solution’s robustness by 
evaluating its performance under different rainfall scenarios. 
The robustness metric is based on a satisficing metric (Starr  
1963) and was calculated as the fraction of scenarios under 
which a given infrastructure meets its design purpose. In this 
study, the robustness of LID solutions was calculated to eval
uate their performance under different climate scenarios 
(Equation 4): 

where N is the number of projected scenarios and S = 1 
indicates that solution j was satisfactory and met the given 
goal for the projected climate c, whereas S = 0 indicates that 
solution j was not satisfactory. Classifying a solution as 
satisfactory or not depends on the designer’s goals for the 
LIDs. However, the objective of LIDs placement is highly 
variable, and depends on multiple factors such as the charac
teristics of the study area and the available budget.

By definition, the main objective of LID implementation is 
to restore pre-development hydrological conditions. 
Therefore, we defined different objectives as a function of 
urbanization impacts on peak flow and infiltration, runoff, 
and flood volumes. A threshold defining the satisfactoriness 
of the solution was calculated with Equation (5): 

where p is a target mitigation percentage, and HPpre and HPpost 
are the annual average hydrological parameter of pre- and post- 
development conditions, respectively, both estimated with cur
rent climate conditions (HPpre defined as zero for flood volume). 
A solution was considered satisfactory if the resulting peak flow, 
runoff, and flood volumes were below a threshold. As for infil
tration, the total volume should be above the threshold.

Given the subjective nature of a satisfactory infrastructure, 
we evaluated the robustness of the optimized solutions for 
multiple goals to reflect the LID’s capacity to perform well 
under different scenarios. A sensitivity analysis of robustness 
as a function of p was performed, which varied from 0.1 to 1. 
In other words, each solution’s robustness to mitigating from 
10 to 100% of the urbanization impacts was calculated. These 
goals are transformed into threshold values (as per Equation 5) 
associated with infiltration, runoff, runoff volumes, and peak 
flow. The pre-development scenario was simulated with no 
impervious area and drainage infrastructure, including the 
sand filter basins. In addition, Manning’s n of both rectangular 
and circular channels was set to be equal to the open swale.

3 Results and discussion

3.1 Climate models and projections

This first subsection analyzes how the climate models compare 
to the historical period. After the bias correction, the five 
selected models presented low relative errors when predicting 
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precipitation and temperature in San Antonio. Table 2 shows 
the average precipitation (mm/year), wet period (days/year), 
and minimum and maximum temperature (°C) for the histor
ical and selected models for the 1975–1999 period. Despite the 
selected models underestimating the precipitation volume, 
these models could represent precipitation volumes relatively 
well, with errors smaller than 3.5%. The number of wet days is 
also represented satisfactorily, with the largest error for model 
P5, which underestimated the wet days by 3.7%. Minimum and 
maximum temperatures were overestimated when compared 
to the historical period. The largest relative error was 2.5% for 
the maximum predicted temperature with model P3.

The performance of the rainfall disaggregation method is 
analyzed next. The optimized parameters used in the Bartlett- 
Lewis rectangular pulse method, for a 15-minute temporal reso
lution, were 0.024 d−1, 0.0051, 0.42 mm.d−1, 9.96, 2.08 and 0.076 
d for parameters λ, φ, ι, κ, α and ν, respectively. The scatter plot 
of observed and disaggregated rainfall cells is shown in Fig. 4. 
The raingauge precision for observed precipitation is 2.54 mm 
(0.1 in). Errors in the average precipitation depths, autocovar
iance, and proportion of dry periods were relatively low. It can 
be observed that extreme precipitation (>10 mm/15 min) was 
overestimated after disaggregation, which explains the greater 
variance error (Table 3). However, this extreme precipitation is 

a small portion of the precipitation series (approximately 7% of 
the observed precipitation). The disaggregation was performed 
on historical and future projected series to compare those dif
ferent climate scenarios. Kossieris et al. (2018) verified the dis
aggregation method used in this work over 69 years, which 
showed an overestimated variance for five-minute and one- 
hour time scales. The largest error was for the five-minute 
time scale, which reached approximately 50% of relative error 
in some months. Our results for a 15-minute temporal resolu
tion, however, show that the disaggregated extreme values 
matched relatively well with the observed ones.

The climate models’ projections (2075–2099) indicate that 
San Antonio is likely to experience a drier climate, where RCP 
4.5 scenarios predict drier conditions than RCP 8.5 scenarios 
(Table 4). However, the standard deviation of RCP 8.5 is 
greater than that of RCP 4.5, which indicates a larger disagree
ment between projections. Zhao et al. (2016) evaluated the 
impacts of urbanization and climate change in the San 
Antonio River Basin using an ensemble of 17 GCMs included 
in the CMIP5. Their results showed that the median of the 
projections (RCP 4.5 and 8.5 for 2070–2099) for the monthly 
average precipitation is lower than the observed historical for 
all months, which indicates a decreasing trend in precipitation 
volumes. The only exceptions were February for RCP 4.5 and 
September for both RCPs. Table 4 shows that the infiltration 
volume is the most affected by climate change among total 
annual precipitation, evaporation, and surface runoff, with an 
average decrease greater than 20% compared to historical 
levels. Therefore, climate change projections suggest that the 
runoff coefficient is likely to increase. All projections presented 
a significantly lower infiltration, particularly for model P5 of 
RCP 8.5. The median of the RCP 4.5 scenario presented more 
similar values to the historical period, while the RCP 8.5 
projections had larger disagreements (Fig. 5).

Figure 5 shows box plots including median, 1st and 3rd quar
tiles, minimum and maximum, and outliers for the precipitation, 
runoff volume, infiltration, annual peak, and flood volume for the 
historical, RCP 4.5, and RCP 8.5 climate projections. In the same 
figure, the p value calculated using the Wilcoxon test is included, 
where H = 1 rejects the null hypothesis at a significance level of 
5%, meaning that the medians are significantly different. All 
projections for precipitation for RCP 4.5 were statistically differ
ent from (lower than) the historical, while model P5 for RCP 8.5 
showed no significant difference (Fig. 5). For RCP 8.5, for 
instance, the P1 model had no significant difference in runoff 
volume compared to historical, even with lower projected pre
cipitation volumes (Table 4). On the other hand, model P5 
showed higher runoff volumes with no statistical difference in 

Table 2. Performance of selected models for daily time series from 1975 to 1999 (relative error to historical period).

Rainfall models

Averages

Precipitation (mm/year) Wet period (days/year) Min temperature (°C) Max temperature (°C)

Historical H 812.8 83.3 14.55 26.59
BCC-CSM (BCCAv2) P1 803.1 (−1.1%) 80.3 (−3.6%) 14.45 (−0.7%) 26.99 (1.5%)
CESM1-BGC (BCCAv2) P2 808.9 (−0.4%) 80.3 (−3.6%) 14.66 (0.8%) 27.13 (2.0%)
MPI-ESM-MR (BCCAv2) P3 784.9 (−3.3%) 85.6 (2.7%) 14.72 (1.2%) 27.25 (2.5%)
BCC-CSM (LOCA) P4 793.3 (−2.3%) 81.8 (−1.8%) 14.65 (0.7%) 26.66 (0.3%)
CanESM (LOCA) P5 802.7 (−1.2%) 80.2 (−3.7%) 14.67 (0.8%) 26.74 (0.6%)

Figure 4. Scatter plot of observed and disaggregated precipitation at a time 
resolution of 15 minutes.

Table 3. Statistical parameters for the observed disaggregated rainfall time series.

Parameters Observed Disaggregated Error

Average (mm) 0.0219 0.0216 −1.37%
Variance (mm) 0.155 0.214 38.06%
Autocovariance Lag 1 0.0366 0.0363 −0.82%
Proportion of dry days 0.994 0.990 −0.40%

2064 C. AMBROGI FERREIRA DO LAGO ET AL.



precipitation, as the p values of the Wilcoxon test suggest. Despite 
no statistical difference in average annual peak flows, it can be 
seen that the maximum peak flows of most climate change 
scenarios are larger than those in the historical period.

In addition, the number of scenarios with statistically lower 
runoff volumes is higher than the flood volume, which means 
that a larger portion of runoff volume generates flooding. This 
finding is consistent with the study by do Lago et al. (2021), 

Table 4. Historical (1975–1999) and projected (2075–2099) water balance.

Annual average historical

Annual average and standard deviation Difference from historical

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

Total precipitation (mm) 812.9 722.2 (±23.5) 749.4 (±68.8) −11.1% −7.7%
Evaporation (mm) 258.0 222.7 (±4.3) 231.3 (±6.8) −13.7% −10.3%
Infiltration (mm) 71.7 57.4 (±1.5) 56.7 (±3.9) −20.0% −21.0%
Surface runoff (mm) 483.1 442.9 (±20.3) 462.2 (±61.6) −8.3% −4.3%

Figure 5. Climate change projections of hydrological conditions compared to historical climate, with outliers identified using standard deviation (σ). The results include 
p values from the Wilcoxon test. An H = 1 rejects the null hypothesis at a significance level of 5%.
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which indicates that climate change is likely to intensify 
extreme precipitation events and magnify flood damages in 
San Antonio. Zhao et al. (2016) also found that the median 
annual peak flows at the San Antonio River Basin are similar to 
the historical conditions. However, their analysis showed large 
uncertainties, which pointed out the necessity of considering 
the maximum projected peak flows that were found to be 
approximately four times the median.

3.2 LID optimization

This section presents the results of the optimization scenarios. 
Figure 6(a) shows the non-dominated solutions for the scenar
ios IC and PC, where the horizontal axis shows cost ($ million), 
while the primary and vertical axes show, respectively, relative 
infiltration change (%) and peak flow reduction (%), 

respectively. Since LIDs promote infiltration and reduce peak 
flow, more expensive solutions with more LID units show 
greater infiltration increase and peak flow reduction. On the 
other hand, GR placement reduces the total infiltrated volume, 
as this type of LID is impervious and does not contribute to 
direct infiltration to the subsoil. Consequently, the most 
expensive IC solution is $14 million with the full placement 
of BR and PP, whereas the most expensive PC solution is 
$23 million with the full placement of all LID types.

Figure 6(b) and (c) show the numbers of LID placement for 
each solution on the IC and PC optimization scenarios, respec
tively. The results suggest that BR is a more cost-effective solu
tion for IC, with rapid growth up to approximately 60% of its 
capacity at approximately $5 million of investment. PP 
increased linearly and occupied a larger proportion of the 
watershed than BR after approximately $10 million. GR had 

Figure 6. Non-dominated sets for IC and PC against costs (a), calculated with the representative year and peak flow (1975 to 1999), respectively. Selected solutions for 
further analysis are highlighted. The relative allocation of GR, BR and PP for each solution of (b) IC and (c) PC is also presented.
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low application when the goal was to enhance infiltration, which 
shows that the stormwater retained within GR layers and later 
evapotranspirated is larger than the potential benefits to infiltra
tion downstream to the structure. In general, it can be seen that 
the benefits of adding LIDs increases more significantly when 
costs are relatively low. Kumar et al. (2022) also noted that the 
growth in benefits of increasing the investments is more pro
nounced when the overall occupation of LID is lower.

Ten solutions (four for the IC and six for the PC scenarios) 
were selected to enhance the analysis further. These solutions 
cost 2, 5, and 10 million dollars for IC (S2-I, S5-I, and S10-I), 
where SMax-I is the solution that resulted in maximum infil
tration (full capacity of BR and PP) with a total cost of 
$13.9 million (Fig. 6(a)). Smaller gaps in the costs between 
cheaper solutions were selected as the benefits increased more 
rapidly. The PC optimization showed more expensive solu
tions than SMax-I, as these solutions also include GR. 
Solutions with costs lower than $5 million had similar percen
tages of PP and BR, while GR started to appear and increase 
with solutions of $2.5 million or greater. BR started to prevail 
for the solutions between $7 million and $16 million, while GR 
increased faster than PP and reached a higher percentage 
within this cost range. There seems to be no preference for 
any LID for the most expensive solutions (greater than 
$20 million). Similar solutions were selected from PC optimi
zation results: S2-P, S5-P, S10-P, S14-P, S20-P, and SMax-P 
(Fig. 6), where S14-P is comparable with SMax-I with approxi
mately the same costs. S20-P and SMax-P are not comparable 
with the optimized solutions of IC, since their costs are higher 
than the SMax-I. Figure 6 shows that the efficiency of the LID 
system to reduce the peak flow increases more significantly up 
to $10 million, with an approximate 30% reduction of peak 
flow. In contrast, more expensive solutions have little effect on 
the peak flow reduction, such as the SMax-P ($23 million) with 
an efficiency of 33%.

The GR, PP, and BR locations for the $2 million and $
10 million solutions optimized for infiltration and peak flow 
(S2-I, S10-I, S2-P, and S10-P) are illustrated in Fig. 7. It can be 
seen that there is a high occupation of BR for the relatively 
cheap solutions of IC (S2-I) with a lower number of PPs 
distributed over the watershed. The S2-P solution, on the 
other hand, presented a lower occupation of BR that was 
compensated with PP and GR. The expansion of LID from 
the S2-I to the S10-I solution was mainly through PP, while the 
increase in BR was less significant. The increase in PP, BR, and 
GR for the solutions selected from PC optimization was at the 
same rate, as shown in Fig. 6.

Our results indicate that LIDs should be placed preferen
tially near the outlet when peak flow reduction is a target 
objective. This pattern can be seen in the $2 million cost 
solution for the peak flow optimization (S2-P), where almost 
no LIDs were placed in the northern area. The increase in the 
LID numbers for the $10 million (S10-P) occurred closer to the 
outlet. Giacomoni and Joseph (2017) optimized the location of 
green roofs and permeable pavements. Their results also 
showed that placing LIDs closer to the outlet is more effective 
in reducing peak flows with cheaper solutions. Longer dis
tances of flow routing cause peak attenuation and reduce 

peak flows at the outlet, which explains the location prefer
ences for the PC LID placements. On the other hand, infiltra
tion was more independent of location; thus, LID locations for 
the IC-optimized solutions were more evenly distributed over 
the catchment. This distribution is due to the homogeneity of 
the soil types in this watershed. However, it can be seen that 
sub-catchments with a higher imperviousness (Fig. 3(d)) were 
selected first for BR placement. We observed that sub- 
catchments draining into the sand filter basin received fewer 
LID-SCMs for the PC problem. That was not the case for the 
IC problem. This difference is because the sand filter basin 
contributes to attenuating peak flow but does not enhance 
infiltration because of its impermeable liner.

In summary, our results suggest that placing BR in areas 
with a high imperviousness is more cost-effective when seek
ing improvements in infiltration. PP is then preferred when 
sub-catchments with high imperviousness are already treated 
with BR. Our findings also suggest that GR does not contribute 
to enhancing infiltration in areas with a relatively high tem
perature and number of dry days, such as San Antonio, where 
the climate favors losses through evaporation. Further investi
gations are recommended to understand better BR contribu
tions in catchments where soil remains saturated longer. For 
reducing peak flows, our results show that LID can be more 
effective if placed near the outlet, with a less distinct preference 
for LID type when compared to the solutions for increasing 
infiltration.

3.3 Post-evaluation of optimized solutions

The 10 selected solutions (Fig. 6) were further evaluated using 
25 years of continuous simulation for the historical conditions 
and the projected RCP 4.5 and 8.5 scenarios (Fig. 8). Figure 8 
also shows the conditions for pre-development (continuous 
gray line) and post-developed (dashed black line). The infiltra
tion results of each IC solution for the representative year were 
compared with the average of the historical 25 years (Fig. 9). 
These results indicate that the historical average and 
representative year infiltration are similar.

As expected, simulations showed better performance for 
peak flow and infiltration controls for the solutions optimized 
for PC and IC, respectively (Fig. 8). The solutions selected 
from IC showed better performance for runoff and flood 
volumes, indicating that infiltration as an objective function 
is more relevant to these two factors. Increasing infiltrated 
volumes directly reduces the runoff volume, as these are the 
two main components of the water balance of the system. Gao 
et al. (2021) used the technique for order preference by simi
larity to an ideal solution (TOPSIS) (Tzeng and Huang 2011) 
to optimize runoff quantity and quality with LID at 
a minimum cost for a maximum of 15% occupation. Their 
optimum solution is composed of 3.75% GR, 3.75% rain gar
den (a similar concept to BR), and 7.5% PP at a cost of 
approximately $180 million for an area of 23.6 km2 (approxi
mately 35 times larger), with a runoff reduction of 74%. Given 
the proportion of the areas, their solution is comparable to this 
study’s $5 million solutions. S5-I has BR at approximately 60% 
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of its full capacity, PP at approximately 30%, and S5-P with 
approximately 25% for BR and PP, and 15% for GR.

The IC solutions presenting lower flood volumes than 
PC solutions is counterintuitive, as higher peak flows can 
surcharge the drainage system. The reason is that the IC 
placement of LIDs was more evenly distributed along the 
studied area and reduced the flood volume in a greater 
number of nodes. The PC optimization concentrated LIDs 
closer to the outlet, limiting the flood volume reduction on 
upstream nodes. The $2 million solution selected from 
infiltration optimization (S2-I), for example, presented 
a slightly higher peak flow than S2-P for the historical 
conditions (of approximately 13 000 L/s) but with 40% 

less flood volume. S2-P concentrated the LIDs on the south
ern portion of the campus; consequently, most of the study 
area achieved no benefit in hydrological conditions. S2-I, on 
the other hand, had placed BR in several locations across 
the catchment and helped reduce floods in more nodes than 
S2-P. The difference in flood volume between IC and PC 
decreases for more expensive solutions as the areas covered 
by LIDs with PC solutions increase. S20-P and SMax-P 
showed lower flood volume than any of the IC solutions, 
as GRs contributed to reducing runoff and alleviated the 
drainage system.

These results suggest that IC solutions can be more bene
ficial to the drainage system within the catchment where LIDs 

Figure 7. Cost-optimized locations of GR, PP and BR at $2 million and $10 million for IC and PC.
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are installed, when compared to PC solutions with equivalent 
costs. However, understanding how the flood volume in nodes 
effectively translates into a flooded area with potential eco
nomic damages is necessary. A more precise set of solutions 
with the objective of minimizing local pluvial flood would 

require combining the NSGA-II with two-dimensional hydro
dynamic models, which is currently infeasible due to their 
required computational burden (do Lago et al. 2023). 
Furthermore, it is worth noting that peak flow reduction 
benefits are reflected downstream of the catchment. With 

Figure 8. Performance of the selected solutions for historical conditions (left) and projected scenarios for RCP 4.5 (middle) and RCP 8.5 (right).
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higher efficiency in reducing peak flows, the IC solutions can 
potentially reduce the flooding downstream. Although our 
results show that IC solutions have better cost–benefit ratios 
compared to local drainage, PC may be preferred if the goal is 
to minimize downstream overflows.

The selected solutions presented a similar pattern for cli
mate change scenarios, indicating that any solution with a cost 
of $2 million or higher can reestablish the historical average 
peak flow, infiltration, runoff, and flood volume conditions. 
The exceptions are S2-I, which had a higher peak flow for RCP 
8.5, and S2-P, with lower infiltration volumes for RCP 4.5 and 
8.5. Ghodsi et al. (2020) optimized the location of BR, PP, 
vegetated swale, and infiltrating trenches to maximize runoff 
reduction and minimize the cost of mitigating the impacts of 
climate change. Their results showed that 20% of the LID full 
capacity could reduce the risk of climate change-induced run
off volume by 18%. S2-I implemented 45% and 6% of the full 
capacity of BR and PP, respectively, whereas S2-P placed 
approximately 17% of BR and PP and 1% of GR.

LID implementation helps improve infiltration at the UTSA 
campus and can supposedly promote recharge to the Edwards 
Aquifer, an important water source for the city of San Antonio. 
This infiltration increase is consistent for all solutions and under 
both RCP scenarios. At $10 million, the average infiltration is at 
least 300 mm, more than double the average infiltration volume 
for the RCP 8.5 with no LID (approximately 140 mm). The 
$10 million solutions could also reduce the runoff volumes to 
pre-development levels. However, no solution could restore pre- 
development conditions of infiltration and peak flows. These 
results suggest that LID can help mitigate the impacts of climate 
change on Edwards aquifer recharge. For instance, Mooers et al. 
(2018) investigated the effects of LID on aquifer recharge in 
Nova Scotia, Canada. They found that LIDs increased the infil
tration from 168 to 189 mm/year, while the aquifer recharge 
increased from 160 to 172 mm/year in a dry year. LIDs increased 
the infiltration and recharge in a wet year from 438 to 466 mm/ 
year and 276 to 290 mm/year, respectively.

The simulations also showed that the increase in LID 
investment could reduce the uncertainties of future projected 
hydrological conditions, especially for RCP 8.5. This pattern is 
observed by shrinking the standard deviation bars considering 
the five selected projections, where uncertainty reduction on 

flooded volume is the most noticeable (Fig. 8). The two most 
expensive solutions (S20-P and Smax-P) presented similar 
average flood volumes for the projections, with almost null 
standard deviations. The standard deviations for the RCP 4.5 
projections are small, with similar average values, consistent 
with the similar median values found in Fig. 5. Climate change 
uncertainties can hinder water management applications due 
to many possibilities. Therefore, narrowing future climate 
conditions with LID can facilitate the development of assertive 
water management plans.

3.4 Robustness analysis

In this section, we evaluated the robustness of each solution 
based on different targets to mitigate urbanization impacts 
under climate change scenarios (Fig. 10). A mitigation target 
of 100% represents the full restoration of the pre-development 
hydrological conditions. This robustness analysis can facilitate 
decision making when facing climate change uncertainties by 
allowing a more thorough comparison between solutions. For 
instance, if the designer’s objective is to promote the average 
infiltration to 330 mm/year (recover 60% of the infiltration lost 
due to urbanization), the robustness can be increased from 0 to 
1 with an additional investment of $4 million (S10-I to SMAX- 
I). Another example is a significant increase in robustness 
between the $10 million and $14 million solutions from peak 
flow optimization (S10-P and S14-P) when aiming for flood 
reduction. The $10 million solution (S10-P) could only achieve 
a robustness of 1 for the 35 mm/year average flood volume 
(10% mitigation target), while the $14 million (S14-P) pre
sented a robustness of 1 for a flood of 15.8mm/year (60% 
mitigation target). These results also show how IC solutions 
are more robust than the PC ones for infiltration, runoff, and 
flood volumes. For instance, the IC optimization solution for 
$10 million (S10-I) has the same robustness values as the IP 
solution for $20 million when aiming to increase infiltration.

No solution was able to restore peak flow and flood volumes 
to pre-urbanization conditions. Runoff volume was the only 
hydrological parameter for which LIDs could meet the thresh
old for mitigating 100% of urbanization impacts due to the 
decrease in precipitation volumes under future climate condi
tions. A robustness of 1 could be achieved for SMAX-I, S20-P, 
and SMAX-P. In other words, these solutions would perform 
satisfactorily under all future climate scenarios if the analyst’s 
objective was to reduce average runoff volumes below 
268 mm/year at the UTSA campus. The robustness for peak 
flow presented the lowest values among the four parameters 
analyzed. For this hydrological parameter, 50% was the max
imum mitigation target the LID solutions could achieve, and 
only for PC solutions with costs of $10 million or more.

A full investment in LIDs for maximum infiltration 
(SMax-I) could reach pre-development infiltration with his
torical conditions (see Fig. 8), but no optimized solutions 
could restore the infiltration to pre-urbanization levels for 
future climate. The reduction in projected precipitation 
volume for future climate scenarios resulted in zero robust
ness for all IC and PC solutions. This outcome shows the 
importance of considering climate change when planning 
LID placement. Although the infrastructure might perform 

Figure 9. Annual average infiltration of 1975–1999 and total infiltration of 
representative year for IC solutions.
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as expected for the historical conditions used for the design, 
it can fail under future conditions.

4 Summary and conclusions

This study applied a simulation-optimization framework to opti
mize the location and type of LIDs in a small urban catchment 
and evaluate the performance of the solutions to mitigate climate 
change. The approach includes (1) treating the climate data with 
bias correction and rainfall disaggregation, (2) optimization by 
combining SWMM with NSGA-II, and (3) evaluating the solu
tions according to their hydrological performance and robustness. 
Our methods addressed the difficulties regarding optimization 
when a continuous simulation is required, which can be repli
cated in other catchments. This approach allowed us to maximize 
infiltration while minimizing costs (IC), which was lacking in the 
literature. For comparison, we have also optimized peak flow 

against cost (PC), a common objective used to optimize LID 
placements. The solutions were analyzed according to their 
hydrological performance and robustness under different climate 
projections.

Our findings indicate that BR in highly impervious sub- 
catchments are preferred to enhance the cost–benefit ratio when 
aiming for increasing infiltration, followed by PP. On the other 
hand, LIDs placed near the outlet result in a better cost–benefit 
ratio when the goal is to decrease peak flows, with a lower distinc
tion between LID types when compared to IC solutions. IC 
optimization solutions proved to be more effective in increasing 
infiltration and reducing flood volumes within the catchment. The 
IC optimization distributed the LID cells more evenly across the 
catchment when compared to the PC, which reduces runoff loads 
in a larger portion of the local drainage system. In contrast, PC 
solutions were more efficient in reducing peak flow at the outlet, 
with a better potential to mitigate floods in the downstream area. 

Figure 10. Robustness of optimized solutions. Lighter colors represent higher robustness. Note:* Mitigation target is based on no flood volume.
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Our results showed that IC solutions effectively enhanced infiltra
tion and could contribute to mitigating climate change impacts in 
catchments with a projected drier climate. However, the robust
ness of IC and PC solutions showed how climate change could 
compromise the expected performance of LID infrastructure. For 
instance, the most expensive IC solution increased the infiltration 
volume to pre-development conditions, which could not be 
achieved in future climate scenarios due to lower precipitation 
volumes. Our findings highlight the necessity of accounting for 
climate change during LID design.

The optimization solutions show that LIDs improve infiltra
tion rates, potentially benefiting aquifer recharge. However, the 
proposed methodology does not account for aquifer recharge 
since not all infiltrated volume directly translates into ground
water recharge. In future studies, we recommend applying 
a groundwater model to assess the LID benefits of the solutions 
for recharge volumes and how they can contribute to reducing 
the impacts of climate change. Furthermore, our study lacks an 
investigation of stormwater quality improvements by LIDs. The 
future drier climates can increase pollutant loads during dry 
deposition periods, increasing the concentration of washed-off 
pollutants during storms and degrading stormwater quality. 
Therefore, future studies should also investigate how LID prac
tices could improve the quality of infiltrated water and, con
sequentially, the quality of groundwater reaching the aquifers. 
Finally, our investigations did not include flood analysis down
stream of the studied area. We recommend investigating LID 
effects on downstream floods to evaluate the benefits of peak 
flow reduction. Although the IC solutions improved infiltra
tion, flood volumes, and runoff volume within the catchment 
area, PC solutions on peak flow can benefit downstream more. 
We also suggest further investigating optimizing LID placement 
to enhance infiltration under different climates. The studied 
catchment is under a relatively dry and hot climate, where 
evapotranspiration is significant. Although GR negatively 
affected infiltration in this study, this type of LID structure 
could be beneficial to increase infiltrated volumes in catchments 
where stormwater losses due to evapotranspiration are lower. 
Finally, we suggest investigating how updates in climate mod
els, such as changes from CMIP5 to CMIP6, affect optimized 
LID solutions’ projected performance.
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