
ABSTRACT 
Recent discoveries have demonstrated that mitochondria play a critical role in innate immune signaling. By the 
other hand, immune responses may lead to mitochondrial deregulation. Cathelicidins play a critical role in innate 
immunity, promoting poorly understood cellular responses that may enhance or inhibit several signaling pathways, 
depending on the health conditions and subjacent microenvironment. Here, we investigated the role of CRAMP, 
the murine cathelicidin, in healthy mice and following experimental sepsis. We found that sepsis induces signifi- 
cant mitochondrial DNA damage in the prefrontal cortex and that cathelicidin protects the brain from this kind of 
damage in healthy animals, but not following septic shock. 
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INTRODUCTION 

On one hand, we know that DNA is highly susceptible to 
chemical damage. The DNA replication and repair machinery, 
moreover, make mistakes. On the other hand, cells possess a 
sophisticated DNA repair system [1]. Mitochondria are particu- 
larly susceptible to DNA damage, since they act as the cellular 
powerhouses and have to deal with a permanent production 
of Reactive Oxygen Species (ROS). It is true that an imbalance 
between ROS generation and cellular system’s ability for clear- 
ance, promotes damage to lipids, proteins and nucleic acids 
throughout the cell [2]. Mitochondrial DNA, however, besides 
its close contact with the respiratory chain, is not protected by 
histones or a nuclear envelope, becoming an easy target to ox- 
idative lesions. Finally, it is important to cite that besides small, 
the mitochondrial genome encodes 13 proteins that take part 

in the oxidative phosphorylation complex and mutations in 
such genes can also serve to increase ROS cellular levels [3]. 
Such factors contribute to a high mutagenesis rate [3]. ROS 
accumulation can lead to DNA base modifications, deletions, 
strand breaks and crosslinks. Oxidative stress and DNA damage 
have been linked with multiple chronic conditions, such as can- 
cer, neurodegenerative processes, diabetes, cardiovascular dis- 
eases, chronic inflammatory diseases and aging [4-10]. Here, 
we hypothesize that DNA damage may also be an important 
phenomenon to the pathophysiology of sepsis, an acute con- 
dition characterized by deregulation of the immune response 
and intense systemic inflammation. Since the brain is particu- 
larly susceptible in sepsis and mitochondrial and immune func- 
tions are tightly linked [11,12], we decided to investigate DNA 
damage in the prefrontal cortex of wild-type and CRAMP-de- 
ficient mice, submitted or not to experimental sepsis. Cathe- 
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lin-derived antimicrobial peptide (CRAMP) is an antimicrobial 
peptide that modulates several aspects of the immune re- 
sponse [13]. It is the only cathelicidin in rodents and its coun- 
terpart in humans is named LL-37. Cathelicidins are a family of 
antimicrobial peptides able to directly kill a range of pathogens, 
including bacteria, protozoa and virus. Despite that, cathelici- 
dins also play a dual role in the immune-inflammatory response 
through intriguing and poorly understood mechanisms. Indeed, 
depending on the disease and cellular context, cathelicidins can 
stimulate or inhibit the immune-inflammatory system [14]. 

 

MATERIALS AND METHODS 

Cecal Ligation and Puncture 

Young (8 weeks old) and aged (18 months old) male CRAMP−/− 
mice on a C57 BL/6 genetic background and their matched WT 
controls were purchased from The Jackson Laboratory (ME, 
USA). We induced peritonitis using the model of cecal ligation 
and puncture (CLP), as previously described [15]. Briefly, ani- 
mals were anesthetized and the cecum ligated and punctured 
twice with a 21 G needle, allowing fecal material to be released 
into the peritoneal cavity. Animals were sacrificed 24 hours af- 
ter the surgery and plasma and tissue samples of the brain (pre- 
frontal cortex) were collected for further analyses. 

 

DNA Extraction 

The samples were prepared according to the instructions in the 
Qiagen DNeasy Blood and Tissue kit (#69506 Qiagen). DNA was 
eluted in 100 μl of elution buffer. The concentration of genomic 
DNA was determinutesed using Nanoview (GE). Samples were 
diluted in elution buffer for the PCR assays (6 ng/μL). 

 

PCR Reaction 

Amplification of a 16540 bp segment of mitochondrial DNA was 
performed using Accu Prime Taq DNA Polymerase High Fidelity 
(#12346-086 Invitrogen) with forward and reverse primers (10 

M); Total DNA (30 ng); Buffer II 10X (5 L); Taq DNA Polymerase 

(0,2 L) and H O to complete 50 L. Primers sequences were: 
Forward, 5‘-TGAGGCCAAATATCATTCTGAGGGGC-3’ and reverse, 
5‘-TTTCATCATGCGGGAGATGTTGGATGG-3’. PCR conditions were 
(1) 94

°
C for 30 seconds; (2) 60

°
C for 30 seconds, and (3) 68

°
C for 

18 minutes (26 cycles). Amplification of a 140 bp segment of 
mitochondrial DNA was performed using Taq DNA Polymerase 
(#10342-053 Invitrogen) with dNTP (10 mM); MgCl2 (50 mM); 

Forward and reverse primers (10 M); Total DNA (3 ng); Buffer 

10X (5 L); Taq DNA Polymerase (0,2 L) and H O to complete 

50 L. Primers sequences were: Forward, 5‘-ACTTACGCAAAG- 
GCCCCAACG-3’ and reverse, 5‘-GAGCTAAGGTCGGGGCGGTG-3’. 
PCR conditions were 94

°
C for 3 minutes; (1) 94

°
C for 45 seconds; 

(2) 56
°
C for 30 seconds and (3) 72

°
C for 1 minute (22 cycles). 

 

Statistical Analysis 

Results were analyzed using Kruskal-Wallis test, followed by 
Mann-Whitney U test with Bonferroni adjustment. Results are 
shown in boxplots. All analyses were performed using R statis- 
tical software (www.r-project.org). A p-value <0.05 was consid- 
ered significant. 

RESULTS 

CRAMP protects the brain from mtDNA damage under normal 
conditions, but not following experimental sepsis. Both young 
wild-type mice and young CRAMP-deficient submitted to exper- 
imental sepsis showed significant mtDNA damage in the brain, 
when compared to the control groups (p<0.001 and 0.003, re- 
spectively). Secondly, the presence of CRAMP protected the 
brain of wild-type mice from further mtDNA damage under nor- 
mal conditions, but not following sepsis (p=0.011). Aged mice 
were used as positive controls. As expected, aged mice exhibit- 
ed more DNA damage in the brain than young mice. 

 

DISCUSSION 

It is widely accepted that oxidative stress has a crucial role in 
sepsis evolution [16,17]. Mitochondrial dysfunction and sever- 
al ultrastructural changes have been reported in many organs 
during sepsis [18-22]. It has even been postulated that mito- 
chondrial dysfunction plays a central role in the pathogenesis 
of the Multiple Organ Dysfunction Syndrome (MODS) that fre- 
quently follows the course of septic shock and many other in- 
flammatory catastrophes [23,24]. The topic, however, remains 
controversial. Some authors argue that the studies are still very 
heterogeneous and inconsistent [25]. DNA damage, for exam- 
ple, as far as we know, had never been investigated in sepsis. 
Here, we show that mitochondrial DNA damage is aggravated 
in the brain of wild-type and CRAMP-deficient mice, 24 hours 
after the induction of experimental sepsis, when compared 
to the control groups, putting in evidence that sepsis induces 
significant mtDNA damage [26]. Mitochondrial DNA damage, 
moreover, is more severe in the brain of healthy CRAMP KO 
mice, when compared to healthy wild-type mice, showing that 
CRAMP protects from mitochondrial DNA damage under nor- 
mal conditions (Figure 1). 

 

Figure 1: Ratio of mtDNA damage in the brain (prefrontal cortex) of 

wild-type and CRAMP-deficient mice under normal conditions and fol- 

lowing experimental sepsis (n=5-9 animals per group). 

 

CONCLUSION 

We believe that the increase in mtDNA damage in CRAMP-de- 
ficient mice, detected only under normal conditions, but not 
following sepsis, occurred because sepsis induces such a robust 
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inflammatory response that the protective effects of CRAMP 
became subtle in this situation. Septic encephalopathy patients, 
thus, may benefit from a targeted therapy directed to restore 
mitochondrial integrity. 
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