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Orbital instability of periodic waves for scalar viscous balance laws

ENRIQUE ALVAREZ, JAIME ANGULO PAVA@® AND RAMON G. PLAZA

Abstract. The purpose of this paper is to prove that, for a large class of nonlinear evolution equations known
as scalar viscous balance laws, the spectral (linear) instability condition of periodic traveling wave solutions
implies their orbital (nonlinear) instability in appropriate periodic Sobolev spaces. The analysis is based on
the well-posedness theory, the smoothness of the data-solution map, and an abstract result of instability of
equilibria under nonlinear iterations. The resulting instability criterion is applied to two families of periodic
waves. The first family consists of small amplitude waves with finite fundamental period which emerge
from a local Hopf bifurcation around a critical value of the velocity. The second family comprises arbitrarily
large period waves which arise from a homoclinic (global) bifurcation and tend to a limiting traveling pulse
when their fundamental period tends to infinity. In the case of both families, the criterion is applied to
conclude their orbital instability under the flow of the nonlinear viscous balance law in periodic Sobolev
spaces with same period as the fundamental period of the wave.

1. Introduction

Scalar viscous balance laws in one space dimension are equations of the form

ur + [y = uxx +gu), ey

where u = u(x, t) € R is a scalar unknown, x € R and r > 0 denote the space and
time variables, respectively, and f = f(u) and g = g(u) are nonlinear functions.
Equation (1) describes the dynamics of a scalar quantity u in a one-dimensional do-
main, which is subject to three different mechanisms: the reaction g(u) may describe
production/consumption, chemical reactions or combustion, among other interactions;
the density u is (nonlinearly) transported with speed f’(u); and the diffusion of u is
represented by the Laplace operator, 83. In sum, scalar viscous balance laws constitute
simplified models that combine diffusion (viscosity), convection and reaction into one
single equation. For an abridged list of references on scalar viscous balance laws, see
[2,15,19,20].
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In these models, one of the most important mathematical solution types is the
traveling wave. A spatially periodic traveling wave solution to (1) has the form

u(x,t) = e — ct), )

where the constant ¢ € R is the speed of the wave and the profile function, ¢ = ¢(§),
& € R, is a sufficiently smooth periodic function of its argument with fundamental
period L > 0.

In this paper, we are concerned with the stability of a periodic wave as a solution to
the equation (1). In general, stability of a specific traveling wave solution under small
perturbations is a fundamental property for understanding the real-world dynamics
of models of evolution type. Examples of such models are the nonlinear Schrodinger
equation, the sine-Gordon equation and models of Korteweg—de Vries type, among
others. The existence and stability theory of periodic waves has developed rapidly
in recent years and it has drawn the attention of researchers from different areas of
science, such as in fluid mechanics, optics, biology, or engineering, just to mention a
few. New methods and theories have been developed using tools of nonlinear analysis,
bifurcation theory, spectral theory, as well as Fourier and harmonic analyses. The
following (abridged) list of references may provide the reader with a panoramic idea
of the recent evolution of the theory, [2,5-10,12,24]. In the particular case of scalar
viscous balance laws, the analyses available in the literature have mainly focused on
the stability of traveling fronts on the real line (see, e.g., [36—38] and the references
therein). In contrast, less attention has been paid to the stability of periodic waves.

In this work, we are interested in establishing new results related to the dynamics of
periodic traveling waves for models of the general type in (1). The present analysis can
be regarded as a complement to the recent study in [2], where the existence and spectral
instability of periodic waves for equations of the form (1) were established. The natural
question is whether this spectral information guarantees the instability of the waves
under the nonlinear evolution. Hence, the purpose of this paper is to show that, if a
periodic wave is spectrally unstable (that is, if the formal linearized operator around
the wave has spectra with positive real part when acting on an appropriate periodic
space) then it is also nonlinearly (orbitally) unstable under the flow of the evolution
equation (1) (see Definition 2 of orbital stability below). For such statement to be
meaningful, it is crucial to specify the spaces under which the spectrum is calculated,
and for which the well-posedness holds. Our instability criterion warrants the orbital
instability of the manifold generated by any spectrally unstable periodic wave, under
the flow of the nonlinear viscous balance law (1) in periodic Sobolev spaces with same
period as the fundamental period of the wave.

The analysis is based on a combination of the local well-posedness theory for (1),
the implicit function theorem, and an (important) abstract result by Henry et al. [22],
which essentially determines the instability of a manifold of equilibria under iterations
of a nonlinear map with unstable linearized spectrum. This general abstract theorem
has been the basis of the nonlinear instability theory of periodic waves in other contexts,
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such as the KdV equation [31], the critical KdV and NLS models [8], KdV systems
[5], and for general dispersive models [10], just to mention a few. In order to apply
the theorem by Henry et al., some essential elements are needed, such as a suitable
well-posedness theory and the property that the data-solution map is of class C2.

There exist several studies of well-posedness for parabolic equations of the form
(1) available in the literature (see, e.g., [3,4,11,28]). For convenience of the reader, we
present a detailed (yet concise) proof of local well-posedness of the Cauchy problem
for equations of the form (1) in periodic Sobolev spaces of distributions (in the spirit
of the analysis of lorio and Iorio [23] for nonlinear equations). Even though our well-
posedness analysis is, indeed, quite standard, several refined estimates in the course
of proof need to be established as they are used to prove the smoothness of the data-
solution map, an important key element of the abstract result by Henry et al. Moreover,
up to our knowledge, the well-posedness of equations of the form (1) in Sobolev spaces
of L-periodic distributions has not been reported as such in the literature.

Once the orbital instability criterion is at hand, one may ask about its applicability
to particular examples. In the aforementioned recent paper [2], the authors applied
dynamical systems techniques in order to show that, under certain structural assump-
tions, there exist two families of periodic waves for equations of the form (1). The
first family emerges from a local Hopf bifurcation when the speed ¢ crosses a critical
value cg. These waves have small-amplitude and finite period. The second family is
generated by a global homoclinic bifurcation around a second critical value of the
speed c1, which is the speed of a traveling pulse or homoclinic wave. These periodic
waves have amplitude of order O (1) but have large period tending to oo (which can
be regarded as the period of the traveling pulse). A couple of examples and numerical
computations, which illustrate both families of waves, are also presented. Therefore,
in order to present the applicability of the criterion, we study the orbital instability of
both families of waves via a verification of the conditions for an unstable spectrum.
The two families are parametrized by small parameter € > 0 (measuring the deviation
of the speed of the wave from the critical speed in each case). Hence, we obtain insta-
bility under the flow of the evolution equation in periodic spaces with same period of
the wave, once the parameter € > 0 is fixed (see Theorems 6 and 8).

The paper is structured as follows. In Sect. 2 we make precise the notions of spectral
and orbital instability of periodic waves and state the main results of the paper, namely,
the orbital instability criterion and the well-posedness theorem. Section 3 is devoted
to the well-posedness theory for equations of the form (1) in periodic Sobolev spaces.
Special attention is devoted to show that the data-solution map is smooth enough.
Section4 contains the proof that spectral instability implies orbital instability, upon
application of an abstract result on instability of equilibrium points. The final Sect. 5
contains the description of the two families of periodic waves found in [2] and verifies
the appropriate hypotheses to apply our orbital instability criterion.
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On notation

Linear operators acting on infinite-dimensional spaces are indicated with calligraphic
letters (e.g., £), except for the identity operator which is indicated by Id. The domain of
alinear operator, £ : X — Y, with X, Y Banach spaces, is denoted as D(£) € X.Fora
closed linear operator with dense domain the usual definitions of resolvent and spectra
apply (cf. Kato [26]). When computed with respect to the space X, the spectrum of £
is denoted as o (£)|x. We denote the real part of a complex number A € Cby Re A. The
classical Lebesgue and Sobolev spaces of complex-valued functions on the real line
will be denoted as LZ(R) and H" (R), with m € N, endowed with the standard inner
products and norms. For any L > O and any s € R, we denote by H,.. = Hp.. ([0, L])
the Sobolev space of L-periodic distributions such that

oo
lull? ==L Y 1+ [kI» @) < oo,
k=—00
where ¥ is the Fourier transform of u. According to custom we denote ngr = L%er.
Ifs > k+ %, k € N U {0}, then there holds the continuous embedding, ngr s

Cl’;er, where Cl];er is the space of L-periodic functions with k continuous derivatives.
The translation operator in Hy ([0, L]) will be denoted as ¢, : Hy. ([0, L]) —
ngr([O, L)), &(u) = u(- + n) for any n € R. Translation is a smooth operator in
ngr([O, L]). Moreover, if s > 0 then we have ||, () |ls = |lulls for allu € H;.. and

per
all n € R (see lorio and Iorio [23] for details).

2. Stability framework and main theorems

In this section we describe the different notions of stability under consideration and
state our main results.

2.1. Spectral stability

Suppose that a sufficiently smooth profile function, ¢ = ¢(-), determines an L-
periodic traveling wave solution to (1) of the form (2) for some speed value ¢ € R.
Substitution of (2) into (1) yields the following ODE for the profile,

—c¢' + ()¢ =¢" + g(p). 3

With a slight abuse of notation let us rescale the space variable as x — x — ct (the
co-moving Galilean frame) in order to transform (1) into the equation

ur = txx + gu) + cux — fuy, “

for which now the periodic wave is a stationary solution, u(x, ) = ¢(x), in view
of (3). For solutions to (4) of the form ¢(x) + v(x, r), where v denotes a nearby
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perturbation, the leading approximation is given by the linearization of this equation
around ¢, namely

U = Uxx + (€ — f1(@)vr + (8 (@) — f(@)o)v.

Specializing to perturbations of the form v(x, t) = eMu(x), where A € C and u lies
in an appropriate Banach space X, we arrive at the eigenvalue problem

A= tyy + (¢ — fl(@)ux + (&' (@) — f/(@)x)u, Q)

in which the complex growth rate appears as the eigenvalue. Intuitively, a necessary
condition for the wave to be “stable” is the absence of eigenvalues with Re » > 0,
precluding exponentially growing models at the linear level. Motivated by the notion
of spatially localized, finite energy perturbations in the Galilean coordinate frame
in which the periodic wave is stationary, we consider X = L?*(R) and define the
linearized operator around the wave as

£ LA (R) — L*(R),
. 5 ©)
L = 97 4+ a1(x)dy + ap(x)1d,
with dense domain D(L£¢) = H2(R), and where the coefficients,
ai(x) :==c — f(9),
(7

ao(x) 1= g'(@) — f'(¢)s,

are bounded and periodic, satisfying a;(x + L) = a;j(x) forallx e R, j =0, 1. L°
is a densely defined, closed operator acting on L%(R) with domain D(L¢) = H%(R).
Hence, the eigenvalue problem (5) is recast as L4 = lu for some A € C and
u € D(LS) = HX(R).

Definition 1. (Spectral stability) We say that a bounded periodic wave ¢ is spectrally
stable as a solution to the viscous balance law (1) if the Lz—spectrum of the linearized
operator around the wave defined in (6) satisfies

Otherwise we say that it is spectrally unstable.

Remark 1. We remind the reader that any complex number A belongs to the point
spectrum of an operator £, denoted as oy (L), if £ — A is a Fredholm operator with
index equal to zero and with a non-trivial kernel. A belongs to the essential spectrum,
Oess(L£), provided that either £ — X is not Fredholm, or it is Fredholm with non-
zero index. Clearly, op (L), 0ess(£) C o (£). Moreover, since the operator is closed,
0 (L) = op (L) U 0ess(L). The point spectrum consists of discrete eigenvalues with
finite (algebraic) multiplicity (see [25,26,33] for further information).
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Since the coefficients of the operator £ are periodic, it is well known from Floquet
theory that £¢ has no L>-point spectrum and that its spectrum is purely essential (or
continuous), o (L) 12(r) = Tess (L) |12(r) (see Lemma 3.3 in [24], or Lemma 59, p.
1487, in [16]). However, it is possible to parametrize the spectrum in terms of Floquet
multipliers of the form e? esSlpeRrR (mod 27) via a Bloch transformation [18,25].
Indeed, the purely essential spectrum o (L) 2(g) can be written as the union of partial
point spectra:

oL@ = U omLOiz,qoL: ®)

—m<O0<m
where the one-parameter family of Bloch operators,

C = (8 +i0/L)* + a1 (x)(d; +i6/L) + ap(x)Id,
L5 L (10, L)) — L2..([0, L)),

per

(€))

with domain D(L§) = szer([O, L]), is parametrized by the Floquet exponent (or
Bloch parameter) 6 € (—m, ], and act on the periodic Sobolev space with same
period L > 0 as the period of the wave. Since the family has compactly embed-
ded domains in Lger = Lger([O, L]) then their spectrum consists entirely of isolated
eigenvalues, o(Lg)‘ L2 = apt(£§)| L2 Moreover, they depend continuously on the
Bloch parameter 6, which may be regarded as a local coordinate for the spectrum
0 (LY)|12(w) (see Proposition 3.7 in [24]), meaning that A € o (L) 12, if and only
if A € apt(ﬁg)‘ Lo for some 6 € (—m, ]. The parametrization (8) is called the Flo-
quet characterization of the spectrum (for details, see [2,18,24,25] and the references
therein). As a consequence of (8) we conclude that the periodic wave ¢ is L?-spectrally

unstable if and only if there exists 6y € (—m, 7] for which
O'Pt(LgO)lL%er([oxL]) N {)\. eC : Rei > O} ;é a.

Remark 2. Notice that when the Bloch parameter is 6 = 0, the expression of the
operator Lg coincides with that of the linearized operator around the wave in (6), but
now acting on a periodic space:

L8 L% ([0, L L2 ([0, L)),
{ 0 per([ ]) e per([ ]) (10)

L5 = 92 4 a1(x)dy + ap(x)1d.
2.2. Orbital stability

Once the spectral (in)stability of a periodic wave is established, a natural question
arises. Is the traveling wave solution nonlinearly stable, in a certain sense, with respect
to the flow of the equation (1)? Can we deduce from the spectral (in)stability of a
periodic wave a nonlinear (in)stability result? In this paper we prove that spectral
instability implies orbital (nonlinear) instability in a sense that is described below.
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First, note that if the profile function ¢ = ¢(-) is smooth enough then it belongs
to the periodic space szer([O, L]). Hence, one can compare the motion ¢(x — ct),
as a solution to (1), to a general class of motions u = u(x, t) evolving from initial
conditions, #(0) = i, that are close in some sense to ¢. The notion of orbital stability
is, thus, the property that u(-, t) remains close to ¢ (- + y), y = y(t), for all times
provided that u(0) starts close to ¢(-). In other words, the type of stability that we
expect is that the perturbation remains close to the manifold generated by translations
of the traveling wave, leading to the concept of orbital stability (also called stability
in shape [6]). We define the orbit generated by ¢ as the set

Op = {p(-+71) : r € R} C Hy, ([0, L).

We note that O, represents a Cl-curve, ' = I'(r), in szer([O, L]) determined by the
parameterr € R, I'(r) = ¢-(¢). Thus, the traveling wave profile will be orbitally stable
if its orbit I" is stable by the flow generated by the evolution equation. Consequently,
we have the following definition associated to (1) (cf. [6]).

Definition 2. (Orbital stability) Let X, Y be Banach spaces, with the continuous
embedding ¥ < X.Let ¢ € X be a traveling wave solution to equation (1). We say
@ is orbitally stable in X by the flow of (1) if for each ¢ > 0 there exists § = §(¢) > 0
such that if ¥ € Y and

inf [[¥() —e(+r)lx <4,
reR

then the solution u(x, ) of (1) with initial condition #(0) = i exists globally and
satisfies

sup inf [lu(. 1) — ¢ +1r)lx <e.

t>0T€

Otherwise we say that ¢ is orbitally unstable in X.

In the present context of periodic waves for equations of the form (1), we select

X=Y= ngr( [0, L]), where L > 0 is the fundamental period of the wave.

2.3. Main results

Let us now state the main results of the paper. The first theorem establishes the local
well-posedness of the evolution equation (1) in periodic Sobolev spaces.

Theorem 1. (Local well-posedness in periodic Sobolev spaces) Assume f € C 2(R),
g€ C(R),L>0ands > 3/2.If$ € ngr([O, L)) then there exist some T =
T (|®lls) > 0 and a unique solution u € C([0, T1; ngr([O, L)) Nnclo,1y; ng_rz

([0, LY)) to the Cauchy problem for equation (1) with initial datum u(0) = ¢. For
each Ty € (0, T), the data-solution map,

¢ € Hper ([0, L) = ug € C([0, Tol; Hye, ([0, L)),

is continuous. Moreover, if we further assume f € C*(R) and g € C3>(R) then the
data-solution map is of class C>.
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The second main result is precisely the general criterion for orbital instability based
on an unstable spectrum of the linearized operator around the wave. It establishes
orbital instability under the flow of the nonlinear viscous balance law in periodic
Sobolev spaces with same period as the fundamental period of the wave.

Theorem 2. (Orbital instability criterion for viscous balance laws) Suppose that
f € C*(R), g € C3(R). Let u(x,t) = @(x — ct) be a periodic traveling wave
solution with speed ¢ € R to the viscous balance law (1), where the profile function
¢ = ¢(-) is of class C? and has fundamental period L > 0. Assume that the following
spectral instability property holds: the linearized operator around the wave, Ly :
Lger([O, L)) — Lger([O, L)), defined in (10), has an unstable eigenvalue, that is, there
exists . € C with Re A > 0 and some eigenfunction ¥ € D(Lj) = szer([O, L)) C
Lger([O, L)) such that LGV = AW. Then the periodic traveling wave is orbitally

unstable in X = sz ([0, L]) under the flow of (1).

c

Remark 3. Observe that the sufficient condition for orbital instability is that the lin-
earized operator around the wave, acting on a periodic Sobolev space with same
fundamental period as the wave (finite energy space of coperiodic perturbations),
has an unstable eigenvalue. If we recall that the expression of the linearized opera-
tor coincides with that of the associated Bloch operator with 6 = 0 (see Remark 2),
then the spectral instability of the latter (together with the appropriate regularity of
the data-solution map) suffices to obtain orbital instability with respect to coperiodic
perturbations.

Finally, in this paper we apply Theorem 2 to prove the nonlinear instability of
periodic waves belonging to the two families described in the Introduction, whose
existence and spectral instability were proved in [2] (see Theorems 6 and 8).

3. Local well-posedness

In this section we establish the local well-posedness in ngr ([0, L]) forany s > 3/2,
of the model equation (1). Our analysis is standard and it is based on Banach’s fixed
point theorem. Albeit the arguments are classical and without major problems, several
estimates are key ingredients in order to obtain the smoothness of the data-solution
map associated to (1) (see Sect.3.3). In the sequel (and for the rest of the paper) we
use the notation,

X, = H;er([O, L), for any s € R,

whenever there is no ambiguity in the choice of the period L. We start with the
recollection of well-known facts.

3.1. The heat semigroup in X

The following properties of the heat semigroup acting on periodic Sobolev spaces
can be found in the book by Iorio and Iorio [23].



J. Evol. Equ. Orbital instability of periodic waves Page 9 0of35 7

Theorem 3. The Cauchy problem for the heat equation,

Uy = Uxx,

11
u0) = ¢, (4o

is globally well-posed in X for any s € R, L > 0. That is, if ¢ € X then there exists
a unique mild solution u € C([0, T]; X) for all T > 0. The solution is given by

u(t) =V)o,

where the family of operators, V(t) : Xy — X, t > 0, is the heat Cy-semigroup of
contractions,

V() = (e ¥7$)",

with generator T = 83 and dense domain D = X 1. The solution depends continu-
ously on the initial data in the following sense,

sup [ V()1 — V)|, < llg1 — ¢alls-
t€[0,00)
Proof. Follows from standard theory: it is a particular case (with g = 0) of Corollary
4.16 and Theorems 4.9, 4.14 and 4.25 in lorio and lorio [23], pp. 218-232. O

Corollary 1. Foralls € R, N > 0 and any ¢ € Xj,

[ 0+ =vape - 2vwe)| =0, (12)

i
uniformly with respect to t > 0. In particular, there exists a uniform C > 0 such that

IA~"(V(h) —1d) — 87| < C, (13)
in the operator norm for all small 0 < |h| < 1.

Proof. See Theorem 4.15 in [23]. The second assertion follows immediately from
(12). O

Corollary 2. (Regularity inequality) For all r € R and § > 0 there exists a uniform
constant Ks > 0 depending only on § such that

Wl = K1+ (5) ]l (14)

forallu € X,, t > 0.

Proof. This is a particular case, with ¢ = 0 and = 1, of Theorem 4.17 in [23]. [
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3.2. The Cauchy problem for viscous balance laws

Let us consider the Cauchy problem for the viscous balance law (1) in X, s > 3/2.
It reads:

U —uyx = gu) — f/(u)u)n
u) =9,

for some initial condition #(0) = ¢ € X;. Assuming f € Cc?, geC I we define
F € C'(R?) as

as)

Fu, p):=gw) — f'wp, (u,p) ek
Hence, the Cauchy problem (15) can be recast as
ur —uxx = F(u, uy),
u0) = ¢,

with ¢ € X;. Upon application of the variation of constants formula we arrive at the
integral equation,

(16)

t
Au = u(t) :V(t)¢>+/ V(i —1)F(u, uy)dr. a7
0

In order to prove existence and uniqueness of solutions to the Cauchy problem (16)
we follow the standard blueprint (see, e.g., Taylor [35], chapter 15): (i) the linear part
of the equation generates a Co semigroup in a certain Banach space X (this step has
been already verified by Theorem 3); (ii), the nonlinear term F is locally Lipschitz
from X to another Banach space Y'; and, (iii), the operator 4 is a contraction in a closed
ball in C([0, T']; X) for T sufficiently small yielding, upon application of Banach’s
fixed point theorem, a solution to the integral equation (17).

The following lemmata are devoted to verify these steps in the context of periodic
Sobolev spaces and in the spirit of the analysis of Iorio and Iorio [23] for nonlinear
equations.

Lemma 1. For any s > 3/2 and assuming f € C* g € C', then F = F(u, uy) is
locally Lipschitz from X to Xs—1. More precisely, for any

u,v Emz {w € XS : ||w||S S M} - X59
with M > 0 fixed but arbitrary, there holds the estimate
IF(u,ux) = F, v)lls—1 = Ls(Julls, vll)u —vlls, (18)

where Ly : [0, 00) x [0,00) — (0,00), Ly = Ls(01, 02), is a continuous, positive
function and non-decreasing with respect to each argument. In particular, there holds
the estimate

I1F () lls—1 < Ls(llulls, 0)flaells 19)

forallu € Bu.
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Proof. Letu,v € By Since for each s > 1 /2, X is a Banach algebra (see Theorem
3.200 in [23]), there exists a constant Cy > 0 depending only on s such that
IF(u,ux) — F 0, v0)lls—1 < lg@) — g)lls—1 + Csll f' @) ls—1llux — vy lls—1+
+ Gl f @) = f @) ls—1llvxlls—1
< lg@) = gW)lls—1 + Csll f @) lls—1llu — v]ls+
+ Gl f ) = f@)lls=1lvlls-

Inview thats > 3/2 wehave X; C X and by Sobolev’s inequality there holds |u| <

lullzoe < 20ully*lurlly < 2lulli < 2lulls <2Mae.inx € [0, L]forallu € By.

Since f(u), g(u) and f’(u) are continuous in the compact set [—2M, 2M ], then they
are locally Lipschitz and there exist uniform constants L s, L, > 0, depending only
on s and M, such that

If @) = f'W)lls—1 < Lyllu = vlls—1,
llg) —gW)lls—1 = Lgllu — vlls—1,
g’ () — &' (Wlls—1 < Lgllu = vlls—1, (20)
If @)lls—1 < Lyllulls—1 + £ (0,
lig"@)lls—1 < Lgllulls—1 + 18" (0],

for all u, v € Byy. Therefore,

IF @, uy) = F (v, v)lls-1 < [Lg + Cs |l f'@)lls—1 + Csllvlls—1]llu = vlis-1
< [Lg+ Cs(Lslulls + 1O + Il ]llu — vlls

< Ls(lJulls, vl —vlls,

since from definition ||u||s—; < |lu||s for all u, and where we have defined’
Ly(01,02) :==Lg+ Cs((Ly + Lgor + 02+ 1/ O]+ g (0)]) >0, (2D

for all (o1, 02) € [0, 00) x [0, 00). Clearly, L (-, -) is continuous and non-decreasing
with respect to each argument. This yields (18) and the lemma is proved. O

Let ¢ € X;. For any o > 0, fixed but arbitrary, and for 7 > 0 to be chosen later,
let us define

Zar={ueCUO.T Xy« sup u(®) —glls <al.
t€[0,7T]

Clearly, Z, r C C([0, T']; X,) and it is closed under the norm

lullcqo,rr:x,) = sup flu@)|s.
1€[0,T]

IFor later use (see the proof of Lemma 5) we have incorporated |g’(0)| into the definition of this upper
bound Lg(-, -).
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Next result establishes the conditions under which the operator A defined in (17)
is a contraction mapping on Z, 7, yielding the existence and uniqueness of a mild
solution to (16).

Lemma 2. Lets > 3/2and ¢ € X;. Thenthere exist T > 0and aunique mild solution
u e C([0, T]; Xy) to the Cauchy problem (16) (that is, to the integral equation (17)).
Moreover, the data-solution map ¢ +— u is continuous.

Proof. First, we verify that if u € Zy r then Au € C([0, T]; Xs). Indeed, for all
0 <t <t < T wehave

IAu(t) — Au(®2)ls

n
< V() = V(E2))ulls +/0 V@t — 1) = V(2 — 1)) Fu, ux)lls de
5}
+/ V@t — 1) = V(2 — ©)) F(u, uy)|ls d. (22)
1

Since V(¢) is a Cp-semigroup, [|(V(t1) — V(t2))ulls — 0 as t» — ¢1. In order to
control the second term in (22), we apply inequality (14) with § = 1,r = s — 1,
C = K > 0, and estimate (19) (inasmuch as Z, 7 C By with M = o + o |ls); this
yields,

V(1 — 1) = V(2 = D) F(u, ur)lls

<ac[it 51" sup L)l 0o
< _— u u s u 5
2(t1 — 1) te[O,pT] * ’ ’

for all 0 < 7 < 1. The function on the right side of last inequality is integrable in

T € (0, 7). Therefore, by the Dominated Convergence Theorem,

4]
lim / V(1 — 1) = V(ta — 1)) F(u, uy)|lsdtr =0.
h—1 0

Analogously, for the second integral in (22) we have the estimate

1/2
V(2 — ) F(u, u)lls = C[l + Ly(llu(@)lls, O)llu(T) s

1
=cli+ 55—

for all T € (11, t2). Clearly, since u € Z, r then we have ||u(7)||s < « + ||¢|ls and

therefore

5]
/ V(2 = ), un)lls de
1

< CLg(a + |9lls, 0)( + llplls) (22 — t1 — v/2(r2 — 11)) — 0,

asty — t1. Thisshows that Au(r) € X, forallr € [0, T]andthat Au € C([0, TT]; X5).
Next, we choose T > 0 small enough such that A(Zy 1) C Zo 7 and that A is
a contractive mapping. First, note that since V(¢) is a Co-semigroup we can choose
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T1 > O such that | V(t)¢p — ¢|ls < a/2 forall t € [0, T1]. Now, if u € Z, 7 then we
have the estimate (see (19)),
t t
H / Vit — 1) F(u, ux)dtH < / IVt — O F(u, u)lls de
0 s 0
< CLs(a+ 1#ls, O) (e + [1@lls)(T + V2T)
< %oz,

provided that we choose 7' < T small enough. This shows that A(Zy 1) C Zg.T.
Finally, in order to show that A is a contraction for some (possibly smaller) 7 > 0,
let u, v € Zy 7. Similar arguments yield the estimate

t
[Au@) — Av@®)lls < /o IVt — ) (F(u, ux) — F(v, v))lls dt

! 1 12
SC/O [1+2(z—f)] IF (1) = F (v, vp)lls d

< CLg(a + 1@lls, @ + @l )T + ~2T) sup |Ju(t) —v(@)lls
1€[0,T]
< 2lu —vlcqorx,),
where for
Cp :=CLs(a+ 1#ls, . + lIPlls) > 0, (23)

we choose T sufficiently small such that
1
Co(T +~2T) < 3 (24)

Notice that T depends on ||¢||s. Hence, we conclude that there exists a small 7 =
T(|l¢lls) > Osuchthat A(Z, 1) C Zo,1 and A s a contraction on Z, 7. By Banach’s
fixed point theorem, there exists a unique fixed point u € Z, 7 of A that solves (17).
Finally, to show the continuity of the data-solution map let # and v in C ([0, T']; X;)
be the solutions to the Cauchy problem with initial data u(0) = ¢ and v(0) = v,
respectively. Then, using the regularity estimate (14) it is easy to show that

t
lu(t) — v()lls < IV)p — VOU s + fo IVt — ©)(F(u, uy) — F(v, v,))lls dt
t
<|llg — Vs + (T + vV2T)Ly(M;, Ms)/0 lu(z) — v(o)lls ds,

with My := max { sup;co.7y 1@ ls, supepo, 7y 1 (@) lls } Gronwall’s inequality then
yields

lu() —vOlls < Cs,7lld — Vs,

forall ¢ € [0, T'] with a constant Cs 7 > 0 depending only on s and 7. The lemma is
proved. 0
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It remains to verify that the unique solution from Lemma 2 is, in fact, a strong
solution to the Cauchy problem (15).

Lemma 3. Underthe assumptions of Lemma 2, the unique mild solutionu € C([0, T'];
Xs) to (17) satisfies u € cl ([0, TT; Xs—_2) and, therefore, it is a strong solution to the
Cauchy problem (15).

Proof. Tt suffices to show that

lim A~ u(t +h) — u(t)) — 0%u — F(u, uy)|ls—2 = 0.
h—0
To that end, write

=Yt 4 h) — u(t)) — 8%u — F(u, uy)
=h~' V@ +h) = V()p — 3 (V1))

t
+h~! f Vit +h—1) =Vt — 1) F(u, uy)(t)dt
0
!
—0?2 / V(t — ©)F(u, uy)(t) dt
0
t+h
+h71/ Vie+h—1t)Fu,ux)(t)ydt — F(u, uy)(t). (25)
t
First, note that Corollary 1 immediately implies that
}}i_r)r%) 1A= u(t + h) — u(r)) — 83(V(t)¢)||s,2 =0.
The || - ||s—2-norm of the last term in (25) is clearly bounded above by

t+h
h—lf R(7)dr,
t

where R(t) := |Vt + h — t©)F(u, uy)(t) — F(u, uy)(t)||s—2. R is a continuous
function of T € (¢, t 4+ h) and, hence, there exists some ¥ € (¢, t + h) for which

t+h
R(®) =h—1f R(7)dr.
t

Since ¢+ — t as h — 0, by continuity of the semigroup we have,
fim R@) = Lim [V +h = D) F @, ux) (@) = Fu, u)(@O)lls—2 = 0.

This yields

r+h
0 < lim Hh*l / V(t + h — ) Fu, uy)(z) dt — F(u, ux)(t)H < lim R(®) = 0.
h—0 t s=2 " h—0
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Finally, apply (14), (13) and (19) to observe that, for all 0 < t < ¢ and all || small,
there holds the estimate

|h~ 'OV +h— 1) =Vt = D) Fu,ux)(t) — 0 (V(t — O F (w, ux) (D) |, =
< V@ =D V) —1d) = 0 F (, u) (0 52

< cli 5] om 1 - i Fw w @l
— 2([—'[) X s X §—3
_ 12
=Tl 5 | IF @ @l
< CCL,Csup ). 0) sup fu@l[1+5——]"
Ky u S u s
B re(ol,)z) re(()l:,)t) 20 = 1)

Once again, the right hand side of last inequality is integrable in T € (0, ¢). Corollary
1 then yields

|(h ' V() —1d) — D) F (u, ux)(D)||,_, — O,

as h — 0, uniformly in 7 € (0, 7). Thus, by the Dominated Convergence Theorem,
we conclude that

t
lim Hh‘l f Vit +h —1) = V(t — ) Fu, 1) (7) dr
- 0

=0.
2

S§—

t
—a§/ V(t — 1) F (u, uy)(t) dt
0

This shows that u € C! ([0, T]; X4—>) and the lemma is proved. O

3.3. Smoothness of the data-solution map

Let Bbetheball B = B.(¢) = {u € X5 : |lu — ¢|ls < e} with e > 0. Define the
map

' B xC(0,T]; X5) - C([0, T]; Xy),

! (26)
L@y, w)() .= w) —V)y — / Vit —1)F(w, wy)dr.
0
For any given ¢ € X, s > 3/2, let us denote by uy € C([0, T']; Xy),
t
ugp(t) =V()p + / V(t —1)F(ug, 0xug) dr, 27)
0

the unique solution to the Cauchy problem (15) with u4(0) = ¢. Then, clearly,

(¢, ug)(1) =0,

forallr € [0, T].
At this point we need to impose further regularity on the functions f and g to guar-
antee twice Fréchet differentiability of the mapping I" in a neighborhood of (¢, ug).
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Lemmad. Let f € C*(R), g € C3R) and s > 3/2. Then the map I' : X5 X
C([0,T]; Xg) — C([0, T1; Xs) defined in (26) is twice Fréchet differentiable in an
open neighborhood B (¢p) x Bs(ug) of (¢, ug).

Proof. Follows directly from the regularity of F(u, uy) = g(u) — f'(u)u,, the def-
inition of the mapping I" and standard properties of the contractive semigroup V(¢).
(Recall that the existence of continuous Gateaux derivatives in open neighborhoods
yields Fréchet differentiability; see [40], §4.2, Proposition 4.8.) We omit the details.
O

Lemma 5. Suppose that f € C*(R), g € C3(R). Let ¢ € Xy, s > 3/2, and consider
up € C(0,T1; X5), T > 0, the unique strong solution to (15) given by Lemma 3.
Then, the operator

0wI'(@,ug) : C(0, TT; X5) — C([0, TT; Xy),

! / " ! (28)
0uT (@, upw(t) = w(t) - /0 Vit =0 (8'g) = " wp)dhus)w — ' wgyu. ] dr,
is one to one and onto. Moreover, the data-solution map associated to (15),
T:X;— C(0,T]; Xy),
(29)

¢ = T (@) = ug,
is of class C*.

Proof. First, let us verify the formula for the operator 0,,I"(¢, ug) by computing
limy, 0 h’lF(qﬁ, ug + hw) for any w € C([0, T'], Xy). From the definition of F =
F(u, uy), we have by Taylor expansion,

F(ug + hw, dcug + hwy) = F(ug, 0yug) + h[(g' (ug)
— [ up)dsug)w — f'(ug)wy)l1+ O ().

Hence,
T (g, ug + hw) (1) = w(t)
t
- [ Ve =0 o) 1 g = £ ] dr + 0w,

in view of (27). This yields (28) when & — 0.
Now, let us apply the regularity inequality (14) to estimate, for any ¢ € [0, T'] and
allw e C([0, T], Xy),

10w (P, ug)w () —w(t)lls

1
< [ e = o[ o) = £ g = £ wpru]

! 1 12 /
: C/o [1 T ‘L’)] 8" up)w — (f (ug)w)xlls—1 dz.

’dr
s
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In view of estimates (20), the fact that ngr is a Banach algebra for any s > 1/2 and

that, by the fixed point theory of Lemma 2 there holds A(Zy 1) C Zg. 1, Or in other
words, [lugll < a + ||¢]ls, then we obtain the following estimate for all 0 < 7 < ¢,

8" wg)w — (" (ug)w)xls—1
< Csllg' ) lls—tllwlls—1 + I1(f ug)w)xlls—1
< Cs[Lglluglls—1 + 18" O Nlwls + Cs[L plluglls + 1/ O Nlwlls

< C[(Ly+ L)@+ 9ls) + £ (O] + 1¢'0)]] S(l(l)p : lw(T)lls
te(0,T

= Ls(@+ [I¢lls,0) sup [[w(r)ls
t€(0,T)

< Ls(a + [1#lls. e + [[@lls) sup [lw(D)]]s.
7€(0,T)

This yields,

18T (¢, up)w(®) — w(t)lly < CLs(a + [1plls. o + $l)T + v/T) S(l(l)PT) lw(@)lls
Te(0,

= Co(T +~VDllwlcqo.rix,)-
for the same constant Cy > 0 given in (23). Since T satisfies (24) we conclude that
(0wl (¢, up) — IDwlcqo,71:x,) < %”w”C([O,T];Xs),
for all w € C([0, T], Xs). In other words, in the operator norm there holds
10wl (¢, up) —1d|| < 1.

This proves that d,,I" (¢, ug) is invertible on C([0, T']; Xj).

In view of Lemma 4, we now apply the Implicit Function Theorem in Banach
spaces (cf. [40], §4.7) to conclude the existence of a neighborhood B C Bof ¢ and a
C?-mapping

Y:B— C(0, Tl X,), (30)

such that I'(w, T(w)) = 0 for all w € B. By (26), the mapping Y is clearly the
data-solution map inasmuch as ¢ — Y (¢) = uy. The conclusion follows. O

3.4. Proof of Theorem 1
Assuming f € CZ(R), geC L(R), the first assertion follows immediately upon
application of Lemmata 2 and 3. If we suppose more regularity, f € C*(R) and

g € C3(R), then the hypotheses of Lemmata 4 and 5 are satisfied and the data-solution
map, ¢ — Y (¢), is of class C2. The theorem is proved. O

4. Orbital instability criterion

This section is devoted to prove Theorem 2.
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4.1. An abstract result

The following theorem provides the link to obtain nonlinear (orbital) instability
from spectral instability.

Theorem 4. (Henry et al. [22]) Let Y be a Banach space and Q2 C Y an open subset
such that 0 € Q. Assume that there exists a map M : Q — Y such that M(0) = 0
and, for some p > 1 and some continuous linear operator L with spectral radius
(L) > 1, there holds

IM(y) — Lylly = OlylI})

as 'y — 0. Then 0 is unstable as a fixed point of M. More precisely, there exists
g0 > 0 such that for all B,(0) C Y and arbitrarily large Ny € N there isn > No and
y € B, (0) such that |M"(y)|ly > eo.

Proof. See Theorem 2 in [22] (see also Theorem 5.1.5 in [21]). U

Remark 4. The statement in Theorem 4 establishes the instability of O as a fixed point
of M; in other words, it shows the existence of points moving away from O under
successive applications of M. In the Remark after Theorem 2 in [22], the following
extension of Theorem 2 is obtained: if 'y is a C'-curve of fixed points of M with
0 € T'g then 'y is unstable, in other words, the points {M"(y), n > 0} not only move
away from 0, but also from I'y.

Theorem 4 can be recast in a more suitable form for applications to nonlinear wave
instability (see also [9,10]).

Corollary 3. Let S : Q C Y — Y be a C? map defined on an open neighborhood
of a fixed point ¢ of S. If there is an element u € o (S'(¢)) with || > 1 then ¢ is
unstable as a fixed point of S. Moreover, if T is a C'-curve of fixed points of S with
@ € I" then T is unstable.

Proof. Define the open set Q= {v—¢ : ye B} CY,where B= Bs(p) is an open
ball withradius § > 0, and consider the mapping M : Q- Y, M(x):= S(x+¢)—p.
Then, clearly, M(0) = 0 and M is of class C? in Q. Define Z := S'(¢). Then, by
hypothesis, there exists an eigenvalue u € o (2) with 1 < |u| < r(Z). By Taylor’s
formula,

M(x) = M(©0) + M 0)x + O(Ix]3) = Zx + O(|x|3),

provided that ||x||y < 1. Apply Theorem 4 to deduce the existence of &g > 0 such
that, for any ball B, (¢), with radius > 0 and arbitrarily large Ny € N, there exists
n > Noand y € By(¢) such that ||S"(y) — ¢|ly > 0. This completes the proof. []
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4.2. The mapping S

Before proving our main result, Theorem 2, we need to specify the particular map-
ping S (in the context of Corollary 3) suitable for our needs. We start by making a
couple of observations.

First notice that, if we denote the unique solution to the Cauchy problem (15) with
initial datum ¢ € X, = szer asuy, = Y(p) € C([0, T]; X2) (where ¢ = ¢(-) is the
L-periodic C 2 profile function), then for each x € [0, L] a.e. there holds uy, (1) (x) =
@(x — ct), or, in other words,

up(t) = @(- —ct) = Lt (p) € Xo, (€29

where ¢, is the translation operator in X, for any n € R. This follows by direct
differentiation and by the profile equation (3).
Our second observation is the content of the following

Lemma 6. (Global well-posedness of the linearized problem) Let f € C*(R), g €
C3(R). Then for every ¢ € Xp = szer([O, L]) and all T > O there exists a unique
solution vy € C([0, TT; X2)N CL(o, T1; L2..([0, L)) to the Cauchy problem for the

per
linearized operator around the periodic traveling wave ¢, namely,

v = Ly, 5
v(0) =9, G2

where
81) = Uxx + g/(</))v - (f/(¢)v)x + cvy. (33)

Proof. Follows similarly as the proof for the nonlinear well-posedness result in peri-
odic Sobolev spaces of section 3. The fact that the solution is now global is a conse-
quence of the well-posedness and regularity for parabolic linear problems (see [35]).
We omit the details. 0

Remark 5. Recall that £ denotes the linearized operator around the wave defined on
the periodic Lebesgue space le,er ([0, L]) (with Bloch parameter, or Floquet exponent,
0 = 0, see (9)). The operator is defined in terms of the traveling wave profile ¢ € X»,

its fundamental period L and its speed, c.

Let us now define a mapping which plays the role of the operator S in the abstract
Corollary 3. For each ¢ € X», set

S: X — Xo,

34
S(@) := et (ugp(T)) G

where ugy = Y (¢) denotes the unique solution to the Cauchy problem (15) with
ugp(0) = ¢, uy € C([0, T; X2). Recall that uy is given by the variation of constants
formula (27).



7 Page 20 of 35 E. ALVAREZ ET AL. 1. Evol. Equ.

Lemma 7. (Properties of S) Let ¢ be a periodic profile for equation (1). The mapping
S defined in (34) satisfies:

(@) S(p) =¢ € Xa.
(b) S is twice Fréchet differentiable in an open neighborhood of ¢.
(c) Forevery Y € X7 there holds

Sy = vy (D), (35)

where vy (t) € X2 denotes the unique solution to the linear Cauchy problem
(32) with initial datum vy (0) = .

Proof. First, notice that S(¢) = {er (up(T)) = v (C—cr (@) = ¢ in view of (31).
That is, ¢ € X» is a fixed point of S, showing (a). Now, from Theorem 1 we know
that the data-solution map ¢ +— Y(¢) = ugy is of class C2. Also, the translation
operator is of class C? in X, (C* indeed). Hence, the composition is of class C>
and we conclude that S is twice Fréchet differentiable in an open neighborhood,
Q={p € X>: ||l¢p—¢ll2 < n}, of . This proves (b).

Therefore, we obtain the Fréchet derivative by computing the (Gateaux derivative)
operator,

d
S @ = —(S@+ev) .

forany arbitrary v € X».Firstobserve that, by definition, S(p+&v{) = .1 (u¢+gl/, (T))
= ¢o7 (Y (¢ + ey¥)(T)). Since T is of class C? around ¢ we make the expansion

Uprey = V(g +e¥) = Y(p) + Y (@) + O(e?). (36)

From formula (27) we know that
t
Uptey (1) = V() (@ +ey) + /0 V(t — 1) F(Ugtey, Oxlgrey)(T)dT

t
=V@)(p+ey)+ /0 V(t — 0)[gWgrey) — ' (Ugrey)dxttgyey | dT.
Substituting (36) and recalling Y (¢) = u,, we arrive at the expansions,

glugrey) = gug) + 8 W) X' (@)Y + O(e?),
f/(“<p+81//)axT((p +ey) = f/(’/‘tp)axuq) + &0y (f/(ug))T/(‘P)w) + 0(82)‘

Substitution into the previous integral formula yields

t
Uptey () = V() + /0 V(i — r)[g(u(p) — f/(u(p)axu(p] dt +&Vy 4 (1) + 0(82),

where

t
Vou ) :=V(O)Y +/0 Vit = D)[¢' W)Y (@) — ax(f ) Y (@)¥)] dr.
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Upon differentiation, we notice that

d d / 2 /
—(tprey ), g = - (T@O + (X @Y + 0E),, o = X @),

and therefore

Vou (1) = (T'(@)¥)(1) € Xa,

forall ¢ € [0, T]. Then we have shown that V,, y is a solution to the integral equation

t
Vou () =V(OY +f0 V(t — 0)[&'(up) Vi y (t) — 3x(f () Vi y (1)) ] dz, (37)

forall ¢+ € [0, T']. From formula (37) we recognize that V, y (0) = ¥ and that it is the
solution to a linearized Cauchy problem (32) with ¢ = 0. We claim that

vy (1) := Lt (Vpy (1), 1 €10, T, (38)

is the unique solution to the linearized Cauchy problem (32) with initial datum .
Indeed, first notice that go(wa(O)) = Vy,y(0) = . Now, for x € [0, L] let us
denote

V(t, x):= ;C,(V(p’,/,(t))(x) = Vyu@®)(x +ct) = Vy 4, x +ct).

Hence, from (37) and since 7 = 8)% is the infinitesimal generator of the semigroup
V(t), we obtain
0,V =0V y(t, x +ct) +coyVy y(t, x +ct)
= 82V, (1, x +ct) + &' (up(x + 1))V y (t, x + ct)+
— Oy (f/(u¢(x +ct))Vy y (t, x +ct)) + 0y Vy y (t, x + ct)
=RV +g @DV =3 (f (@)V) +cd:V,
because uy (- + ct) = ¢(- — ct +ct) = (). This shows that 3,V = LGV, V(0) = ¢
and therefore it is a solution to (32). By uniqueness of the solution, we obtain (38) for
allt € [0, T].
Finally, evaluating at t = 7" we have
/ d ! 2
S @V = 2 (6r(C@)/D) +eer (Y@ (D) + 0(?))

= L7 (Y (@ (D)) = Ler (Vo y (1)) = vy (T),

le=

for any ¥ € X5. This shows (c) and the lemma is proved. g

We are now able to prove the main instability result.
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4.3. Proof of Theorem 2

Letus consider the eigenfunction W € X, = szer([O, L)), of the linearized operator
Ly - Lger([O, L) — Lser([O, L)), as the initial condition for the linear Cauchy
problem (32). By Lemma 6 there exists a unique solution vy € C([0, T]; X2) N
cl(o, T1; Lf,er([o, L)) with vy (0) = W. If we define, however, U (1) = eMW € X,
for all + > O then, clearly, U € C([0, T]; X3) N Cl([O, Tl; Lger([O, L), U0) =W
and

QU = reMW = M LEW = L (V) = LGU.

Hence, U is a solution to the Cauchy problem (32) with U (0) = W. By uniqueness of
the solution we obtain U (1) = vy (¢) in X» for all # > 0. Now, define u := ¢*7. This
yields

S'(@V =vy(T) =UT) =W = pw.

This shows that u € o(S’(¢)) with |u| > 1 because Re A > 0. Thus, the mapping
defined in (34) on an open neighborhood of ¢ satisfies the hypotheses of Corollary 3.
Therefore, for I' = O, being a C I_curve of fixed points of S, we conclude that the
periodic traveling wave ¢ is orbitally unstable in the space X, = ngr([O, L]). The
proof is complete. 0

5. Applications

In order to apply the orbital instability criterion to specific examples, let us write the
following hypotheses on the nonlinear functions f and g, which were considered by
the authors in [2] in their existence and spectral stability analysis. These hypotheses
describe a particular class of viscous balance laws:

(A1) f e C'®).
(A2) g € C3(R) and it is of Fisher-KPP type, satisfying

8(0) =g(1) =0,
§'(0) >0, g'(1) <0,

(39)
g(u) > 0 forall u € (0, 1),
g(u) <0 forall u € (—o0,0).
(A3) There exists u, € (—o0, 0) such that
0 1
/ g(s)ds +/ g(s)ds =0.
Us 0
(A4) Genericity condition:
1" O 14 0
a0 ey~ IO o)

v &'(0)
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(As) Non-degeneracy condition:

1 1
[/ V(S)dS] [/ f/(S)\/1+V’(S)2dS]
1 1
#* [/ V1+v6)? ds] [f f/(S)V(S)dS] ) (41)

where

1
y(u) = 2/ g(s)ds >0, u € (uyg, 1). 42)

(Ag) Saddle condition:

1 1
f' [f V(S)dS]#/ f'()y(s)ds. (43)

Remark 6. Although hypotheses (A1)—(Ag) may at first glance seem too restrictive,
they are fulfilled by a large number of models including, for example, the well-known
Burgers—Fisher equation (cf. [2,30,32]),

U +utty = uyy +u(l — u), (44)

for which the nonlinear flux function is given by the paradigmatic Burgers’ flux [14,
291, f(u) = %uz, and the reaction term is the classical logistic growth function,
g(w) = u(l — u) (cf. [17,27]). Other models that satisfy these assumptions include
the Buckley—Leverett flux [13] together with the logistic reaction, yielding the scalar
equation

2
u
U+ oy | ——————— ) = uyy +u(l —u), 45)
t x(uz—l—%(l—u)z) XX
as well as the modified Burgers—Fisher equation,
u; + B,C(}‘u4 — %uS) =Uyxx +uU— u4, (46)

just to mention a few. See [2] for more details.

Remark 7. The most important assumption is (A;), which specifies a balance (or pro-
duction) term with logistic response, that is, with an unstable equilibrium point at
u = 0 and a stable one at u = 1. Reaction functions of logistic type are used to
model dynamics of populations with limited resources, which saturate into a stable
equilibrium point associated to an intrinsic carrying capacity (in this case, the equi-
librium state # = 1). They are also known as source functions of Fisher-KPP [17,27]
or monostable type.
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As it is established in [2], the unstable nature of the origin (g’(0) > 0) is respon-
sible of both the existence and spectral instability of small-amplitude periodic waves
emerging from a local Hopf bifurcation, as well as the existence and spectral insta-
bility of large-period waves which emerge from a global homoclinic bifurcation near
a traveling pulse based on a saddle. Even if you change the diffusion mechanism,
the unstable equilibrium of the reaction produce similar results (see, for example, the
recent paper [1], where hyperbolic systems with logistic source are considered). It is
to be observed that these periodic waves do not exhibit intrinsic symmetries, inasmuch
as the existence analysis does not rely on the standard construction techniques but on
bifurcation analyses. The existence proof (which is based on local and global bifurca-
tions) also provides the tools to analyze their spectrum. For instance, it can be shown
that, for both families of waves, the Floquet spectrum intersects the unstable complex
half plane and, hence, they are spectrally unstable (for details see [2]).

Let us apply the criterion established in Theorem 2 to both families, yielding their
orbital instability in Sobolev periodic spaces with the same period as the fundamental
period of the underlying wave. We first examine the case of small-amplitude waves.

5.1. Orbital instability of small-amplitude periodic waves

Under assumptions (A1)-(A4), the profile equation (3) defines a first order ODE
system in the phase plane for which the origin is a center for a critical value of the
speed, cp, and where a local Hopf bifurcation occurs when the speed c crosses cp. Then
small-amplitude periodic orbits, with period of order O (1), emerge. This behavior can
be stated as follows.

Theorem 5. (Existence of small amplitude periodic waves [2]) Suppose that condi-
tions (A1)—(A4) hold. Then there exist a critical speed given by cy := f'(0) and some
€0 > 0 sufficiently small such that, for each 0 < € < €q there exists a unique (up to
translations) periodic traveling wave solution to the viscous balance law (1) of the
Jormu(x,t) = ¢€(x — c(e)t), with speed c(e) = co + € ifag > 0, orc(e) =co — €
ifap < 0, and with fundamental period,

2
L= T + O(e), as € > 0T, a7

V&' (0)

The profile function ¢¢ = ¢€(-) is of class C3(R), satisfies ¢ (x + L¢) = @€ (x) for
all x € R and is of small amplitude. More precisely,

lp ), 1(99)' (0)] < C/e, (48)
for all x € R and some uniform C > 0.
Proof. See the proof of Theorem 1.2, §2.1, in [2] for details. O

Remark 8. The proof of this existence result is based on a (local) Hopf bifurcation
analysis around the critical value ¢o = f’(0) of the wave speed. The bifurcation can
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be either sub- or supercritical, depending on the sign of @ in (40). For example, the
emergence of small-amplitude waves for the Burgers-Fisher equation (44) is illustrated
in Fig. 1. In this case we have ap > 0 and ¢9 = f/(0) = 0, yielding a family of
small-amplitude periodic waves for each speed value ¢ € (0, €g) with 0 < €9 < 1
sufficiently small. This corresponds to a subcritical Hopf bifurcation. Figure 1a shows
the phase portrait (in the (¢, ¢’) plane) of the ODE (3) for the speed value ¢ = 0.005.
The orbit in red is a numerical approximation of the unique small amplitude periodic
wave for this value of the speed, for which the origin is an attractive node so that all
nearby solutions inside the periodic orbit approach zero (in light blue color), whereas
solutions outside the periodic orbit move away from it. Figure 1b shows the graph (in
red) of the periodic wave ¢ as a function of x.

It is to be noted that formulae (47) and (48) imply that, for a fixed small €, the
fundamental period of the wave is of order O(1) and the amplitude of the waves
is of order O(./€), respectively. Thus, one expects that when € — 07 the small-
amplitude waves tend to the origin and the linearized operator (formally) becomes a
constant coefficient linearized operator around the zero solution, whose spectrum is
determined by a dispersion relation that invades the unstable half plane thanks to the
sign of g’(0). This observation is the basis of the analysis in [2], which proves that
unstable point eigenvalues of the constant coefficient operator split into neighboring
curves of Floquet spectra of the underlying small amplitude waves.

Indeed, the Bloch family of linearized operators around the wave,

L5 = (3, +i6/Le)* + af (x) (0 + i0/Le) + af(x)Id,

c(e) 2 2 “9)
Ly 1 Lo (10, Lel) = Le (10, Le D),

where
aj(x) :=c(e) — f'(¢°),  agx) =g ) — f'(¢)«,

for each 6 € (—m, ], with domain D(ﬁg(e) ) = szer([O, L)), can be transformed

into a family of operators, Ee, defined on the periodic space Lger([O, m]), for which
the period no longer depends on €.

For that purpose, the authors in [2] make the change of variables, y := wx /L. and
w(y) := u(Lcy/m), and apply (47) and c(e) = co + O(e€), in order to recast the
spectral problem for the operators in (49) as L{w = Aw, where

per
L) = (i0 + mdy)? + 47*1d,
LY = b1(0)(i0 + 7dy) + bo(Y)Id,

Lo ==Ly +eLy : L2,.([0. 7]) > L3 ([0, 7]),
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Figure 1. Emergence of small-amplitude waves for the Burgers-
Fisher equation (44). a The phase portrait (in the (¢, ¢’) plane) of
the ODE (3) for the speed value ¢ = 0.005. Numerical solutions of
(3) with nearby initial points are shown in light blue color. The orbit
in red is a numerical approximation of the unique small amplitude
periodic wave for this speed value. b The graph (in red) of the
approximated periodic wave ¢ as a function of x

for each 0 € (0, ] and where the coefficients behave like

1
bi(y) := ﬁaf () = 0(1),
1
bo(y) == ﬁ(agw —47%) = 0(1),
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as € — 01 (for details, see [2]). It can be shown that, for every 0, Eé is Zg-bounded
(see Lemma 4.6 in [2]). Therefore, upon application of standard perturbation theory
for linear operators (cf. Kato [26]), it is shown that both spectra, U(Eg) and O’(Zg),
are located nearby in the complex plane for € > 0 small enough.

Transforming back into the original coordinates, the same conclusion holds for
any fixed, sufficiently small € > 0 and the associated family of Bloch operators (49)
defined on Lger([O, L¢]). In particular, for & = 0, the unperturbed operator

£y =82 + ¢ (0)1d,
£6<0) L2 ([0, Le]) — leaer([o’ Lel),

per
with D(Cg(o)) = ngr([o, L]), is clearly self-adjoint with a positive eigenvalue o =

g/ (0) associated to the constant eigenfunction Wo(y) =1 € ngr([O, L.]). Hence, the

operator E(‘)'(E) has discrete eigenvalues x j(e)ina J/€-neighborhood of Xo = g'(0)
with multiplicities adding up to the multiplicity of 0 provided that € is sufficiently
small. Moreover, since Xo > 0 there holds Re 1 j(¢) > 0. Henceforth, we have the
following result.

Lemma 8. For each 0 < € < 1 sufficiently small there holds
(LGN, N eC: 2 —g O} # 2, (50)

Proof. See Lemma 4.7 and the proof of Theorem 1.4 in [2] (in particular, see equation
(4.8) in [2]). O

Therefore, we conclude the existence of an unstable eigenvalue A(e) € C with
Re A(¢) > 0 and an eigenfunction W€ € HpZer([O, L)), such that Lg(e)\ll‘ = A(e)W€,
that is, the spectral instability property holds. Hence, upon application of Theorem 2,

we have the following

Theorem 6. (Orbital instability of small-amplitude periodic waves) Under assump-
tions (A1)—(Ay), there exists €y € (0, €q) sufficiently small such that each periodic
wave of Theorem 5, u(x, t) = ¢ (x — c(€)t), with € € (0, €y), is orbitally unstable in
the periodic space X, = szer([O, L)) under the flow of the viscous balance law (1).

Remark 9. Ttisto be observed that, in the case of small amplitude waves, the instability
is due to a structural assumption on the model equations: the instability of the origin as
an equilibrium point of the reaction generates an unstable eigenvalue of an associated
constant coefficient operator, from which the linearization of a small-amplitude wave
represents a perturbation.

5.2. Orbital instability of large-period waves

The analysis of [2] also reveals the existence of a different family of periodic waves.
Under further assumptions (As) and (Ag), one guarantees that, for another critical value
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of the speed, the point (1, 0) in the phase plane is the (saddle) base of a homoclinic
orbit, representing a traveling pulse solution to (1). Then, from a global bifurcation
argument (see, e.g., [34]) one deduces the existence of large period waves in a vicinity
of the homoclinic orbit when the speed tends to the critical value (the speed of the
traveling pulse) or, equivalently, when their period goes to infinity. This is the content
of the following

Theorem 7. (Existence of large period waves [2]) Under assumptions (A1)—(Az),
(As) and (Ag), there is a critical speed given by

o F©y () ds

)= (51
ful* y(s)ds

such that there exists a traveling pulse solution (homoclinic orbit) to equation (1) of
the form u(x, t) = ¢°(x — c11), traveling with speed c| and satisfying ¢° € C3(R),
goo(x) — 1 as x — o0, with

190 (x) — 1, 1(@°) ()] < Ce™ M, (52)

forall x € R and some k > 0. In addition, one can find € > 0 sufficiently small such
that, for each 0 < € < €] there exists a unique periodic traveling wave solution to
the viscous balance law (1) of the form u(x, t) = ¢ (x — c(e)t), traveling with speed
cle) =ci+eif f/(1) <cporc(e) =cy —eif f'(1) > ¢y, with fundamental period

Le = O(]logel) — oo, (53)
and amplitude

o (O, 1) ()] = 0(1), (54)

as € — 0. Moreover, these periodic orbits converge to the homoclinic or traveling
pulse solution as € — 0 and satisfy the bounds (after a suitable reparametrization

of x),
sup 100(x) — o ()] + 1@ (x) — () (V)] ) < Cexp (- ELG ,
xe[;LG,;LE]( ) ( 2 ) (55)
e —c(e)] < Cexp (— KLG),

for some uniform C > 0, the same k > 0 and for all 0 < € < €.
Proof. See the proof of Theorem 1.3, §2.3, in [2] for details. O

Remark 10. The proof of this existence result is based on two components. First, it
establishes the existence of a traveling pulse for equation (1), traveling with speed
¢ = c1 given in (51). This is a consequence of Melnikov’s integral method. Second,
upon application of Andronov-Leontovich’s theorem in the plane it is shown that there
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exists a family of periodic waves emerging from the homoclinic orbit; the family is
parametrized by € = |c; — c(¢€)], for which each wave travels with speed ¢ = c(¢)
and converges to the traveling pulse as € — 0. The fundamental period of the
family of periodic waves, L, converges to oo as € — 07 at order O(|loge]). As an
illustration, Fig. 2 shows the emergence of large period waves for the logistic Buckley-
Leverett equation (45). For example, it can be proved that the value of the speed
of the homoclinic orbit defined in (51), from which the periodic loops with large
period bifurcate, is ¢; ~ 0.589097 (see [2]). Since ¢; > f’(1) = 0, Theorem 7
then implies that the family of periodic waves with large period emerge for speed
values in a neighborhood above the value cy, that is, for ¢ € (0.5891, 0.5891 + ¢)
with € > 0 small. Figure2a shows a numerical approximation (in the phase plane)
of the homoclinic loop to the ODE (3) with speed ¢ (dashed line in blue) and of a
large-period wave from the family with speed ¢ ~ ¢; +0.025 (continuous line in red).
Figure 2b shows numerical approximations of the graph (in red) of the large period
wave @ as a function of x, together with the traveling pulse (dashed, blue line).

The proof of existence of this family of waves also underlies the tools to show that
their Floquet spectrum is unstable. For instance, if we linearize the equation around
the pulse, we obtain the following linear operator:

£0:= 82 +a) (x)dy + a)(x)ld,

L£0: L2R) — L3(R). 59
with smooth coefficients
af(x) = 1 — /(@)
ay(x) = g' @) = f' (@’ ()
which decay exponentially to finite limits as x — 3=00; more precisely,
@) (x) — af°| + lad(x) — ag°| < Ce M, (57)

for all x € R with af® := c1 — f/(1), ag° := g'(1). This behavior holds because of
the exponential decay of the traveling pulse to hyperbolic end points (see (52)). The
operator L0 is closed and densely defined in L2(R) with domain D(L%) = H2(R).
Moreover, £° is of Sturmian type (see, e.g., Kapitula and Promislow [25], §2.3) and,
upon application of standard Sturm-Liouville theory, we have the following instability
result.

Lemma 9. The traveling pulse solution of Theorem 7, ¢°, is spectrally unstable; more
precisely, there exists Lo > 0 such that Ao € op[([,o). Moreover, this eigenvalue is
simple.

Proof. See Theorem 5.1 in [2]. O

The pioneering work by Gardner [18] characterized the spectrum of the linearized
operator around a periodic wave of the approximating family and related it to that
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Figure 2. Large period waves for the logistic Buckley-Leverett
equation (45). a Numerical approximations in the phase plane of
both the homoclinic loop (traveling pulse) for equation (45) with
speed value ¢; ~ 0.5891 (in dashed blue line) and the periodic
wave nearby with speed value c¢; + €, € & 0.025 (solid, red line).
b Numerical approximations of the graph (solid, red line) of the
large period wave ¢ as a function of x, together with the travel-
ing pulse (dashed, blue line). The period of the wave is of order
O(lloge|) =~ 0(3.69)
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of the operator £°. Gardner proved the convergence of both spectra in the infinite
period limit and, under very general conditions, that loops of continuous periodic
spectra bifurcate from isolated point spectra of the limiting homoclinic wave. Hence,
the typical spectral instability of the traveling pulse determines the spectral instability
of the periodic waves. Thanks to the convergence estimates (55), the authors in [2]
verified the hypotheses of a recent refinement of Gardner’s result due to Yang and
Zumbrun [39] in order to conclude the spectral instability of the family (see Corollary
4.1 and Proposition 4.2 in [39], as well as Theorems 5.2 and 1.5 in [2]).

In order to apply our orbital instability criterion, however, we need to verify the
spectral instability property for the particular Bloch operator with & = 0. For that
purpose, we state the following result which is, in fact, a Corollary of the proof of
Theorem 1.5 in [2].

Corollary 4. Consider the eigenvalue problem for the Bloch operator (49) linearized
around the family of waves of Theorem 7. Let C C C be a positively oriented simple
circle of fixed radius with C C {1 € C : Re > > 0} containing Lo (which is the simple,
real and unstable isolated eigenvalue of L°) in its interior, and containing no other
eigenvalue of LO in the closure of C. Then for sufficiently small 0 < € < 1 and for
each —m < 0 < m, the Bloch wave spectral problem Eg(e)w = Aw has exactly one
point eigenvalue . = L(e, 0) in the interior of C.

Proof. Let us define the matrix coefficients

o _ 0 1
AN = (A —ad(x) —&?(x)) ’

for x € R and A € C. These coefficients are clearly analytic in A and of class
C!(R; C?*?) as functions of x € R. Moreover, they have asymptotic limits given
by

0 — 0 - 0 ! = 0 :
A= lim A'(x,2) = (k — g _ai”) - <x —g'(1) —c1 + f’(1)> '

Thanks to exponential decay (52) of the traveling pulse and from continuity of the
coefficients, we reckon that, for any |A| < M with some M > 0, there exists a
constant C (M) > 0 such that

IA%(x, 1) — A2 (V)| < C(M)e ™ (58)

for all x € R. Likewise, define the coefficients,

e 0 I
Al ) = (x — a5 (x) —zzf(x)) ’

which are analytic in A € C, continuous in € > 0 and of class C 1(IR; szz) as
functions of x € R. Hence, since the coefficients are smooth and bounded and from
estimates (55) we have, for |A| < M,
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|A€(x, 1) — A%(x, L)
= COD(Ie° ) = ¢ (@)1 + 16" @) = @) ] +le1 — e(@)])
< C(M)e *Le/2,

Last estimate, together with (58) and Theorem 7 yields,
1A%x, 2) — A% | < c(M)e ™1, forall x € R,

L
IAY(x, &) — A (x, 1) < C(M)e ™ L</2, forall |x| < 76

for every |A| < M and some uniform constants C(M), k > 0 (see estimates (5.10)
in [2]). We then conclude that the Hypothesis 1 of Theorem 1.2 by Gardner [18] is
satisfied (notice that Hypothesis 1 of Gardner requires the estimates for |A? — A€
in half a period too, because the fundamental period in [18] is 2L.). Hypothesis 2
is fulfilled in the set of consistent splitting, 2 = {A € C : Rei > g'(1)} (see the
proof of Theorem 5.1 in [2]). And Hypothesis 3 is trivially fulfilled by the traveling
pulse by Sturm-Liouville theory. Upon application of Theorem 1.2 in [18] and since
the eigenvalue Ao € opt(ﬁ_o) is simple, we conclude the existence of exactly one
eigenvalue, A= A(e, 6), of Eg(é) for each & € (—m, ], in the interior of C. O

Henceforth, Corollary 4 implies that, for the particular case of the Bloch operator
with 8 = 0, the spectral instability property holds: there exists an unstable eigen-
value A(¢) € C with ReA(¢) > 0 and an eigenfunction W€ € H?2 ([0, L)), such

per
that Eg(e)\llé = A(e)W€. Finally, upon application of the orbital instability criterion
(Theorem 2), we have proved the following

Theorem 8. (Orbital instability of large period waves) Under assumptions (A1)—(A3z),
(As) and (Ag), there exists €1 € (0, €1) sufficiently small such that each large period
wave of Theorem T, u(x, t) = ¢ (x — c(€)t), with € € (0, €), is orbitally unstable in
the periodic space X, = szer([O, L)) under the flow of the viscous balance law (1).
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