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Abstract—Music streaming platforms rely on recommending
similar artists to maintain user engagement, with artists bene-
fiting from these suggestions to boost their popularity. Another
important feature is music information retrieval, allowing users
to explore new content. In both scenarios, performance depends
on how to compute the similarity between musical content.
This is a challenging process since musical data is inherently
multimodal, containing textual and audio data. We propose a
novel graph-based artist representation that integrates audio,
lyrics features, and artist relations. Thus, a multimodal repre-
sentation on a heterogeneous graph is proposed, along with
a network regularization process followed by a GNN model to
aggregate multimodal information into a more robust unified
representation. The proposed method explores this final multi-
modal representation for the task of artist similarity as a link
prediction problem. Our method introduces a new importance
matrix to emphasize related artists in this multimodal space.
We compare our approach with other strong baselines based
on combining input features, importance matrix construction,
and GNN models. Experimental results highlight the superiority
of multimodal representation through the transfer learning
process and the value of the importance matrix in enhancing
GNN models for artist similarity.

Index Terms—Artist similarity, Artist Representation, Hetero-
geneous Graph, Graph Neural Networks, Musical data represen-
tation

I. INTRODUCTION

An essential resource for popularizing a song in streaming
platforms is the automatic recommendation based on the
user’s consumption profile [1]. The recommendation task in
the Music Information Retrieval (MIR) context consists of
searching for similar musical content according to specific
features and indicating the most relevant ones to users
according to a similarity criterion [2].

In the MIR context, the artist similarity task handles
applications interested in discovering related artists [3]
and potentially similar songs to recommend. In this task,
multiple musical features, such as audio and lyrics, can
represent the artist, and we need to learn how to build
a representation to predict links between similar artists [4].

The multimodal representation learning process must
result in a unified representation that concentrates on
the semantic information of multiple related features. This
process can be done by simply concatenating text and
audio features or learning embeddings through multimodal
deep learning as fusion methods [5], [6]. Methods based
on Graph Neural Networks (GNN) have stood out when
dealing with machine learning tasks due to their ability to

incorporate features from the graph topology to enrich the
learned representations [7], [8].

Heterogeneous networks are a well-known representa-
tion for manipulating multiple modalities of unstructured
data [9]. In the context of musical data, we can explore
heterogeneous networks by projecting each modality as
layers of a graph where nodes have features and can be
connected with nodes of different types. These connections
are the main differences in using graphs for data modeling.
They express a similarity feature between the instances that
direct the graph-based representation learning process by
indicating which nodes should have related features [10].

The work presented in [11] computes the similarity
between artists using graph neural networks trained with
triplet loss as an unsupervised training process. The work
contribution is related to graph neural network architecture
combining the topology of a graph of artist relationships
with content features to embed artists into a vector space
that encodes similarity. However, the task of artist similarity
is underexplored in the GNN context.

In our work, we want to explore the multiple modalities
from music content features to represent the artists in
heterogeneous structure modeling on a graph. We use the
artist relationships to build the graph topology and propose
a novel feature based on these relationships, defined as
the importance matrix. This matrix is analogous to a co-
occurrence matrix and is designed to improve the weight
of the edges while introducing a new feature modality to the
nodes. We propose this matrix to increase the discriminative
capacity of artist representations by using a new feature
related to the context of the artist similarity task, explored
as a link prediction approach.

We propose a two-stage representation learning process
for musical data. The first stage is based on a network
regularization method that propagates information between
nodes according to the graph topology to fine-tune initial
features or create new ones in nodes without features.
The network regularization process soothes the problem of
missing multimodal information in datasets. In sequence,
we apply the regularized features on a Graph Neural Net-
work (GNN) that aims to learn a unified representation
of the data that incorporates semantic information from
the topology of the networks and features from neighbor
nodes. Finally, to compute the similarity between artists,
we applied the learned representation to handle the link
prediction task.

We used the 4MuLA benchmark dataset [12] to evaluate
our approach, where the instances have songs and artist
information. The data comprises acoustic and textual fea-
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tures of each song, where the artist does not have initial
features. The edges among music nodes are defined by
cluster information from audio and lyrics features, while the
links among related artists are pre-defined in the dataset.
We measured the AUPR (area under the precision and
recall curve) performance of three learning scenarios to
the GNN models to construct the multimodal graph-based
representation for computing the artist similarity. Finally,
we compared two approaches to build the initial artist
representation using six input feature variations.

We compare the applicability of the proposed importance
matrix concerning a random matrix and a Graph Attention
Network (GAT), where we evaluate the relevance to building
the matrix and if the learned information is related to the
target task or general attention learned in GAT model is
sufficient to handle with the task. We also adopted two rel-
evant GNN-based methods as a baseline method to evaluate
our proposed method to handle the artist similarity task.
Our results show that multimodal representations learned
from the proposed method can perform more significantly
when represented by features obtained from the transfer
learning process. We also note that using the proposed
importance matrix is better than using no matrix, random
matrix, or automatically learning importance with an exist-
ing graph attention network. Among the learning scenarios,
we showed that the unsupervised scenario achieved a
higher AUPR value, but the scenario directly related to the
artist similarity task achieved better mean performance. We
present an extensive experimental evaluation, with pairwise
comparisons in each type of representation, importance
matrix, and learning scenarios proposed in our work. In
summary, our work has these main highlights:

• modeling of musical data that are composed by audio,
lyrics, and artist features in a heterogeneous network

• a new multimodal and GNN-based representation for
artists to handle the artist similarity task

• an importance matrix that aggregates information into
edges and nodes and is formed by information related
to the artist similarity task

II. BACKGROUND AND RELATED WORK

Research in MIR has accompanied changes in the strate-
gies of representing musical data [13] and increasingly
aggregating richer information from different sources. The
goal is to model this information so that it is possible to
incorporate features from multiple modalities and to build
a new representation that is more discriminative [14]. From
this point, this representation is used as input to build
machine learning models related to specific MIR tasks [15]
or build representations for multi-task approaches [16].

Musical data representation. Musical data are charac-
terized by features that emphasize different aspects related
to musical perception [17]. For example, timbre-related
features can help us identify genres, chromatic features
highlight structures in plagiarism identification tasks, and
arousal and valence levels can be computed to predict
an emotion label from a song [18], [19]. In addition, we

can explore transfer learning approaches using pre-trained
models to learn embedding features that have knowledge
from massive datasets applicable to several tasks or do-
mains [20], [21]. In our work, we evaluate representing
artists from musical data that involve features based directly
on the audio signal spectrum, embeddings obtained from
pre-trained models for audio and lyrics, and random walk-
based features.

Heterogeneous graph-based representations. Recent ad-
vances in applications involving Graph Neural Networks
(GNN) have motivated the creation of graph models capable
of representing unstructured data due to the possibility of
aggregating node and edge features from multiple layers
into structured feature vectors [22], [23]. In MIR, tasks such
as emotion recognition [24] and artist recommendation
[11] are examples of applications where GNNs outperform
results in the literature. Our work proposes modeling mu-
sical data into graphs to learn a new multimodal artist
representation to handle link prediction tasks.

Artist similarity. Computing the artist similarity aims to
extend the information to applications. The proposed meth-
ods measure the artist similarity build data representation
according to a target application, for instance, audio and
lyrics feature for query-based information retrieval system
[25], encoded features from a graph topology for ranking
of artists [26], or analyzing users feedback for artist recom-
mendation [27]. In our work, we explore the multimodal
representations and formulate the artist similarity as a link
prediction task: given an artist, we want to estimate other
artists that should and should not be linked.

This work proposes modeling musical data about a het-
erogeneous to learn a new multimodal graph-based artist
representation and handle artist similarity based on a link
prediction task. Furthermore, we explore alternatives to
modeling musical data to represent artists collaborating
with discussions in MIR about the relation between the
choice of musical features and the use in specific tasks. The
link prediction task is directly related to the graph structure
and has been explored in the GNN context.

III. MODELING

The task of similarity between artists consists of finding a
function s(a,b) that estimates a similarity measure between
each pair of artists (a,b). In our case, the created similarity
is a link between the artists due to the structure proposed
for data. Therefore, let G = (V ,E ,W ) be an undirected graph,
where V represents the set of vertices, E represents the
set of edges or links, E ⊆ V ×V , and W represents the
binary weight of edges, indicating whether edges between
two nodes exist or not. The observed links are represented
in adjacency matrix A, where Ai , j = 1 if (i , j ) ∈ E and
Ai , j = 0 otherwise. For any node, x ∈ V , let Γ(x) be the
1-hop neighbors of x, and let Γ̂(x) be all nodes not linked
with x. Given a node y , if y · x → 1, then y ∈ Γ(x), while
y · x → 0, then y ∈ Γ̂(x).

The nodes and edges have a pre-defined type in the
proposed graph to structure the data. The possible node
types are audio, artist, and lyrics. The node type denotes

This article has been accepted for publication in IEEE/ACM Transactions on Audio, Speech and Language Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2024.3437170

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XXX, NO. XXX, DECEMBER 2023 3

the features extracted from the modality with the iden-
tical term. There are five types of edges: audio-audio,
audio-artist, artist-artist, artist-lyrics, and lyrics-lyrics. The
edges do not have features, and the edge-type information
supported only the artist link identification in the pre-
processing step. In addition, in some evaluated scenarios,
the graphs do not have nodes and edges related to lyrics;
more details are in the subsection IV-A.

A. Musical data representation

In a multimodal scenario, the musical characteristics
are obtained from different sources, have complemen-
tary semantics, and, when combined, assemble a musical
representation that results in the ideal experience for its
perception. A subset of features is commonly defined to
represent the music in each task. This step is justified due
to the pre-processing computational cost and the missing
semantic relation between some features and tasks.

To compute artist similarity, we learn a new artist rep-
resentation based on features of their songs and the con-
structed graph topology, evaluating unimodal and multi-
modal representations. We examined two options for the
audio-based feature: in the first feature, we extract the root-
mean-square (RMS) value from each frame of a melspectro-
gram to use as medium-level information, and as another
feature, we use the pre-trained model Essentia [28] in a
zero-shot learning process to learn an embedding space
from raw audio files used as high-level information. We
applied another pre-trained model for the textual-based
feature, a BERT-based fine-tuned with lyrics data1, to learn
an embedding space to project the lyrics feature.

The reason for using RMS from the melspectrogram as
the feature relates to its semantic content. The melspec-
trogram contains patterns associated with rhythms and
timbres related to cultural aspects [29], [30] that induce
criteria adopted to associate similar artists, such as musical
genre or harmony [31]. For other high-level features, we
are interested in exploring the transfer learning from a
large dataset used in model training to build our initial
features for lyrics and one more feature to characterize
audio modality. All audio features are extracted from raw
files with default parameters from the library Librosa2.

B. Artist representation

To represent each artist, we consider all their related
songs characterized by the abovementioned features. We
evaluate some unimodal and multimodal approaches to
build the representation: the average of audio embeddings
only; the average of audio embeddings concatenated to the
average of lyrics embeddings; a codebook of audio embed-
dings only; a codebook of audio embeddings concatenated
to codebook of lyrics embeddings; a codebook of RMS

1Public lyrics-bert model. Available in https://huggingface.co/
brunokreiner/lyrics-bert

2Librosa. Available in https://librosa.org/doc/latest/generated/librosa.
feature.rms.html

melspectrogram only; a codebook of RMS melspectrogram
concatenated to a codebook of lyrics embeddings.

The method proposed in [32] inspires our codebook-
based artist representations. This representation is based
on the classic bag-of-words representation of text data.
The first step is quantizing the feature space to define the
codewords from a set of feature subsequences considered
candidate words. For this, the method uses the K-means
algorithm with the word candidates and considers the
center of each cluster as a codeword. Then, each candidate
is associated with the codeword representing the cluster to
which it belongs. A merge of all candidates for each artist
defines the representation. In addition, we normalize this
representation using the term frequency-inverse document
frequency (TFIDF) method. This process is represented in
Figure 1. In our context, the artists are represented by the
codewords obtained among word candidates extracted from
their different recordings.

Music
database Artist 3

[0, 1, 0]
[0, 0, 1]

Representation

Artist 3
Artist 2 [0.7, 0.4, 0.1]

[0.8, 0.3, 0.4]

codew
ordsArtist 1 0 0 1

Codebook

Bag-of-words TFIDF

Clustering Algorithm 
(K-means)

Artist 1 [0.4, 0.7, 0.6][1, 0, 1]
Artist 2
Artist 1

Representation

Artist 3 0 0 1
Artist 2 0 1 0
Artist 1 1 0 0

1 2 3
Cluster

Fig. 1. The process to construct the artist representation based on the
codebook method. Initially, we use the k-means algorithm on the initial
features of songs to define all codewords for each artist. In sequence, we
apply a bag-of-word method to unify all artist songs in a feature vector.
Finally, we normalize this vector using the TFIDF method.

IV. ARTIST SIMILARITY ON HETEROGENEOUS GRAPH

A. Heterogeneous graph to musical data

Modeling graph data is motivated by the possibility
of structuring data as nodes that are projected in layers
according to the modality of their features. Thus, we can ex-
ploit the graph topology to share complementary semantic
information between neighbor nodes. The relation between
the artist, audio, and lyrics nodes compose the proposed
graph’s topology. The artists are linked to lyrics and audio
nodes, as a direct relation between artist and music, and
there are links inside the artist layer, where the artist links
were defined by “wisdom of the crowd” as information
provided by users. The links inside audio and lyrics layers
were inferred for the K-means algorithm, as explored in
[24], where a model was trained to predict the cluster for
each layer for each node, and nodes with equal clusters are
linked. This topology is shown in Figure 2.

This work proposes a representation learning process in
two steps: initially, we explore the network topology based
on the network regularization process to share information
among neighbor nodes, propagating features for nodes in
distinct modalities; in sequence, the graph information is
used as input for a GNN model learn a final representa-
tion based on regularized features and the edges. In both
steps, we want to aggregate information from neighbors,
but the first step will fine-tune the initial features; in the
sequence, we integrate deep learning resources and direct
the representation learning for the link prediction task.
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Fig. 2. The heterogeneous network topology proposed to structure music
data. Our heterogeneous network has nodes typed as audio, artist, and
lyrics, which have the initial features. The edges link nodes contained in
each layer type and the audio and lyrics nodes with artist nodes.

B. Music network regularization

The network regularization process can propagate the
node’s features inside the network as an instance of label
propagation methods [33]. Our proposal assumes two con-
straints: neighboring nodes must have similar features, and
the regularized feature vector must be similar to the initial
features. Formally, network regularization can be associated
with a representation learning problem defined as learning
a mapping function f : xi → zxi ∈ Rd , where zxi is the
learned vector of the node xi ∈ V in the network. The
Equation 1 defines the function to be minimized to learn
the new space Z ∈ Rd , in which all nodes are mapped,

Q(Z) = 1

2

∑
(xs ,xt )∈R

wxs ,xt (zxs −zxt )2 +µ
∑

xi∈V
(zxi −xi )2

(1)

where R = {Audio-Audio, Audio-Artist, Artist-Artist, Artist-
Lyrics, Lyrics-Lyrics} indicates the relationships in the pro-
posed heterogeneous network and (xs , xt ) indicates a pair
of vertices, one from each relationship. The first term in
the function computes the proximity between the feature
vectors for each pair of linked nodes. The last term com-
putes the distance between the regularized features in the
space Z to initial features for each x ∈ V . The parameter
µ determines the preservation information level for initial
features. The higher value indicates the preservation of the
original features, while lower values permit adjusting the
features according to the network topology.

Equation (1) is applied for each modality, artist, audio,
and lyrics in a step preceding the GNN model training.
Therefore, at the end of the regularization process, we
obtained Zar ti st , Zaudi o , and Ztext for all nodes in the
network. Finally, we concatenate all spaces, Z⊕ = Zar ti st ⊕
Zaudi o ⊕ Ztext . Although the nodes received features from
nodes of different modalities and have a feature vector
of the same dimensionality, we handle the graph in a
heterogeneous composition, using the typing information
of the nodes and edges in GNN model learning.

C. Graph Neural Networks for link prediction

The general purpose of graph-based learning methods
is to build node representation that aggregates neighbors’
features and information from graph topology. In our con-
text, the features of the nodes are defined by Z⊕ resulting

convolutional layer + Tanh

edge importance layer

dot product

predicted artists link

node importance layer

Fig. 3. The proposed architecture for the GNN model. We have four layers
composed of three convolutional steps to pass messages between the
neighbors. In sequence, the proposed new information layer is defined
as the importance layer. This layer type is applied on edges and nodes.
The output is a dot product that results in the score in the predicted link
between artists. The information inputs are the Z⊕ as feature matrix, M
as importance matrix, and the A as adjacency matrix.

from the regularization process. The neighbor nodes are in-
dicated by an adjacency matrix A. In particular, we want to
evaluate graph-based artist representation learned directly
to link prediction tasks or without a pre-defined task, where
the representation can be applied in a multi-task scenario.
The representation learned by the GNN is represented in
the matrix U ∈ RT×D , where T is the number of nodes and
D represents the dimension of the unified space learned.
The GNN is formulated according to Equation 2,

H (l+1) = f (H (l ), A) =α(AH (l )W (l )) (2)

where H (0) = X , l , represents the current layer, A is the
adjacency matrix, W (l ) define the weight in l-th layer in a
neural network, and α(., .) defines the activation function.

We process the adjacency matrix A to permit self-loop in
nodes and to normalize the adjacency matrix in relation
to node degrees. To permit the self-loop, we add A to
identity matrix I , which result in Â. Thereby, the own node
features are utilized in the representation learning process.
The normalization process is realized by multiplying A with
D−1, where D indicates a diagonal matrix representing the
node degrees. We use D− 1

2 , for symmetric normalization.
Thus, the adjacency matrix used in the proposed GNN is
defined by Equation 3,

Â = D− 1
2 SD− 1

2 (3)

where S = A + I , and I represents the identity matrix, and
Di i =∑

j Si j indicates the node degree.

D. Importance Matrix

Relationships between artists can occur directly when
two artists have an explicit link in the dataset or indirectly
when two artists are contained in a set created on some
similarity criterion, for example, a music playlist or tag
sharing. Our work is based on features that allow us to build
both types of relationships. When creating connections
between artists, we access the r el ated_ar ti st attribute
contained in the used dataset, which comprises a list of
artists related to a song and its artist.

As related artists are also associated with a song and
its artists simultaneously, the same artist can be related
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to different sets of artists. This relation type composes
the Ar ti st_Ar ti st relation type in the A. The importance
matrix is created from the list of related artists, where
we count the number of times that pairs of artists are
included in this list, like a co-occurrence matrix. Formally,
the importance matrix M has dimensions m ×n, where m
represents the number of instances and n represents the
number of unique artists. The Equation 4 denotes how each
element of the importance matrix is calculated based on the
pairs of artists that occur together in the r el ated_ar ti st :

M [i ][ j ] =
n∑

m=1
ϵmi j (4)

ϵmi j =
{

1, if related_artist[m][i ] = related_artist[m][ j ] = 1

0, otherwise
(5)

where r el ated_ar ti st [m][i ] represents the value of the
matrix with the list of related artists in the m-th row and
i -th column, which can be 0 or 1. The importance matrix
is filled with the sum of times the pair of artists i and j
occur together in at least one observation, or 0 otherwise.

We propose to evaluate the potential of the importance
matrix to add discriminative information to the edges and
nodes of the graph. Aggregating the proposed importance
information to edges in a GNN model is similar to the
process of adding weight to edges, motivated by weighing
edges with more occurrence. For this, we construct M by
indexing the instances using the identifier of each artist, so
m = n and the relationships existent in M are equal to the
artist relationships contained in A. The other relationship
types in A have an importance value of 0 in M . Thus, we
formalize the GNN model according to Equation 6:

H (l+1) = f (H (l ), Â, M) (6)

where at each layer l the matrix M is inserted in the data
representation learning process. Thus, the layer H (l+1) =
H (L) =U contains the newly learned space by GNN.

Before inserting the importance matrix into the model
learning, we evaluated two approaches to normalizing M
values. One approach is to use M as input to a neural
network composed of one dense layer, with input and
output dimensions equal to the number of nodes, and then
normalize the output with a softmax. The other approach
is to use the softmax function to normalize. The softmax is
applied to each row of the matrix, so the sum of each row
results in 1.

To add importance to the nodes, we propose to use an
importance layer after the GNN model learning process.
We use the matrix M as input to the importance layer that
is composed of a l eak y_r elu activation function, and a
softmax normalizes the output. This layer is similar to the
traditional attention layer. In this scenario, M is initially
formed by the number of instances m, and n is the number
of artists. Formally, we denote in Equation 7 the process
that concatenates the output of this importance layer into
the output of the representation learned by the GNN for
the nodes:

U ′ =U ⊕α(M) (7)

where U represents the output of the GNN model and α(.)
represents the importance layer applied to the importance
matrix M .

Finally, we propose the importance matrix to emphasize
the relevance of edges between artists and the content
of each song for an artist and their relationships in a
heterogeneous network. Using information beyond musical
content is a resource to aggregate discriminative informa-
tion into data and enrich musical representations. This
matrix aims to use information acquired about the data to
induce some latent discriminative information contained in
the features. Furthermore, the importance matrix is easily
adaptable to other applications, especially in MIR, when
building it from relationships extracted from playlists or
user-generated metadata.

The proposed GNN architecture, illustrated in Figure 3,
comprises three graph convolutional layers and a hyper-
bolic tangent activation function. The importance layer was
introduced sequentially to aggregate information from artist
relations on the edges and nodes. Two artists are defined
as similar if there is a link between them. The link is
indicated based on the score computed via dot product.
The previous layer’s output indicates the dimensionality
of the vector input for each layer. The first layer receives
the regularized features Z⊕ to produce the next embedding
vector in the subsequent layers. The dimensionality of Z⊕
varies according to utilized features to represent the music
and artist nodes. We show a table with all input feature
variations in the Subsection V-A.

V. EXPERIMENTAL ANALYSIS

We used the tiny version of 4MuLA [12] as a benchmark
dataset with 1,000 instances, 1,052 artist links pre-defined,
and approximately 350,000 links, counting all edge types.
This number depends on the audio feature used. In this ver-
sion, each song has that audio information, with 30 seconds
of duration represented by a melspectrogram and the lyrics.
Other features and labels were not used in our proposal.
In the explored context, we want to characterize artists
through a graph-based learned embedded space composed
of multimodal features. The primary motivation for using
this dataset is the existence of annotated information about
related artists and the availability of multimodal music
features.

The central objective of our experiments is to evaluate
the proposed method to learn a graph-based representation
for artist nodes to compute the similarity among artists
handling the link prediction task. For this, we want to
evaluate the impact of the initial feature of the audio and
lyrics nodes to characterize the artists with representations
built based on the media or codebook of all artist songs. We
made six combinations with the set of features to measure
the impact on the GNN model performance and discuss
the semantic complementarity among musical multimodal
features. With the importance matrix proposal, we want to
evaluate whether the importance matrix aggregates discrim-
inative information when inserted only on nodes, edges, or
both. Finally, we compute the performance of the learned
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Fig. 4. Pipeline of experiment in three steps. The pre-processing stage is formed by extracting features from each song’s audio and lyrics modalities.
Each extracted feature is subjected to a quantization process, codebook, or means to compose the artist’s representation. Next, we build graphs where
the nodes have the input features for audio, lyrics, and artists, and the edges are obtained from labeled information existing in the dataset or built
using a clustering algorithm. Six different combinations of initial feature sets were used to represent the artists. The regularization process executes the
information propagation between neighbor nodes and results in the input features to the GNN model. Finally, we build GNN models for each created
graph, and we evaluate these models to handle link prediction tasks.

representation when dealing with the link prediction task
in three learning scenarios.

A. Experimental setup

The experimental setup is organized into three steps: pre-
processing, modeling of graphs, and model evaluation. In
the pre-processing step, we made the feature extraction
and set the initial representation for all node types. The
nodes are defined with the initial features for modeling
graphs, and the regularization network process is realized
to fine-tune and propagate information among the network
based on existent edges. Finally, the graph is introduced
into the GNN models to learn the musical representation
and handle the link prediction task. These last two steps
occur for each proposed representation approach. Figure 4
shows the steps for reproducing the experiments.

The audio, lyrics, and relations among artists are the
information used to build our proposed graph musical
modeling. The feature extraction process resulted in two
representations for audio and one representation for lyrics.
A combination of audio and lyrics features defines the
artist’s representation. For audio modality, we extract root-
mean-square (RMS) from the melspectrogram using the
library Librosa [34] with default parameters from the 30-
second audio file, resulting in a feature vector with 1292
dimensions. Still, we also explore a transfer learning ap-
proach for audio modality using a pre-trained Essentia
model based on the VGGish model trained on AudioSet
[35] to build a music embedding based on the raw audio
file, resulting in a feature vector with 128 dimensions.
Finally, we explore transfer learning for textual modality and
introduce the lyrics into the pre-trained language model
fine-tuned into 480,000 lyrics data, resulting in a feature
vector with 300 dimensions. Six different graphs were cre-
ated according to each approach proposed to represent
the artist. The relationships between artists-artists, artists-
audio, and artists-lyrics are the same regardless of the
audio and lyrics features. However, the audio-audio and
lyrics-lyrics relationships are built based on the K-means
algorithm; therefore, the two edge types change due to the
clustering process being conditioned to the audio or lyrics
feature.

The importance matrix is defined during graph con-
struction. We have four distinct scenarios to evaluate the

importance matrix. First, we have the learned matrix, which
results from the initial matrix after being introduced into a
dense layer and normalized with a softmax layer. Second,
we have the normalized matrix, which the initial matrix
just introduced to a normalization process with the softmax
function. Third, we have a random matrix with the same
dimensions and values between 0 and the maximum value
of the initial matrix. Fourth, the scenario is used as a
baseline approach, in which we do not use the importance
matrix. As a top-line approach, we consider the attention
matrix GAT learned since this model also learns an im-
portant value to feature. We evaluate the aggregation of
information from the importance matrix with the adjacency
matrix, with the function of adding weight to the edges,
and also with a concatenation with the feature matrix of
the nodes after the GNN convolution steps, to add other
sources of discriminative information to nodes.

The artist’s representation is formed based on your music
features. We evaluate the representation built from the
codebook and mean on audio and lyrics features. The
feature in each modality is concatenated to result in artist
representation. A summary of all the approaches evaluated
for artist representations is presented in Table I. These
representations are also explored in the network regular-
ization process to be introduced as input in the GNN
models with audio and lyrics node features. In addition,
the final size of vector features for all node types is defined
in the GNN model architecture. We utilize a meta-path-
based representation created using the DeepWalk algorithm
to compare our proposal. This baseline representation has
only graph topology information without initial musical
features.

The topology of the proposed graph is formed by the five
types of relationships formulated in Section III. The edges
among related artists and the edges from artist to audio
and lyrics are present on all the graphs, independent of the
features used for node representation. However, the edges
inside the audio and lyrics layers are built based on the K-
means clustering process based on the node features. The
k value influences graph connectivity and the path used for
information propagation. We evaluate the k with a value of
31, which refers to

p
N , where N is the dataset size.

In addition to artist representation approaches, we eval-
uate three learning scenarios: labeled as Supervised, this
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Artist representation Audio Lyrics Approach Dimensionality
REP I essentia bert codebook 2*k
REP II essentia bert mean 428
REP III essentia - codebook k
REP IV essentia - mean 128
REP V RMS bert codebook 2*k
REP VI RMS - codebook k

TABLE I
THE PROPOSED ARTIST REPRESENTATIONS. THE FEATURES REPRESENT THE

AUDIO CONTENT, FORMED BY THE ESSENTIA MODEL EMBEDDINGS OR RMS,
AND LYRICS CONTENT, FORMED BY A BERT-BASED PRE-TRAINED MODEL. THE

APPROACH REPRESENTS THE METHOD USED TO COMBINE THE FEATURES OF

ALL SONGS OF ONE ARTIST. THE DIMENSIONALITY RESULTANT FOR ARTIST

REPRESENTATION IS INDICATED IN THE LAST COLUMN.

scenario is direct to link prediction task, in which we
know the artist links should or should not exist, and the
loss function is defined by a score computed from the
artist links predicted and ground truth links; labeled as
Unsupervised this another scenario aiming to multitask
approaches, in which the learned representation can be
used in other MIR tasks, and the loss function is defined
by a triplet loss computed on artist nodes features; labeled
as Initialized in this scenario, we reproduce the Supervised
scenario again initializing the GNN models with meta-path
features for all nodes, without changing the edges. This
scenario is motivated for work that reported an increase in
performance in early initialized GNN models, as [36] that
learned initial weights used as input to the model.

We evaluated two model training strategies. The first
considered task-driven learning of link prediction. For
Supervised and Initialized scenarios, the loss function is
defined as a binary cross-entropy function that receives
as a parameter the score computed from the dot product
from nodes existing in positive neighbors Γ(x) and neg-
ative neighbors Γ̂(x) and a target vector with equal size
formed by binaries values. In the Unsupervised scenario,
we want to evaluate a representation that can be applied
to different tasks. For this, the loss function is defined as a
triplet loss that receives anchors and positive and negative
nodes as parameters and computes the loss considering
the features. In this learning scenario, the loss is defined as
loss(a, p,n) = max{d(ai , pi )−d(ai ,ni )+∆,0}, where a is the
anchors, p is the positives, and n is the negatives nodes, and
∆ refers to margin and defined as 0.2, similar the work [11].
To compute the evaluation metrics, all learning scenarios
are evaluated as link prediction tasks in the testing stage.

The importance matrix is included in all approaches
evaluated. In a process similar to an ablation study, we
assess the link prediction task in four ways: without the
matrix, using the matrix only on the edges, only on the
nodes, and on the edges and nodes simultaneously. We
propose three types of importance matrices: learned matrix,
normalized matrix, and random matrix. The learned and
normalized matrix was formulated in Section IV-D. In con-
trast, the random matrix is initialized by values from zero
until the max edge importance value and normalized with
the softmax function like the other two matrices. In this
case, we want to evaluate whether the importance matrix

adds discriminative information to the artists’ representa-
tion when computing the AUPR variation concerning the
importance matrix, the artist’s initial representation, and
the learning scenario.

Finally, we perform a cross-validation process to evaluate
the representation and learning scenarios for handling link
prediction. We divided the dataset into five folds according
to links among artists. Therefore, the links between the
artist, audio, and lyrics are maintained in all folds. Thereby,
we assume that the features of the audio and lyrics nodes
are relevant to learning graph-based representation for
artist nodes, while the related artists may not. All scenarios
are evaluated in equal folds, and the metric area under
the precision and recall curve (AUPR) indicates the model
performance to link prediction, as argued in [37]. As a
baseline method, we built a graph attention network (GAT)
model with the same architecture as the proposed GNN
model and trained it with equal settings.

B. Results and discussions

Regarding the results obtained, we want to evaluate the
representation learning process for artists based on the
features of their songs to handle artist similarity based on
link prediction tasks. We report the highest AUPR value
according to the average of the results calculated over
the five data folds, considering all experiment settings for
each learning scenario. To simplify the table structure, we
refer to the artist representation acronym shown in Table
I. The subsequent tables are presented to represent an
ablation study when dealing with the task of link prediction
between artists. We evaluate the initial features and then
incorporate the proposed representation learning resources
to aggregate information based on the graph topology.
Using the importance matrix, we analyzed the results to
discuss strategies for representing artists and the impact
on models’ performance.

The realized experiments have an extensive set of eval-
uated parameters. We have six artist representations, five
importance matrix types (learned, normalized, random,
without matrix, and GAT), three learning scenarios (Super-
vised, Initialized, and Unsupervised), and five learning rates
(from 10−1 until 10−5). In addition, as the baseline methods,
we adopted GraphSage [38] and PEAGNN [39] methods.
The GraphSage-based methods present competitive results
for link prediction applications, with a differential in your
learning process due to a link sampling step. The PEAGNN
has an architecture composed of GAT layers combined with
a loss function to minimize the distance between similar
objects, like a raking problem. Our dataset was split into
5-folds, where four folds are used in the training step,
and the remaining fold is used in the testing step. The
experiments report only one model architecture setting
where the input layer has an input size equal to the feature
dimensionality, and the subsequent layers have 512, 256,
and 64 sequentially. We define the epoch number as 1000
to train the models, and in case the AUPR does not increase
for 50 epochs, the early stopping criteria stops the training.
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As a baseline result for evaluating the representation
learning proposal for artists, we created the initial scenario
in which we have a graph built only with the Artist layer,
without the Audio and Lyrics layers. This experiment con-
figuration allows us to measure the impact on the perfor-
mance by including other layers and their relationships
as multimodal and heterogeneous information and the
inclusion of the GNN model. In Table II, the AUPR value
is reported, considering that the nodes are represented by
the initial features in scenarios with and without network
regularization. In this case, we only measure the dot prod-
uct between the node representations to define whether an
edge should be created between them.

input feature no regularized regularized
REP I 0.66150 0.73689
REP II 0.68264 0.67654
REP III 0.72630 0.76312
REP IV 0.63425 0.63671
REP V 0.61522 0.66065
REP VI 0.56859 0.59719
random walk 0.52891 0.52773

TABLE II
THE AUPR PERFORMANCE COMPUTED ON THE SCENARIO WHERE THE INITIAL

FEATURE IS REGULARIZED OR NOT REGULARIZED.

These results show that the representations where the
audio modality is characterized by the Essentia model em-
beddings (REP I, II, III, and IV) performed better than the
RMS feature (REP V and VI). This is an expected conclusion
since the advantages of using transfer learning to build ini-
tial features for unstructured data are widely reported in the
literature. We also observed that representations combining
audio and text features performed better than audio-based
representations. The random walk-based representation is
used for comparison and presents the lowest performance,
noting that more nodes and relationships are needed for
the feature to be more representative. Furthermore, we
observed that representations built with codebook resulted
in an increase in performance after network regularization.
This result is relevant to the work proposal because the
codebook is based on clustering to construct the repre-
sentation, and network regularization propagates features
between neighboring nodes to refine the features of each
node. Thus, we can interpret that the learned features are
related to the node neighborhood. This process is similar to
building node representations while a GNN model learns.

In the following tables, we report the results that ex-
press the representation performances after the GNN model
learning process. Furthermore, the input graph is formed
by layers with artists, lyrics, and audio nodes. Thus, we can
measure the influence of multimodality on graph creation
and the performance of a graph-based representation using
a GNN model. We report the performance for each learning
scenario when handling the link prediction task when using
the importance matrix only on the nodes, only on the edges,
or both, or without using the proposed matrix.

First, we report in Table III the performance of each
learning scenario without using the importance matrix,
like traditional GNN models, a GNN model composed for

GraphSage layers, and the original architecture proposed for
the PEAGNN method. PEAGNN had inferior performance,
showing that the learning process for the link predic-
tion task is more efficient for approximating similar artist
representation. The GraphSage showed more competitive
results in relation to GCN-based models, which were su-
perior to Supervised and Unsupervised learning scenarios.
However, Initialized achieved the best results, showing the
discriminative potential of adding other features to the
model’s learning process. In general, the results from GNN-
based representation are superior to those in the previous
table, showing that learning using GNN models aggregates
discriminative power to the representations when exploring
the features of neighboring nodes. When comparing artist
representations, REP I achieved the best performances, re-
inforcing using multimodal features to represent artists. We
also highlight the increased performance for random walk-
based representations so that both representation proposals
achieve competitive performance.

input
feature

Supervised Initialized Unsupervised
proposed random walk proposed random walk proposed random walk

REP I 0.72306 0.71658 0.83677 0.84424 0.70390 0.72047
REP II 0.65638 0.68193 0.75863 0.71777 0.65384 0.74421
REP III 0.70945 0.80565 0.81765 0.79125 0.68462 0.71995
REP IV 0.63967 0.71813 0.74499 0.72783 0.64590 0.70915
REP V 0.66433 0.65331 0.73443 0.64850 0.67384 0.67448
REP VI 0.60509 0.60423 0.65197 0.63293 0.67384 0.67448

input
feature

GraphSage PEAGNN
proposed random walk proposed random walk

REP I 0.75784 0.73333 0.60122 0.58053
REP II 0.75132 0.72368 0.57416 0.57905
REP III 0.76047 0.76776 0.57036 0.58063
REP IV 0.73655 0.74885 0.53820 0.56577
REP V 0.71003 0.74885 0.52137 0.57426
REP VI 0.71126 0.72422 0.50568 0.56854

TABLE III
THE AUPR PERFORMANCE COMPUTED ON THE SCENARIO WHERE THE INITIAL

FEATURE IS INTRODUCED IN THE GNN-MODEL WITHOUT USING THE

IMPORTANCE MATRIX AND THE GRAPHSAGE AND PEAGNN BASELINE

METHODS.

Regarding the learning scenarios, the Initialized scenario
presented the best performance, showing that the random
walk-based representation increased the discriminative ca-
pacity of the GNN-based representation. This observation
is relevant, as we can consider using random walk-based
representation with another modality in a heterogeneous
network and measure how much discriminative informa-
tion can be added to representation in the regularization
stages and subsequently be introduced into a GNN model.

Including the importance matrix in the edges aims to add
weights with information related to the context of the artist
similarity task. In general, the results reported in Table IV
show a general increase in performance. The normalized
importance matrix was predominant in all learning scenar-
ios, indicating that the importance of artist relationships
incorporated information into the convolutional process.
However, the best result obtained in this scenario is in-
ferior to the GNN model without the importance matrix
(0.83677 vs. 0.81462 in the Initialized scenario with GNN-
based embeddings). The Supervised and Initialized scenar-
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ios achieve superior results to the Unsupervised scenario,
indicating that the importance matrix enhanced the artist’s
edge weight during the convolutional process, where the
models are trained directly to link prediction. Finally, the
proposed GNN-based representation was superior to the
random walk-based in both learning scenarios, especially
in the representations composed of multimodal features.

Supervised Initialized Unsupervised

input feature
normalized matrix normalized matrix normalized matrix

proposed random-based proposed random-based proposed random-based
REP I 0.77269 0.77299 0.79553 0.74813 0.73858 0.72573
REP II 0.72596 0.72501 0.77763 0.70559 0.64345 0.69284
REP III 0.80518 0.78880 0.81462 0.76861 0.69068 0.73951
REP IV 0.71899 0.75642 0.81432 0.79076 0.65714 0.73101
REP V 0.61613 0.74333 0.62907 0.62102 0.61220 0.75905
REP VI 0.64975 0.76438 0.63211 0.62312 0.61800 0.63214

TABLE IV
THE AUPR PERFORMANCE COMPUTED ON THE SCENARIO WHERE THE INITIAL

FEATURE IS INTRODUCED IN THE GNN-MODEL USING THE IMPORTANCE

MATRIX ONLY ON THE EDGES.

When including information from the importance matrix
only about the nodes, we observed results similar to the
previous tables in Table V. In this evaluation scenario,
including the importance matrix in the nodes aims to
aggregate a new feature vector to the nodes. The results
were generally superior to the scenario in which the GNN
model was without the importance matrix. The best result
obtained is similar to the scenario without the importance
matrix (0.83677 vs. 0.83624), but this value was achieved
in the Supervised learning scenario. Here, the Supervised
learning scenario was superior to the others, and the GNN-
based representation performed better than the random
walk-based representation. Once again, the two Supervised
and Initialized scenarios presented superior performance.
However, the Unsupervised scenario improved performance
compared to the previous table. These results allow us
to infer that the aggregated importance over the nodes
resulted in a representation with potential for use in mul-
tiple MIR tasks. This conclusion is related to the random
composition in the importance matrix, where we note that
the importance value is related to the task, but the semantic
value is irrelevant. In contrast, using the importance matrix
over the edges is more related to the target link prediction
task.

Supervised Initialized Unsupervised

input feature
random matrix random matrix learned matrix

proposed random-based proposed random-based proposed random-based
REP I 0.79178 0.80416 0.78944 0.78915 0.77403 0.74960
REP II 0.81166 0.80185 0.80472 0.79319 0.79544 0.79077
REP III 0.82710 0.80903 0.80131 0.80120 0.77537 0.75376
REP IV 0.82296 0.81974 0.81431 0.79325 0.78565 0.81364
REP V 0.75618 0.79507 0.77503 0.72828 0.75944 0.72824
REP VI 0.73127 0.83624 0.73894 0.73682 0.78551 0.79521

TABLE V
THE AUPR PERFORMANCE COMPUTED ON THE SCENARIO WHERE THE INITIAL

FEATURE IS INTRODUCED IN THE GNN MODEL USING THE IMPORTANCE

MATRIX ONLY ON THE NODES.

Finally, we report in Table VI the results for the scenario
in which the importance matrix was embedded on nodes
and edges. In this scenario, we also report the results
when using a GAT model to perform link prediction as a
comparison method. The attention mechanism contained

in GAT allows the model to assign differentiated importance
to the connections between nodes in a graph based on the
information contained in these nodes and the relationships
between them. This is the same motivation for using the
proposed importance matrix, so we can discuss the rele-
vance of building the matrix early or learning it during the
GAT model learning process.

In an overview of the results obtained by the three
learning scenarios, we can note a superior performance to
the GAT model, and the GNN-based representation presents
a greater discriminative capacity than the random walk-
based representation. The importance matrix embedded on
nodes and edges simultaneously increased the performance
of all representations about the scenarios evaluated and
reported in the previous tables. We can note that the best
AUPR value in all scenarios evaluated was obtained by REP
I and in the Unsupervised scenario. Thus, we can infer
that the multimodal representation formed by an acoustic
feature combined with lyric features based on the codebook
approach resulted in more discriminative artist representa-
tions. These results indicate that the proposed importance
matrix can be applied in other MIR tasks because the
discriminative information gain of the proposed matrix is
not directly dependent on the target task.

Unsupervised

input feature
learned matrix GAT

proposed random-based proposed random-based
REP I 0.90184 0.87452 0.60916 0.69102
REP II 0.85554 0.83897 0.64912 0.68317
REP III 0.82452 0.81173 0.63346 0.67245
REP IV 0.80654 0.82963 0.62501 0.69606
REP V 0.81738 0.78898 0.62557 0.61659
REP VI 0.79749 0.80632 0.64490 0.61910

Supervised

input feature
normalized matrix GAT

proposed random-based proposed random-based
REP I 0.84151 0.82494 0.75580 0.76233
REP II 0.88187 0.85549 0.75924 0.76606
REP III 0.85333 0.82170 0.79923 0.79034
REP IV 0.82198 0.79447 0.74062 0.75868
REP V 0.76801 0.80361 0.66154 0.70228
REP VI 0.68625 0.81612 0.64921 0.75821

Initialized

input feature
normalized matrix GAT

proposed random-based proposed random-based
REP I 0.85229 0.84216 0.75664 0.74287
REP II 0.77147 0.79713 0.72971 0.73770
REP III 0.83398 0.83203 0.74705 0.71730
REP IV 0.77417 0.72965 0.74021 0.71390
REP V 0.79586 0.77012 0.74617 0.75111
REP VI 0.74322 0.72112 0.76072 0.73576

TABLE VI
THE AUPR PERFORMANCE COMPUTED ON THE SCENARIO WHERE THE INITIAL

FEATURE IS INTRODUCED IN THE GNN MODEL USING THE IMPORTANCE

MATRIX ON THE EDGES AND NODES.

In summary, to finalize these experiments, we can con-
clude that the multimodal representation achieved the best
results; representing artists using a codebook approach is
more discriminating than using an average; the importance
matrix embedded only on the edges is more related to
the link prediction task; when the matrix is embedded
only in nodes it supports the learning of a representation
with applicability in others MIR tasks; when present on the
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Fig. 5. Two-dimensional projections of learned embeddings (t-SNE) for each learning scenario proposed.

nodes and edges, the matrix adds a general improvement
in the performance of all learning scenarios evaluated, but
the greater performance reported was in the Unsupervised
scenario, reinforcing the feasibility of application in others
MIR tasks.

We evaluated three approaches to constructing the im-
portance matrix. The results showed that normalizing the
input matrix was enough to achieve the best results in
five experimental assessed settings, compared to two ex-
perimental settings where the learned matrix had supe-
rior results and two experimental settings for the random
matrix. The random matrix’s superiority in some exper-
iments is a point that demands attention because this
approach to composing the matrix reduces the relevance
of building real relationships between artists. On the other
hand, performing just normalization is the simplest process
and has proven efficient in most scenarios. Evaluating
different strategies for learning the importance matrix is
an important task to be explored in future work. Finally,
the GraphSAGE results in Table III indicate a competitive
baseline method, while PEAGNN is not one. However, we
can note that inducing the type of features and relationships
that will be emphasized in the learning process tends to
increase the performance of the models.

As an interpretability resource, we present in Figure 5
a projection of the embeddings extracted from the last
layer of the GNN model. After model learning, we compute
a new low-dimensional space using the t-SNE method
[40] for each node type. We display the projection of the
embeddings learned in each GNN model for all learning
scenarios using REP I as an input feature and the pa-
rameters that resulted in the best AUPR metric for this
artist representation type. We highlight the ability of GNN
models to group artist nodes into the nearest region by
incorporating and refining the cluster-based information
contained in the input feature.

In addition to the best results obtained, we report a
statistical analysis to discuss the general performance of
the different artist representations, importance matrices,
learning scenarios, and types of embeddings to measure
the generalization capacity of GNN models regardless of
parameter settings. We use the Multi-Comparison Matrix
(MCM) proposed in [41] to perform pairwise comparisons
between all the attributes presented in this work. The
MCM maps attributes into rows (r) and columns (c) and
computes the number of evaluations in which an attribute

performed better, equal, or lower than another attribute.
The statistical significance of the differences in performance
between each pair is computed using The Wilcoxon test,
where the resulting p-value represents the probability of
observing the given differences in performance.

In this report, our objective is not to conclude about
the superiority of an attribute based on the statistical
difference because a consistent statistical analysis demands
evaluations on more datasets. We are using MCM to report
the performance of attributes considering the data folds
and parameter variations.

Figure 6 shows the MCM grouping our results by the
artist representations. In this case, we realized 750 records
for each representation, where this number is defined by
5 data folds × 3 learning scenarios × 5 learning rates ×
5 importance matrix × 2 embeddings types. We conclude
that REP I is the representation that best characterizes
artists because this representation is consistently superior
in most experiments. In addition, considering the AUPR
mean, we can order the most relevant indicators for build-
ing the GNN-based artist representation: codebook-based
representations, audio modality characterized by transfer
learning approaches, and multimodal representations.

Figure 7 shows the MCM for the embedding types. Here,
we group the results by embedding types, resulting in 2250
records. We have for each embedding type: 6 REPs × 5
data folds × 3 learning scenarios × 5 learning rates × 5
importance matrix ×. In this scenario, we can notice that
both embedding types presented a similar mean perfor-
mance. This observation is important to reinforce random
walk-based representation as a competitive comparison
approach to GNN-based embeddings.

Figure 8 shows the MCM grouping our results by the
importance matrix. In this case, we realized 900 records,
where for each importance matrix, we have 6 REPs × 5
data folds × 3 learning scenarios × 5 learning rates × × 2
embedding types. In this scenario, we observed that using
the importance matrix is more efficient than not using it
or using a random matrix with information that is not
directly related to the task of link prediction between artist
nodes. This observation directs future work to investigate
new methods for constructing the matrix.

Figure 9 shows the MCM grouping our results by the
learning scenario. In this case, we realized 1500 records,
where for each learning scenario, we have: 6 REPs × 5
data folds × 5 importance matrix × 5 learning rates × ×
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Fig. 6. Multi-Comparison Matrix for all proposed artist representation. The representations are sorted by AUPR mean computed on the variations in
all possible values to learning scenarios, learning rates, importance matrices, and embedding type.
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Mean-Difference
r>c / r=c / r<c

Wilcoxon p-value
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1072 / 68 / 1110
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If in bold, then
p-value < 0.05

Mean-AUPR

0.004 0.002 0.000 0.002 0.004
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Fig. 7. Multi-Comparison Matrix for random walk-based and GNN-
based embedding types. The embedding types are sorted by AUPR mean
computed on the variations in all possible values to artist representations,
learning scenarios, learning rates, and importance matrices.

2 embeddings types. Here, we observed that although the
Unsupervised scenario obtained the highest AUPR value
reported in Table VI, its mean performance is lower than
the others, which may be related to the lower ability to
group artist representations as shown in Figure 5.

Finally, we report in Figure 10 a performance comparison
between embedding types according to each proposed
scenario. The motivation for reporting this comparison is
to discuss the parity between proposed GNN-based and
random walk-based embeddings. We notice similar average
performance between both embeddings in all scenarios and
a slight advantage in the highest results for the proposed
GNN-based embedding.

Using a random walk-based feature to represent the
graph nodes is a resource with less pre-processing cost than

processing musical features. However, it is a representation
that does not have semantic information about the data,
making it challenging to construct information that allows
interpretability in decision-making. Another point is that
the random walk-based representation is not a determinis-
tic representation, being dependent on the graph topology,
which can impact the performance stability of the models.

In our work, the semantic information is of great impor-
tance, as the main objective is to build a representation for
artists that allows us to measure each feature’s impact on
the models’ performance when dealing with similarities be-
tween artists. By concluding that the best performance, on
average, is achieved by a representation composed of audio
and lyrics, we can direct our future work to explore other
multimodal representations composed of features obtained
by fine-tuned models in a transfer learning process.

VI. SUMMARY AND FINAL REMARKS

In this work, we handle the artist similarity through the
link prediction task. For this, we propose modeling musical
data on a heterogeneous network formed by layers with
nodes represented with audio, lyrics, and artist features.
From a network regularization process, we propagate fea-
tures between the nodes and build an initial feature for all
nodes used in the GNN models to predict the links between
artist nodes. In addition, we propose an importance matrix
that induce an importance value to instances to map the
information obtained from artist relations into a matrix
aggregating another information level to nodes and edges.

In our experimental analysis, we evaluated multiple com-
binations of parameters and features proposed to handle
link prediction tasks using the AUPR metric (area under
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Fig. 8. Multi-Comparison Matrix for all possible compositions for the proposed importance matrix. The importance matrices are sorted by AUPR mean
computed on the variations in all possible values to artist representations, learning scenarios, learning rates, and embedding types.
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Fig. 9. Multi-Comparison Matrix for Supervised, Initialized, and Unsuper-
vised learning scenarios. The learning scenarios are sorted by AUPR mean
computed on the variations in all possible values to artist representations,
learning rates, importance matrices, and embedding types.

the precision and recall curve). We present the best AUPR
results obtained for three different GNN models and a
pairwise comparison between all the elements that make up
our proposal: input features, learning models, importance
matrices, and embedding types. In conclusion, we observed
that a multimodal representation formed by audio and
lyrics embeddings achieved the best performance. We also
note that using the proposed importance matrix is better
than using no matrix, random matrix, or automatically
learning importance with a GAT. We observed that the
unsupervised GNN model achieved a higher AUPR, but the
average performance of the supervised GNN model was
higher.

Our work contributes to the representation learning ap-
plications for musical data. We proposed a new approach
to build artist representation based on heterogeneous net-
works and the GNN model and to compute the similarity

between artists using acoustic and lyric features extracted
from your songs. The musical features indicated that the
artists are best represented in a multimodal scenario with
features obtained from pre-trained models. This indicates
how we can explore other models and fine-tuning processes
to enrich the audio and lyrics modalities. The importance
matrix shows that aggregated information related to the
problem context is a factor that increases the discriminative
power of GNN models. In future work, we will reproduce
the modeling process and explore other musical features
to build the artist’s representation. In addition, we will
compute the performance of the importance matrix in more
MIR tasks and measure the relevance in other contexts.
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