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Abstract
This paper studies timelikeminimal surfaces in the De Sitter space S31(1) ⊂ R

4
1 via a complex

variable. Using complex analysis and stereographic projection of lightlike vectors inC∪{∞},
we obtain a complex representation formula, together with some results about the existence
of convenient isotropic coordinates. This allows us to construct timelike minimal surfaces
in S

3
1(1) via local solutions of a certain PDE in a complex variable which arises when

investigating our geometric conditions. Specifically, we find a new kind of complex functions
which generalize the classes of holomorphic and anti-holomorphic functions, which we call
quasi-holomorphic functions. We show that there is a correspondence between a timelike
minimal surface in S

3
1(1) and a pair of quasi-holomorphic functions. In particular, when the

two functions are holomorphic, we show that they are related by aMöbius transformation and
then construct many families of minimal timelike surfaces in S

3
1(1) whose intrinsic Gauss

map will also belong to the same class of surfaces. Several explicit examples are given.

Keywords Minimal surfaces · Timelike surfaces · Isotropic coordinates · de Sitter space ·
Holomorphic functions

Mathematics Subject Classification 53C42 · 53B30 · 30D60 · 34A26

1 Introduction

There have been many papers on timelike minimal surfaces in various ambient spaces. One
of the first is Louise McNertney’s thesis [11] in 1980, followed, in 1990, by the work of Van
de Woestyne [13]. These papers work with either isotropic (null) coordinates or isothermal
coordinates and examine various differential equations to analyze timelike minimal surfaces.
Other techniques appear later. Beginning with the paper of Konderak [9] in 2005, we find the
split-complex (para-complex) numbers used in place of the complex numbers to extend some
results from positive definite surfaces to timelike minimal surfaces. This led, for example, to
considering the Björling problem for timelike surfaces in different ambient spaces using the
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split-complex numbers by the authors in [1,5,6]. Following [1], other papers about timelike
surfaces using split-complex numbers appear in the literature. These include: [2–4,8,12].
Other approaches to studying timelike minimal surface can be found in [7,10], using Loop
groups or spinor theory, respectively. Although the use of the split-complex numbers allows
many arguments to carry over to the timelike case, there are some difficulties, including that
all split-meromorphic functions have singularities that consist of curves, not points, which
restrict the kind of results one can obtain.

Our focus throughout this paper is to re-introduce complex variables and complex analysis
into the study of timelike minimal surfaces in R

4
1, via the light cone. In particular, we study

timelike minimal surfaces in the de Sitter space S
3
1(1) ⊂ R

4
1. In order to do this, we first

associate to two lightlike tangent vectors a convenient pair of complex functions (x, y) in
such way that we can represent the surface by a complex representation formula involving
the functions x and y. We identify two sets in CP3 with the set of timelike or spacelike
oriented planes of R4

1, respectively, and using stereographic projection of lightlike vectors in
C∪{∞}, we establish our technique of constructing timelike minimal surfaces in S31(1). This
technique involves identifying the partial differential equations in a complex variable which
describe the necessary conditions for our minimal surfaces. Investigating these conditions
allows us to define a new kind of complex functions, which we call quasi-holomorphic,
which are solutions to a PDE which generalizes the complex Cauchy-Riemann equations.
We show that the set of the quasi-holomorphic functions contains the classes of holomorphic
and anti-holomorphic functions.Moreover, we see that finding solutions of this complex PDE
allows us to construct new examples of timelike minimal surfaces in S

3
1(1), and conversely,

if we have a timelike minimal surface in S
3
1(1), then we can find two new solutions of the

generalized complex Cauchy–Riemann-type equations, namely, the complex functions x, y
which come from the stereographic projections of our chosen lightlike vectors.

In addition to the above, if we let x, y be holomorphic functions we show that the pairs of
surfaces (M, f ) and (M, ν), where ν represents the intrinsic Gauss map, are closely related.
Indeed, if (M, f ) is assumed, to be, for instance, a minimal non-totally geodesic isotropic
surface in S31(1) with Gauss map ν(w), then (M, ν) will also represent an isotropic minimal
non-totally geodesic surface in S31(1)with Gauss map f (w). Moreover, the functions x and y
are related by a Möbius function and the argument θ of the integration factor of the complex
derivative fw has to be a harmonic function on M . Finally we use our technique to construct
explicit families of timelike minimal surfaces in S31(1)with the associated families of (M, ν).

2 Preliminaries

We start by establishing some definitions, basic results and notation which we will use
throughout the paper.

The Minkowski vector space R
4
1 is the real vector space R

4 endowed with the usual
Euclidean topology and with the semi-Riemannian metric

〈 , 〉 = −(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2.

It is oriented by ∂1 ∧∂2 ∧∂3 ∧∂4 and temporally by ∂1, where {∂1, ∂2, ∂3, ∂4} is the canonical
basis of R4

1.
Throughout this paper M will be an open connected and simply connected subset of the

set of the complex numbers C. We will denote by H(M) the set of holomorphic maps from
M ⊂ C into C. A complex map f = P + i Q from M into C is an anti-holomorphic map
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if, and only if, its conjugate map f = P − i Q is a holomorphic map. The set of all anti-
holomorphic maps will be denoted byH(M). The set of all continuously differentiable maps
from M into C will be denoted by C∞(M,C), and we say that these maps are smooth maps
from M into C.

Let

∂

∂w
= 1

2

(
∂

∂u
− i

∂

∂v

)
and

∂

∂w
= 1

2

(
∂

∂u
+ i

∂

∂v

)

be the differential operators defined over the set of all smooth maps from M into C, where
w = u + iv ∈ M . It follows from these expressions that a smooth map f from M into C is
a holomorphic map if and only if ∂ f

∂w
(w) = 0 for all w ∈ M .

We will use often the notation ∂ f
∂w

= fw and ∂ f
∂w

= fw.
Next we focus on the surfaces in the de Sitter space S31(1).
A parametric surface of R4

1 is a function of two variables f : M −→ R
4
1, where M is a

connected open subset of R2, satisfying the following conditions:

(1) The function f is a homeomorphism fromM onto S = f (M), endowedwith the subspace
topology of R4

1.
(2) The function f is C∞(M,R4

1).
(3) For each w = (u, v) ∈ M the set { fu(w), fv(w)} is a linearly independent set and the

induced metric is given by

ds2( f ) = Edu2 + 2Fdudv + Gdv2.

Here the functions E(w), F(w) and G(w) are defined by

E(w) = 〈∂ f (w)

∂u
,
∂ f (w)

∂u
〉, F(w) = 〈∂ f (w)

∂u
,
∂ f (w)

∂v
〉 and G(w) = 〈∂ f (w)

∂v
,
∂ f (w)

∂v
〉.

Definition 2.1 A timelike surface in the sphere S
3
1(1) is a pair (M, f ), where the function

f : M → R
4
1 satisfies the conditions (1),(2) and (3) above, and for each w ∈ M , we

have 〈 f (w), f (w)〉 = 1, with the metric tensor satisfying EG − F2 < 0, i.e., it is a non-
degenerate Lorentz metric. We call the local coordinates null or isotropic if the metric has
the form: ds2( f ) = 2Fdudv. It is always possible to find null coordinates locally.

In this paper we call a surface isotropic when we are using local null coordinates.
We assume that the lightlike vectors fields fu and fv are future directed, hence, F(w) < 0

for each w ∈ M . Moreover, we assume the surface is equipped with the Gauss map ν :
M −→ S

3
1(1), which is defined by the following conditions: for each w ∈ M ,

(1) 〈ν(w), ν(w)〉 = 1 and 〈ν(w), f (w)〉 = 0,
(2) 〈ν(w), fu(w)〉 = 0 = 〈ν(w), fv(w)〉,
(3) the ordered set { f (w), fu(w), fv(w), ν(w)} is a positively oriented basis of R

4
1.

We observe that, if we assume (M, f ) with f : M → R
4
1 and the Gauss map ν(w) as

defined above, it follows from conditions (1) and (2) of Definition 2.1 that νu(w), νv(w) ∈
T f (w)S. For this reason we call the condition

(∀w ∈ M) {νu(w), νv(w)} ⊂ T f (w)S

the spherical condition. This means that the normal connection of this class of surface is flat.
From now on we will assume that the Gauss map ν(w) is not constant.
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Next we will find the Gauss and Weingarten equations for an isotropic surface (M, f ) of
S
3
1(1) with Gauss map ν(w). Let

B(w) = { f (w), fu(w), fv(w), ν(w)}w∈M

be the family of pointwise bases for R4
1 given by (3) of Definition 2.1.

Lemma 2.2 Let (M, f ) be an isotropic surface of S31(1) equipped with the Gauss map ν(w).
Since νu(w), νv(w) ∈ span{ fu(w), fv(w)}, the structural equations for the surface are:

⎧⎨
⎩

fuu = Fu
F fu + aν

fuv = −F f + bν
fvv = Fv

F fv + cν
(Gauss),

{
νu = − b

F fu − a
F fv

νv = − c
F fu − b

F fv
(Weingarten). (1)

Moreover, the surface (M, f ) is minimal if and only if fuv(w) = −F(w) f (w), which means
that b(w) = 0 for each w ∈ M.

Proof We define a = 〈 fuu, ν〉, b = 〈 fuv, ν〉 and c = 〈 fvv, ν〉. Once that is done, it is easy to
verify the Gauss and Weingarten equations. For instance, since 〈 fu, f 〉 = 0 we have

〈 fuv, f 〉 + 〈 fu, fv〉 = 0,

thereby obtaining the coefficient of f in the decomposition of fuv . Finally, note that mini-
mality means the trace of the shape operator is zero, or b = 0. ��

Note that when the Gauss map ν(w) ∈ R
4
1 is a constant vector, the surface f (M) is a

totally geodesic surface, and so is a minimal surface in S31(1). The timelike hyperplane [ν]⊥
contains S = f (M) and the Gaussian curvature of S is K ( f )(w) = 1, for all w ∈ M .

Corollary 2.3 Let (M, f ) be an isotropic surface of S31(1) equipped with the non-constant
Gauss map ν(w). Then the fundamental equations are given by

K ( f ) = −1

F

(
Fu
F

)
v

= 1 − ac − b2

F2 (Gauss),

∂b

∂u
− ∂a

∂v
= b

Fu
F

and
∂b

∂v
− ∂c

∂u
= b

Fv

F
(Codazzi).

Moreover if (M, f ) is minimal, then a(u, v) = a(u) and c(u, v) = c(v), i.e., a and c are
functions which depend only of u and v, respectively.

Proof The Gaussian curvature equation follows from 〈( fuu)v, fv〉 = 〈( fuv)u, fv〉. Hence the
Gauss equation follows immediately since

(
Fu
F

)
v

− ac

F
= −〈 fu, fv〉 − b2

F
.

The Codazzi equations follow from 〈( fuu)v, ν〉 = 〈( fuv)u, ν〉 and 〈( fvv)u, ν〉 = 〈( fuv)v, ν〉.
Indeed, 〈( fuu)v, ν〉 = av + b(Fu/F) = 〈( fuv)u, ν〉 = bu and 〈( fvv)u, ν〉 = b(Fv/F) + cu
= 〈( fuv)v, ν〉 = bv. ��
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3 Sharing isotropic parameters

In this section we construct two isotropic surfaces which share isotropic parameters, and we
show those are in correspondence through a dilatation and a translation.

Theorem 3.1 Let (M, f )be an isotropic surface ofS31(1) equippedwith a non-constantGauss
map ν(w). If the surface f (M) is minimal then (M, ν) has the same isotropic parameters
and is also minimal with

νu(w) = −a(w)

F(w)
fv(w) and νv(w) = −c(w)

F(w)
fu(w).

Moreover, the Gaussian curvatures K ( f ) of f (M) and K (ν) of ν(S) are related by the
equation:

F2K ( f ) + acK (ν) = 0.

Hence, (M, f ) is flat if and only if (M, ν) is flat.

Proof Since fu = (−F/c)νv and fv = (−F/a)νu , we see that (M, ν) is isotropic and
minimal. If we let 〈νu, νv〉 = F̂ , so that the metric tensor of (M, ν) is

ds2(ν) = 2F̂dudv,

then F̂ = ac/F . Now, from the Codazzi equations, we know a = a(u) and c = c(v). Then
taking the v derivative of (log(F̂))u gives us(

F̂u

F̂

)
v

= −
(
Fu
F

)
v

+
(av

a

)
u

+
(cu
c

)
v

= −
(
Fu
F

)
v

.

Now the formula F2K ( f ) + acK (ν) = 0 follows from the Gauss equation. ��

3.1 The equation �(w) = kf(w) + T

In this subsection we show that the Gauss map ν and the immersion f are directly related by
a linear form.

Lemma 3.2 Assume that the shape operator of the isotropic immersion f is diagonalized but
never zero. Then there is a constant vector T so that ν(w) = k f (w) + T.

Proof We are assuming that a = 0 = c but b �= 0 in the Weingarten equations. From the
Codazzi equations we have

bu
b

= Fu
F

and
bv

b
= Fv

F
.

It follows that b(w)
F(w)

= −k for some real number k �= 0. Using the Weingarten equations

again, we obtain νu = k fu and νv = k fv, so ν(w) − k f (w) = T ∈ R
4
1 \ {0}.

Note that T can not be 0, because we are assuming that { f (w), ν(w)} is a pointwise
orthonormal basis of the normal bundle of (M, f ). ��

The following example shows that there exist non-minimal surfaces (M, f ) and (M, ν)

which share isotropic parameters.
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Example 3.3 Let X(w) = (X1(w), X2(w), X3(w), 0) be an isotropic parametrization of
an open subset of the sphere {X ∈ S

3
1(1)|X4 = 0}. Defining, for θ ∈]0, π/2[ and

w ∈ M = dom(X),

ν(w) = cos θ e4 − sin θ X(w) and f (w) = sin θ e4 + cos θ X(w),

we have for, k = − tan θ and T = sec θ e4, a solution of the equation ν(w) = k f (w) + T.

Theorem 3.4 Let (M, f ) be an isotropic surface of S
3
1(1) equipped with the non-

constant Gauss map ν(w). If (M, f ) and (M, ν) are isotropic solutions of the equation
ν(w) = k f (w) +T, for a constant k �= 0, then there exists a basis for R4

1, {t1, t2, t3, t4}, for
which k = − tan θ and T = sec θ t4 for some θ ∈]0, π/2[. In addition, there is the isotropic
parametrization (M, X) of the open subset {X = X1t1 + X2t2 + X3t3|〈X , X〉 = 1} for
which the solution of ν(w) = k f (w) + T is

ν(w) = cos θ t4 − sin θ X(w) and f (w) = sin θ t4 + cos θ X(w).

The Gaussian curvatures are, respectively, K ( f ) = sec2(θ) and K (ν) = csc2(θ).

Proof We begin with the fact that T = ν − k f is a constant vector. By computing
〈T,T〉 = 1 + k2 > 1, we see that there is θ ∈]0, π/2[ such that 1 + k2 = sec2 θ, and
we can assume that tan θ = −k. We set t4 = T/ sec θ, a spacelike vector. Since

ν − cos θ t4
− sin θ

= f − sin θ t4
cos θ

,

we can set either side to be a function X(w). By calculating 〈k f + T, k f + T〉 = 1, we
find that 〈T, f 〉 = tan θ , so that 〈 f , t4〉 = sin θ . This shows that X(w) ⊥ t4 and we can
choose orthonormal vectors t1, t2, t3 so that {t1, . . . , t4} is an orthonormal basis of R4

1. ��
Next we will give an example of a timelike minimal surface with non-null Gaussian

curvature, together with a coordinate transformation which allows us to obtain an equivalent
isotropic surface. This example is a type of Clifford torus for S31(1). The (unique) coordinate
transformation also forces (M, ν) to have isotropic parameters, by Theorem 3.1.

Example 3.5 Let

c1(t) = (sinh t, 0, 0, cosh t) and c2(s) = (0, cos s, sin s, 0)

be two curves in S31(1). The first is a timelike curve and the second a spacelike curve. Taking
the two-parameter map

X(x, y) = cos x c1(y) + sin x c2(y)

we have Xx = − sin x c1(y) + cos x c2(y) and Xy = cos x c′
1(y) + sin x c′

2(y). Thus, the
metric tensor has E(x, y) = 1, F(x, y) = 0 and G(x, y) = − cos2 x + sin2 x = − cos 2x .
The unit normal is given by:

ν(x, y) = 1√
cos 2x

(sin x c′
1(y) + cos x c′

2(y)).

Since Xxx = −X , Xyy = cos x c1(y) − sin x c2(y) and Xxy = − sin x c′
1(y) + cos x c′

2(y),
the second quadratic form �i j = 〈Di j X , X〉X + 〈Di j X , ν〉ν = Xi j X + Ni jν or, in matrix
form,

[�i j ] =
[−1 0
0 cos 2x

]
X +

[
0 1/

√
cos 2x

1/
√
cos 2x 0

]
ν.
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Therefore

[� j
i ] =

[−1 0
0 −1

]
X +

[
0 −1/

√
cos3 2x

1/
√
cos 2x 0

]
ν,

H = trace(�) = −X and K ( f ) = det(X j
i ) + det(N j

i ) = 1 + sec2 2x,

where H denotes the mean curvature vector of the immersion into R4
1.

Define the coordinate transformation p = p(x), q(y) = y and take
Y (p, q) = X(x(p), y(q)). Then the metric coefficients for Y are given by

E(p, q) = x ′(p)2, F(p, q) = 0 and G(p, q) = − cos(2x(p)).

Next let ∫
dx√
cos 2x

= p(x).

Finally, by setting u = p+q and v = p−q we obtain the equivalent surface (M, f ), where
f (u, v) = Y (p + q, p − q) is equipped with isotropic parameters.

4 An integration problem

In this section we look for conditions which allows us to find an integral representation
formula for the isotropic surfaces. We begin by identifying local representations for lightlike
vectors L which are in the tangent spaces. Moreover, we identify a correspondence between
the sets of oriented spacelike planes in R4

1 and the oriented timelike planes in R4
1.

If L = (L1, L2, L3, L4) is a future directed lightlike vector with L1 > 0, then there exists
an unique vector n ∈ R

3 = span{e2, e3, e4} such that

L = L1(e1 + n) where n = (0, L2/L1, L3/L1, L4/L1).

Since 〈L, L〉 = 0 we have 〈n,n〉 = 1. Let the north pole be (0, 0, 0, 1) and define the
stereographic projection, st , by

st(L) = a + ib =
(
L2/L1 + i L3/L1

1 − L4/L1

)
= L2 + i L3

L1 − L4 ∈ C ∪ {∞},

where st(L) = ∞ if and only if L = μ(1, 0, 0, 1). Moreover, st(L) = 0 if and only if
L = μ(1, 0, 0,−1), with μ > 0.

Proposition 4.1 For each isotropic plane span{L1, L2} ⊂ R
4
1 there exists an unique pair

(x, y) ∈ (C ∪ {∞})2, such that we can express, for μ1, μ2 > 0,

μ1L1 = L̃1 = (1 + xx, x + x,−i(x − x),−1 + xx), with x = st(L1),

μ2L2 = L̃2 = (1 + yy, y + y,−i(y − y),−1 + yy), with y = st(L2).

Therefore 〈L̃1, L̃2〉 = −2|x − y|2.
In addition, the map F from the set of oriented isotropic planes to the square of the

Riemann sphere (C ∪ {∞})2 given by
F(span{L1, L2}) = (st(L1), st(L2))
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is one-to-one and onto the open subset (C ∪ {∞})2 \ {(x, x)| x ∈ C ∪ {∞}}.
At this point, with a slight abuse of notation, we define

L(x) = (1 + xx, x + x,−i(x − x),−1 + xx).

Next we identify the orthogonal complement of the space spanned by L1 and L2, which
we denote by [L1, L2]⊥ = [W ] ∈ CP3. To do this, we proceed as follows.

Let 〈., .〉C be the natural extension of the Lorentz inner product to C4 and R4
1 = T ⊕ S be

the direct sum of a timelike plane T = span{L1, L2} and a spacelike plane S = span{X , Y },
where we assume that

(1) the lightlike vectors L1 and L2 are future directed,
(2) the ordered set {X , L1, L2, Y } forms a positive basis of R4

1 obeying the relations:

〈X , X〉 = 〈Y , Y 〉 > 0, 〈X , Y 〉 = 0 and 〈X , Li 〉 = 0 = 〈Y , Li 〉 for i = 1, 2.

Next we define the Grassmannians of the oriented spacelike planes and the oriented time-
like planes of R4

1 within the complex projective space CP3 = C
4/≡.

Ifμ = a+ ib �= 0 is a complex number and Z = X + iY is the complex vector associated
with the basis of the spacelike plane S, thenμZ = (aX −bY )+ i(bX +aY ) gives us another
basis of S satisfying the condition (2) above. By definition

[Z ] = [X + iY ] = {μZ |μ ∈ C and μ �= 0}
are the equivalence classes that define points of CP3. Now, taking the complex vector
T = L1 + i L2 associated with a timelike plane, and a complex number μ = a + ib �= 0, we
have the complex vector A + i B = μT = (aL1 − bL2) + i(bL1 + aL2) satisfying

〈A, A〉 = −2ab〈L1, L2〉 = −〈B, B〉 and 〈A, B〉 = (a2 − b2)〈L1, L2〉.
Therefore, {A, B} is also a basis of the timelike plane T , and the determinant of the matrix
associated with that basis is −〈L1, L2〉2|μ|2 < 0. Then we have the following:

Definition 4.2 a) The set of equivalence classes {[Z ] ∈ CP3|〈Z , Z〉C = 0 and 〈Z , Z〉C >

0} is the complex quadric of CP3 of the set of oriented spacelike planes of R4
1. In this

case, we denote the set by Qspace.
b) We represent every lightlike vector L = (1,n)where n is a unit vector inR3. Then the set

of equivalence classes {[Z ] ∈ CP3 | Z = [L1 + i L2], where 〈L1, L2〉 �= 0}, is the set of
oriented timelike planes of R4

1. This set is denoted by Qtime and has complex dimension
two.

Next we establish an important correspondence between Qspace and Qtime, using homo-
geneous coordinates for Qspace. In fact, we define the following complex vector:

a) for x, y ∈ C, with x �= y, let

W (x, y) = (1 + x y, x + y,−i(x − y),−1 + x y) ∈ C
4. (2)

b) For x ∈ C and y = ∞, or for x = ∞ and y ∈ C, we set W (x,∞) = (x, 1, i, x) or
W (∞, y) = (y, 1,−i, y).

Proposition 4.3 Given the isotropic plane span{L1, L2}, let W (x, y) be the complex vector
(2). Then 〈W (x, y), L1〉C = 0 and 〈W (x, y), L2〉C = 0 if, and only if x = st(L1) and
y = st(L2), or y = st(L1) and x = st(L2). Moreover

〈W (x, y),W (x, y)〉C = 0 and 〈W (x, y),W (x, y)〉C = −〈L(x), L(y)〉 = 2|x − y|2 > 0.
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Hence, there exists a bijection G : Qtime −→ Qspace defined by

G([L1 + i L2]) = [W (x, y)].

Now we construct the integral representation for vector fields along M .
Let M be a connected and simply connected open subset of C and let w = u + iv ∈ M

denote its points.
First let us recall that, given two smooth functions A, B : M → R, there exists another

pair of smooth functions a, b : M → R such that � = aAdu + bBdv is a closed 1-form if
and only if avA − bu B = −aAv + bBu . Then, since M is simply connected, it follows that,
if the form � is closed it is exact. This means there is a smooth function ϕ : M → R such
that dϕ = aAdu + bBdv.

We will apply this last fact to vector fields along M . First suppose that

V (w) = (ϕ1(w), ϕ2(w), ϕ3(w), ϕ4(w))

is a smooth vector field along M such that {Vu(w), Vv(w)}w∈M is a set of lightlike vec-
tors which is linearly independent. Then there exist complex functions x, y and real-valued
functions α, β such that

Vu(w) = α(w)L(x(w)) and Vv(w) = β(w)L(y(w)),

where 〈L(x), L(y)〉 = −2|x − y|2 �= 0. So, if we take L = (L1, L2, L3, L4), then the
components of � are given by

�i = ∂ϕi

∂u
du + ∂ϕi

∂v
dv = αLi (x)du + βLi (y)dv.

In other words, we have an unique pair α and β for each coordinate 1-form �i = dϕi .
Now we assume that the vector 1-form � = αL(x)du +βL(y)dv is defined over the ring

F(M,R) of smooth functions from M into R. Since we are assuming that M is a simply
connected open subset of C, we have:

Proposition 4.4 The 1-form � = αL(x)du + βL(y)dv is exact if, and only if it is closed.
Then

d� =
[
−

(
αvL(x) + α

∂L(x)

∂v

)
+

(
βu L(y) + β

∂L(y)

∂u

)]
du ∧ dv = 0 (3)

is a necessary and sufficient condition for the existence of the vector field V (w) such that
dV = �.

If equation (3) holds, then the vector field V (w) is given by:

V (w) = V0 +
∫ w

0
αL(x)du + βL(y)dv. (4)

Moreover, from 〈d�(∂u, ∂v), L(y)〉 = 0 and 〈d�(∂u, ∂v), L(x)〉 = 0 we obtain the
following equations:

1

α

∂α

∂v
= −〈∂vL(x), L(y)〉

〈L(x), L(y)〉 and
1

β

∂β

∂u
= −〈∂u L(y), L(x)〉

〈L(x), L(y)〉 . (5)

Equation (5) is a necessary condition, but it is not sufficient.
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Proof Starting with 〈d�(∂u, ∂v), L(y)〉 = 0 we have

αv

α
= −〈(L(x))v, L(y)〉

〈L(x), L(y)〉 = −xv

x − y
+ −xv

x − y
.

The same proof works for β, so that equations (5) become

αv

α
= −xv

x − y
+ −xv

x − y
and

βu

β
= yu

x − y
+ yu

x − y
. (6)

��

5 Constructing timelikeminimal parametric surfaces in S
3
1(1)

In this section we look carefully at the formulas for the minimal immersion f in terms
μ,W , x and y defined below, as well as the real-valued functions α and β which satisfy
fu(w) = αL(x) and fv(w) = βL(y). This allows us to find the governing equations for
our surface corresponding to three conditions: the existence of isotropic coordinates, the
immersion of the surface in S31(1) and the minimality of the immersion. With these equations
we can construct our immersions.

Let us take W (x, y) given by equation (2), where

x(w) = st( fu(w)) and y(w) = st( fv(w)), (7)

and (M, f ) is an isotropic surface of S31(1) equipped with the non-constant Gauss map ν(w).
Then one can find a map μ(x, y) ∈ C such that

f (w) = μ W (x, y) + μ W (x, y)

2
and |μ|2〈W (x, y),W (x, y)〉C = 2. (8)

Next we look for complex partial differential equations which relate the functions μ(w),
x(w) and y(w) for (M, f ), where f (w) is given by (8), and such that its Gauss map ν(w)

has the form:

ν(w) = μ W (x, y) − μ W (x, y)

2i
. (9)

In addition we ask that {νu(w), νv(w)} ⊂ T f (w)S for all w ∈ M . We seek those partial
differential equations whose solution will guarantee that (M, f ) is a parametric surface in
S
3
1(1) with Gauss map ν(w). This means we are looking for the spherical condition for

equation (8).

Lemma 5.1 (Spherical condition) Let f (w) be the map given by (8) with x, y, μ ∈ F(M,C)

and W (x(w), y(w)) as in (2). Let ν(w) be the map given by (9). Then (M, f ) is a parametric
surface of a scaled S

3
1(1) equipped with Gauss map ν(w) if, and only if,

μw

μ
= −〈Ww,W 〉C

〈W ,W 〉C and
μw

μ
= −〈Ww,W 〉C

〈W ,W 〉C . (10)

Proof From equation (8) we have μμ̄〈W , W̄ 〉C = 2, so that

μw

μ
+ 〈Ww,W 〉C

〈W ,W 〉C + μw

μ
+ 〈Ww,W 〉C

〈W ,W 〉C = 0.
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Since ν(w) is the Gauss map, it follows that, for all w ∈ M , {νu(w), νv(w)} ⊂ T f (w)S. As
we saw above, 〈 fw,W 〉C = 0 = 〈 fw,W 〉C. Thus,

μw〈W ,W 〉 = −μ〈Ww,W 〉 and μw〈W ,W 〉 = −μ〈Ww,W 〉.
These yield equations (10).

Now if equations (10) are satisfied, then μμ̄〈W , W̄ 〉C = c > 0, hence 〈 f , f 〉 is a positive
constant. Since 2 fw = (μW )w + (μW )w, from (10) we find

〈 fw,W 〉C = 1

2
[μw〈W ,W 〉 + μ〈Ww,W 〉] = 0,

〈 fw,W 〉C = 1

2
[μw〈W ,W 〉 + μ〈Ww,W 〉] = 0.

Therefore, for allw ∈ M , {νu(w), νv(w)} ⊂ T f (w)S.Thuswe see that (M, f ) is a parametric
surface of a scaled S

3
1(1) with Gauss map ν(w). ��

Nextwe look for the conditionswhich imply thatwe can choose the parametric coordinates
to be isotropic at every point of M .

Lemma 5.2 (Isotropic condition) Let (M, f ) and ν be the maps given, respectively, by (8)
and (9) for which equations (10) hold. Then the pair (M, f ) is a parametric isotropic surface
of S31(1) with Gauss map ν if and only if the following equations{

Im
(
μ〈Ww, L(y)〉C + μ〈Ww, L(y)〉C) = 0,

Re
(
μ〈Ww, L(x)〉C + μ〈Ww, L(x)〉C) = 0

(11)

are satisfied.

Proof By hypothesis, we are taking W (x, y) with x = st( fu(w)) and y = st( fv(w)).
Hence fu(w) = αL(x) and fv(w) = βL(y) for α, β real-valued functions. Since
〈 fw, L(y)〉 is real-valued, and 2〈 fw, L(y)〉 = μ〈Ww, L(y)〉 + μ〈Ww, L(y)〉, it follows that
Im

(
μ〈Ww, L(y)〉 + μ〈Ww, L(y)〉) = 0. In a similar way, since 〈 fw, L(x)〉 is imaginary-

valued, the second equation of (11) holds.
We now show sufficiency. The map f (w) is given, and equation (9) tells us that ν(w) is its

Gaussmap, so that we have a timelike surface in S31(1). Proposition 4.1 shows that a pointwise
isotropic basis for the tangent bundle T f (w)S is given by {L(x(w)), L(y(w))}w∈M . Next we
need to show that fu and fv are isotropic. In fact, since fu = fw + fw = AL(x)+BL(y) and
fv = −i(CL(x) − DL(y)), for A, B,C, D complex valued functions, the first and second
equations in (11) imply, respectively, that C(w) = 0 and B(w) = 0 for all w ∈ M . ��

Now we show that the pairs (M, f ) and (M, ν) constructed above are closely related. In
fact if (M, f ) is assumed to be a minimal non-totally geodesic isotropic surface in S

3
1(1)

with Gauss map ν(w), then (M, ν) will also represent an isotropic minimal surface in S31(1)
which is non-totally geodesic with Gauss map f (w), and conversely.

Theorem 5.3 Let (M, f ) be a minimal parametric isotropic surface given by (8) equipped
with Gauss map given by (9). Then (M, ν) is also a minimal non-totally geodesic isotropic
surface in S31(1) with Gauss map f (w). Moreover, the isotropic condition for (M, ν) is given
by the equations {

Im
(
μ〈Ww, L(y)〉C − μ〈Ww, L(y)〉C) = 0,

Re
(
μ〈Ww, L(x)〉C − μ〈Ww, L(x)〉C) = 0.

(12)
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Proof Since (M, f ) is minimal, by the Weingarten equations we have νu = −a
F fv and

νv = −c
F fu . Hence

νw = 1

2
(
−aβ

F
L(y) + i

cα

F
L(x)),

where fu(w) = αL(x), fv(w) = βL(y), since, by hypothesis, x and y are chosen so that
x = st( fu(w)) and y = st( fv(w)).

We see easily that span{ fu, fv} ⊂ Tν(w)S. So (M, ν) is an isotropic surface in S31(1)with
Gauss map given by (M, f ), which is also minimal non-totally geodesic.

In order to see that equations (12) hold, we proceed as follows. First, one has

νw = 1

i
((μW )w − fw) = 1

i

(−(μW )w + fw
)
.

Since 〈νw, L(x)〉 is real-valued, then 〈(μW )w − (μW )w, L(x)〉 is pure imaginary. This cor-
responds toRe

(
μ〈Ww, L(x)〉 − μ〈Ww, L(x)〉) = 0, the second equation of (12). Similarly,

using the fact that 〈νw, L(y)〉 is pure imaginary, one gets the first equation of (12). ��
In order to finish this section, we introduce a new complex basis which will make many

of our computations simpler. Define the set of complex vectors

c1 = (1, 0, 0,−1), c2 = (0, 1,−i, 0), c3 = (0, 1, i, 0), c4 = (1, 0, 0, 1).

Each of these vectors is null with respect to the bilinear form 〈, 〉C, and the matrix of
〈ci , c j 〉C = Ci j is given by

Ci j =

⎡
⎢⎢⎣

0 0 0 −2
0 0 2 0
0 2 0 0

−2 0 0 0

⎤
⎥⎥⎦ .

Using this new basis, we see that the expressions for L(x) and W (x, y) become

L(x) = c1 + xc2 + xc3 + xxc4, W (x, y) = c1 + xc2 + yc3 + x yc4, (13)

and one easily checks that W (y, x) = W (x, y). Moreover, if x = x(w) and y = y(w), then

Ww = xw(c2 + yc4) + yw(c3 + xc4) and 〈Ww, L(x)〉C = 2(x − y)xw.

In addition, the spherical condition (10) given by Lemma 5.1 is equivalent to

|μ| = 1

|x − y| ,
μw

μ
= −xw

x − y
+ yw

x − y
and

μw

μ
= −xw

x − y
+ yw

x − y
. (14)

Furthermore, the isotropic condition (11) given by Lemma 5.2, with the orientation given by
{L(x(w)), L(y(w))}, is equivalent to

μyv
x − y

+ μ yv

x − y
= 0 and

μxu
x − y

+ μ xu
x − y

= 0. (15)

5.1 Formulas for themean curvature of timelike parametric surfaces in S31(1)

In this subsection we look for expressions for the mean curvature of timelike surfaces in
S
3
1(1). We will use these expressions in the next section in order to define a new kind of

complex function, which will generalize holomorphic functions.
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Recall we are assuming that (M, f ) is an isotropic surface in S
3
1(1) ⊂ R

4
1. Thus, there

exist two smooth functions α, β : M → R and two smooth functions x, y : M → C such
that

fu(w) = α(w)L(x(w)) and fv(w) = β(w)L(y(w)),

with F = 〈 fu, fv〉 = −2αβ|x − y|2. Moreover, there exists a smooth complex function
μ : M → C such that f (w), W (x, y) are given by formulas (8) and (2), and the intrinsic
Gauss map is the function ν(w) given by (9). We also have the fixed reference frame B =
{ f (w), L(x(w)), L(y(w)), ν(w))}.

The mean curvature of this surface is the trace of Aν = 〈H f , ν〉 = 〈 fuv

F , ν〉, where
F = 〈 fu, fv〉 and H f is the mean curvature vector. We simplify our notation by writing
〈 fuv

F , ν〉 = �(w)
F , where � = 〈 fuv, ν〉.

Next we look more closely at �. In fact, since � = 〈 fuv, ν〉 = 〈(αL(x))v, ν〉 =
−α〈L(x), νv〉 we have

� = −α〈L(x), νv〉 = −α〈L(x), (μWv − μW v)/2i〉.
Using (13) we find 〈L(x),Wv〉 = 2(x − y)xv and 〈L(x),W v〉 = 2(x − y)xv. Thus,

� = −2
α

2i
(μ(x − y)xv − μ(x − y)xv) = −2αIm (μ(x − y)xv) . (16)

Again, since � = 〈 fuv, ν〉 = 〈(βL(y))u, ν〉, we have
� = −β〈L(y), νu〉 = −β〈L(y), (μWu − μWu)/2i〉 = 2βIm

(
μ(x − y)yu

)
.

Altogether then one has

� = 2βIm
(
μ(x − y)yu

)
and � = −2αIm(μ(x − y)xv). (17)

We codify this in the next lemma.

Lemma 5.4 Let (M, f ) be an isotropic parametric surface of the de Sitter space S31(1). Then,
with the notation above,

αIm (μ(x − y)xv) + βIm
(
μ(x − y)yu

) = 0.

Now we continue looking at the formulas for F , and for the functions α and β.

Lemma 5.5 Let (M, f ) be an isotropic parametric surface of the de Sitter space S
3
1(1).

Assume that �(w)
F is the mean curvature of S = f (M). Then

F = −2αβ|x − y|2 = 2αRe (μ(x − y)xv) = −2βRe
(
μ(x − y)yu

)
, (18)

and therefore:

α = Re

(
μ

yu
x − y

)
and β = −Re

(
μ

xv

x − y

)
. (19)

In particular, if � = 0, then the real-valued functions α and β become

α = μ
yu

x − y
and β = −μ

xv

x − y
. (20)
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Proof Since 〈 fuv, f 〉 = −〈 fu, fv〉 = 2αβ|x − y|2, we obtain
−F = 1

2
(〈 fuv, μW (x, y)〉 + 〈 fuv, μW (y, x)〉) = α

(
μ

2
〈Lv(x),W (x, y)〉 + μ

2
〈Lv(x),W 〉

)
.

Then equation (18) follows from F = 2αRe (μxv(x − y)). In similar way, one gets F =
−2βRe

(
μ(x − y)yu

)
. The equation (19) follows by substitution, and (20) follows from (17).

��

6 When 8 = 0 and a new class of functions

In this section we investigate isotropic surfaces in S
3
1(1) with � = 0. We then define a

new class of complex functions which we will call quasi-holomorphic and which appear
naturally when we consider an isotropic surface (M, f ) in S

3
1(1), with f given by (8) and

� = 0. We will also see that the set of quasi-holomorphic functions contains as subsets
both holomorphic and anti-holomorphic functions. When we restrict ourselves to the case
where x, y are holomorphic functions and � = 0, we find our results are simplified and that
the argument of the function μ has to be harmonic. After this, we construct several explicit
examples.

We continue under the same conditions as in Sect. 5. Our first result establishes equations
(22), which we will use frequently in the rest of the paper.

Theorem 6.1 If (M, f ) is an isotropic parametric surface of S31(1) with mean curvature
vector H f , then

〈H f , ν〉 = 1

β
Im

(
μ

xv

x − y

)
= 1

α
Im

(
μ

yu
x − y

)
. (21)

Moreover, if 〈H f , ν〉 = 0, so that � = 0, then

xuv = 2xuxv

x − y
and yuv = −2yu yv

x − y
. (22)

Proof First note that (21) follows from (17) and (18), using the fact that Imγ = −Im(γ ).

Next we derive equations (22). Taking the logarithmic derivative of equation (20) for the
function β we obtain

βu

β
= μu

μ
+ xuv

xv

− xu − yu
x − y

.

From second part of equation (6) for β and from the version of equation (10) for the variable
u, namely

μu

μ
= −xu

x − y
+ yu

x − y
,

we get the first equation of (22). The second equation follows in a similar way. ��
Now we are able to construct explicit examples of minimal isotropic surfaces in S

3
1(1).

Example 6.2 Weobserve that a solutionof the system (22) is givenby the real-valued functions
x = v and y = u. We then define the parametric surface

f (u, v) = W (v, u) + W (u, v)

2(u − v)
for M = {(u, v) ∈ C| u > v}.
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Since in this case μ = 1/(u − v), the spherical condition (14) and isotropic conditions (15)
are satisfied trivially. Furthermore, because the third coordinate f 3(u, v) = 0, the subset
f (M) is an open subset of the sphere

{(t, x, 0, z) ∈ R
4
1| − t2 + x2 + z2 = 1}.

Thus, this surface is a totally geodesic open submanifold of the 2-dimensional de Sitter space
form, away from the set u = v. In consequence, it is minimal in S31(1).

Example 6.3 For each w = u + iv ∈ C let

μ(u, v) =
√
2(1 + i)

4
e(v−u),

and x and y the solution of the system (22) given by

x(u, v) = e(u−v)+i(v+u) and y(u, v) = −e(u−v)+i(v+u).

We see that we have an isotropic surface in S
3
1(1) and the shape operator, with respect to

the flat null coordinates {u, v}, is given by

[
0 1
1 0

]
. In fact, the functions f (w) = μW+μW

2

and ν(w) = μW−μW
2i take the form

f (u, v) =
√
2

2
(sinh(v − u),− sin(u + v), cos(u + v),− cosh(v − u)),

ν(u, v) =
√
2

2
(sinh(v − u), sin(u + v),− cos(u + v),− cosh(v − u)).

With these formulas, we find 〈 f , f 〉 = 1 = 〈ν, ν〉, 〈 f , ν〉 = 0 = 〈 fu, ν〉 = 〈 fv, ν〉 and fu ,
fv are lightlike vectors with 〈 fu, fv〉 = F = 1. Our basis of R

4
1 is given by { f , fu, fv, ν}.

Moreover 〈 fuv, ν〉 = 0, which implies that the surface is minimal, so � = 0. Hence, using
formulas (20), the real-valued functions α and β take the form

α = −
√
2

4
ev−u = −β.

Now it is easy to see that the spherical and isotropic conditions (14) and (15) are satisfied.
Finally, we note that, fromTheorem 5.3, the pair (M, ν) also represents a timelikeminimal

surface in S
3
1(1) with Gauss map given by f (w), whose isotropic conditions are given by

formula (15).

Our explicit construction of isotropic surfaces in S
3
1(1) with � = 0 allows us to define a

new set of complex functions which contains, as a subset, the holomorphic functions. In fact,

Theorem 6.4 Let (M, f ) be an isotropic parametric surface in S31(1) such that � = 0 and

f (w) = μ(w)W (x(w), y(w)) + μ(w)W (y(w), x(w))

2
,

with fu = αL(x) and fv = βL(y). Then the functions x, y : M → C belong to a class of
complex functions Z(w) = ϕ(w) + iψ(w) such that

∂Z

∂v
= iσ(w)

∂Z

∂u
, where σ : M −→ R with σ(w) �= 0 (∀w ∈ M). (23)
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In addition, ϕ and ψ satisfy the following Cauchy–Riemann-type equations:{
ϕu = 1

σ
ψv

ϕv = −σψu .
(24)

Proof Assuming that � = 0, we obtain, from the second equation of (17),

μxv

x − y
= μ xv

x − y
.

Combining this last equationwith the second equation of (15), we find that xu xv+xu xv = 0.
Writing x = a + ib in the last equation, we see that au av + bu bv = 0, which means that
the set of R2-vectors {(bv,−av), (au, bu)} is a linearly dependent set. So, pointwise, there
exists a real-valued function σ = σ(u, v) such that

xv(u, v) = iσ(u, v) xu(u, v) for (u, v) ∈ M .

An analogous computation shows that the function y = y(w) satisfies yu(u, v) =
iξ(u, v) yv(u, v) for some real-valued function ξ = ξ(u, v) defined over M . Thus we have
derived equation (23) for x and y. Moreover, equations (24) are then satisfied.

In light of Theorem 6.4 we define a new class of functions, as follows.

Definition 6.5 A complex function Z : M −→ C is called quasi-holomorphic if, and only
if, there exists a real-valued function σ : M −→ R such that

∂Z

∂v
= iσ

∂Z

∂u
.

We denote this set of functions byO(M). Observe that σ = 1 implies that Z is a holomorphic
function on M , which means that Z ′ = Zu and Z ′ = −i Zv .

As mentioned above, we see that O(M) contains the following subsets:

Proposition 6.6 The class of holomorphic and anti-holomorphic functions, H(M), H(M),
are contained in O(M). Moreover O(M) is closed under conjugation, i.e., O(M) = O(M).

Example 6.7 Let Z(w) = ϕ(u, v) + iψ(u, v) be a holomorphic function and a(u), b(v) two
real-valued functions. Then the function

� = ϕ (a(u), b(v)) + iψ (a(u), b(v)) ∈ O(M).

Indeed, since �u = a′(u)Zu , �v = b′(v)Zv and Z ∈ H(M), it follows from Zv = i Zu =
i Z ′, that �v = iσ�u , with σ = b′(v)

a′(u)
.

For instance, if we take Z(w) = w2, a(u) = u and b(v) = v2, then �(u, v) = u2 − v4 +
2iuv2 ∈ O(M) with σ(u, v) = 2v. Here then �v = 2vi(2u + 2iv2) = 2vi�u .

6.1 When8 = 0 and x, y are holomorphic functions satisfying the system (22)

In this last subsection we focus on isotropic surfaces with � = 0 for which x, y are holo-
morphic functions that satisfy the system (22). We show that, in this case, the functions x and
y are related by a Möbius transformation and that the argument θ of function μ has to be a
harmonic function in M . In particular, we give explicit formulas for x and y when (M, f ) is
a minimal isotropic surface in S31(1) with f being given by (8). We also explicitly construct

123



Annals of Global Analysis and Geometry

families of timelike surfaces in S
3
1(1) with � = 0. This example will be a generalization of

Example 6.3.
In what follows, we use the symbols x ′ or y′ to mean the complex derivative xw or yw,

respectively. We will assume x �= y.

Theorem 6.8 Let x(w) and y(w) be two holomorphic functions from M into C, such that
x − y �= 0 and x ′y′ �= 0. Since xu = x ′ and xv = i x ′, and the same is true for y, the system
(22) for these functions becomes

x ′′ = 2x ′2

x − y
and y′′ = −2y′2

x − y
. (25)

Then, there exists a Möbius transformation

Mc(z) = z

cz − 1
where c ∈ C,

such that y′(w) = Mc(x ′(w)) for each w ∈ M. Conversely, if x(w) and y(w) are related by
Mc(z) and x(w) is a solution of the first equation in (25), then y(w) is solution of second
one.

Proof Since

x ′′

x ′2 + y′′

y′2 =
(−1

x ′

)′
+

(−1

y′

)′
= 0 ⇐⇒

(
1

x ′

)
+

(
1

y′

)
= c ∈ C,

we obtain the family of relations y′ = Mc(x ′). Conversely, if we assume that y′ = Mc(x ′)
and x satisfies (25), then it follows that y′′/(y′)2 = −2/(x − y). ��
Corollary 6.9 Let x(w), y(w) be holomorphic functions from M intoC, such that x− y �= 0,
x ′y′ �= 0 and which satisfy equations (25). If c = 0 in the Möbius transformation, then
y′ = −x ′, and if c = ∞ then y′ = 0.

Example 6.10 If c = 0, so that x ′ + y′ = 0, then x + y = 2a for some a ∈ C. Letting
x − y = 2z(w) it follows that x = z(w) + a. Then equations (25) become z′′

z′ = z′
z . This

implies z′
z = k, for some complex number k. Finally, we find that the solution of the system

(25) is

x = a + ekw+b and y = a − ekw+b

for complex numbers a, b and k �= 0.

Next we obtain information about the argument of the integration factor μ. Since |μ| =
1

|x−y| , its polar form is

μ(w) = eiθ(w)

|x(w) − y(w)| .

Lemma 6.11 For holomorphic functions x, y from M intoC, the spherical condition (14) for
the polar form of μ is

θw = i

2

x ′ + y′

x − y
. (26)

Therefore, the real-valued function θ is harmonic in M.
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Proof As xw = x ′, xw = 0 and logμ = iθ − 1
2 log(x − y) − 1

2 log(x − y), then μw

μ
=

iθw − 1
2
x ′−y′
x−y . Since the same equations hold for y, we obtain from equations (14) that

−x ′

x − y
= iθw − 1

2

x ′

x − y
+ 1

2

y′

x − y
,

which implies equation (26). ��
For the next lemma we recall that we are assuming that fu and fv are multiples of L(x)

and L(y), respectively.

Lemma 6.12 For holomorphic functions x, y from M into C, the isotropic conditions (15)
correspond to the equations

Re

(
eiθ

x ′

x − y

)
= 0 and Re

(
e−iθ iy′

x − y

)
= 0. (27)

Proof It follows from equations (15) that, since |x − y| is real, xu = x ′ and yv = iy′. Indeed,
equations (15) say that eiθ x ′

x−y and ie−iθ y′
x−y are imaginary-valued functions. ��

The next corollary says that the function θ contains quite a bit of information about the
holomorphic functions x ′, y′ and x − y.

Corollary 6.13 For x, y holomorphic functions from M intoC, the equations (27) mean that

arg

(
x ′

x − y

)
= −θ ± π

2
+ 2kπ and arg

(
y′

x − y

)
= θ ± π + 2kπ, for k ∈ Z.

Theorem 6.14 (Necessity) Assume that (M, f ) is a minimal isotropic surface into S
3
1(1),

such that θ is a non-constant real-valued harmonic function, with f given by equation (8),
and x and y holomorphic functions. Then there exists constants k, c ∈ C \ {0} such that

x(w) = 1

c

∫ w

w0

(1 + keψ(ξ))dξ and y(w) = 1

ck

∫ w

w0

(k + e−ψ(ξ))dξ, (28)

where ψ is the harmonic function given by

ψ(w) = θ(w0) − 4i
∫ w

w0

θw(ξ)dξ. (29)

Proof By Theorem 6.8 we see that there exists a Möbius transformation Mc such that y′ =
Mc(x ′). This implies y′(cx ′ − 1) = x ′. Hence x ′ + y′ = cx ′y′ for c �= 0.

Now, from equations (25) and (26) it follows that

x ′′

x ′ − y′′

y′ = 2
x ′ + y′

x − y
= −4iθw =: ψw.

Then we have the system

x ′ + y′ = cx ′y′ and
x ′

y′ = keψ,

since the logarithmic derivative x ′/y′ equals ψw . From these two equations we see that
cx ′ = 1 + keψ and kcy′ = k + e−ψ . Therefore we get the expressions in (28). Moreover,
since θ is a harmonic function, it follows immediately that ψ is also a harmonic function. ��
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In our last example we construct a family of isotropic surfaces in S
3
1(1) by varying the real

parameter r .

Example 6.15 For complex numbers c and k �= 0 and taking 0 �= r ∈ R, we define, for each
w = u + iv ∈ C the following functions:

μ(u, v) = eiθ

2|k|e
−Re(aw),

x(u, v) = c + ke(1+i)r(u+iv),

y(u, v) = c − ke(1+i)r(u+iv),

where a = r(1 + i) and θ is one of {π/4, 3π/4, 5π/4, 7π/4}.
We can derive this by assuming that x, y have the form above and that μ(u, v) =√

2(1+i)
4|k| er(v−u). We begin by taking x, y holomorphic functions such that x + y = 2c and

x − y = 2z = 2keaw, where c, a ∈ C, and k ∈ C − {0}. We see that z′/z = a.
Now we look for the function μ satisfying the spherical and isotropic equations (14) and

(15), to obtain an isotropic immersion in S
3
1(1) ⊂ R

4
1.

From equation (14), since xw = x ′ = −y′, we find

μw

μ
= −xw

x − y
= μw

μ
= yw

x − y
= −a

2
.

Now, since we must have |μ| = 1
|2keaw | with 0 �= k ∈ C, we set

μ(u, v) = eiθ

2|k|e
−Re(aw).

Moreover, since μw

μ
= −a

2 we have θw = 0, which implies that θ ∈ C.
Since xw = xu = x ′, the second equation of (15) implies thatRe(μ a

2 ) = Re(μ xu
x−y ) = 0,

henceμ a
2 is imaginary. In the same way, the first equation of (15) says thatμi a2 is imaginary.

Taking eiθ = p, we obtain

pa = −p a and pa = pa. (30)

The latter implies that ( aa )2 = −1 = (
p
p )2. Then, from p2 = −(p)2, we have p = b(1 ± i)

for some real number b. Similarly, we find that a = r(1 ± i) for some real number r �= 0.
Finally, since |p| = 1 and a, p have to satisfy equation (30), we choose from a set of four
possible solutions for p4 = −1, as seen above.
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