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Abstract

Learning techniques involve unraveling regression structures, which aim to analyze in a

probabilistic frame the associations across variables of interest. Thus, analyzing fraction

and/or proportion data may not be adequate with standard regression procedures, since the

linear regression models generally assume that the dependent (outcome) variable is nor-

mally distributed. In this manner, we propose a statistical model called unit-Lindley regres-

sion model, for the purpose of Statistical Process Control (SPC). As a result, a new control

chart tool was proposed, which targets the water monitoring dynamic, as well as the moni-

toring of relative humidity, per minute, of Copiapó city, located in Atacama Desert (one of

the driest non-polar places on Earth), north of Chile. Our results show that variables such as

wind speed, 24-hour temperature variation, and solar radiation are useful to describe the

amount of relative humidity in the air. Additionally, Information Visualization (InfoVis) tools

help to understand the time seasonality of the water particle phenomenon of the region in

near real-time analysis. The developed methodology also helps to label unusual events,

such as Camanchaca, and other water monitoring-related events.

1 Introduction

Data acquisition related to natural resources is, day to day, more and more abundant, due to

the miniaturization and reduction of data storage costs. Additionally, adopting the Internet of

Things (IoT) technology helps to connect countless of decentralized devices and sustainability

sources in benefits of analyzing to enhance planning, delivery, and efficiency of existing

sources. These elements foment the decision-making performed on processing in near real-

time, which remains a big challenge, given the need to configure systems to run every few min-

utes or hours, which causes them to process only the most recent features stored using robust

data analysis tools.

Environmental Indicators (EI) play an important role in the sustainability in order to dis-

seminate global environment statistics, based on the wide range of data sources, streamlining
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processes with IoT. Combined with Information Visualization (InfoVis), visual techniques

provide support for specialists to visually summarize, explore, and reveal trends and patterns

within data sets. Nonetheless, they are still in an early stage of development in many countries,

and data are often sparse.

For instance, water source patterns may be seen as a combination of attributes (such as

radiation, temperature, wind information, etc.) that impact directly this water proportion/rate.

Moreover, in Atacama Desert, the water resources limitation demands extra need to unravel

such dependent structure for water particles monitoring [1] and watershed estimation/

forecasting.

In the case of rates and proportions processes, whereas the observed variable assumes values

in the range (0, 1), there is a well-represented class of models, the unit distributions family,

which deals with this type of sensor data, but are often univariate and not extended, in their

inference, to some regression structures (see, e.g., [2–5]). Regression structures, in probabilis-

tic modeling, can provide a flexible set of tools for examining such associations, while enabling,

either, potentially confounding effects of other factors, or interaction effects for Statistical Pro-

cess Control (SPC) tools [6].

This study considers a statistical model called unit-Lindley regression model [7], in which

through the logit transformation, new variables can be incorporated into the parameter esti-

mation, and the adequacy of some statistical association across those explanatory variables on

the response variable can be verified. Furthermore, for the purpose of SPC, a new control chart

is proposed targeting the water monitoring dynamic in Copiapó city, located in Atacama Des-

ert (one of the driest non-polar places on Earth; see [8, 9]), north of Chile.

The upcoming contents of this paper are organized as follows. Section 2 describes the prac-

tical motivation. In Section 3, we present the unit-Lindley learning model and some of its basic

properties (Subsection 3.1), as well as the novel control chart based on it (Subsection 3.2). Sec-

tion 4 provides simulation studies designed to assess the performance of the proposed unit-

Lindley regression control chart. Section 5 illustrates some findings towards the water particles

monitoring in Atacama Desert through EI relationship. Finally, Section 6 concludes the paper

with a few remarks and discussions on future studies.

2 Motivation

Water is the most precious resource that enables us to maintain the fauna and flora of a region,

thus the existence of water resources is conditioned for its under-existence. An important

water source from the Andean range is the cryosphere defrost, which generates water flows

and underwater basins (Fig 1). Additionally, a phenomenon called Camanchaca occurs,

whereas marine stratocumulus cloud banks that form in the Chilean coast blow as a passage-

way of “low clouds”, right after sunrise, in sequence for a couple of hours, creating a huge

influence on the marks and infiltrating along the river valleys [10].

Relative humidity is the ratio of the partial pressure of water vapor in the air to reach an

equilibrium in vapor pressure (of water), and there are three elements to be related with the

water precipitation phenomenon: temperature, wind movement, and solar radiation. It is,

therefore, the effective ratio of water content of the air in relation to the maximum water con-

tent that the air could contain (water in the form of vapor).

The maximum water content of the air depends directly on the temperature (the higher the

temperature, the more water the air can contain, which is why when the temperature cools, the

relative humidity increases, sometimes reaching saturation, which leads to the formation of

fog or Camanchaca). Additionally, the wind moves the air masses and will, therefore, influence

in their water content. The wind will also affect the evaporation of water, which will, again,
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modify the water content of the air masses (but directly linked to the moves of air masses).

Finally, radiation affects the temperature and, therefore, the equilibrium in vapor pressure.

During precipitation, the falling water will partly evaporate, again modifying the water con-

tent of the air masses (but also decreasing the temperature since evaporation requires an

energy input, drawn from the environment). The altitude from which precipitation is initiated

is, therefore, important. The lower layers will gain water and lose temperature, but the cloud

will lose water and warm up.

As for the Camanchaca phenomenon, fog often forms at sea level during the night, when

the air temperature cools both because of the night and because of the contact with the cold

waters of Humboldt Current [1]. The westerly winds, then, push these fog banks inland, pref-

erably following the valleys, as the reliefs crossing implies in a loss of humidity by cooling

(thus, a decrease in relative humidity, which potentially causes the fog to disappear).

The particular climatological conditions of the region often imply in a very low temperature

inversion, normally present around 10,000 meters (m) over the Earth, but sometimes below

1,000 m in the Atacama region [11]. Due to the altitude, the temperature normally decreases

till the tropopause (the boundary between the troposphere and the stratosphere), and then

increases again in the stratosphere. In the Atacama region, the first temperature inversion

around 1,000 m or less (and then another one, much more higher, that determines the tropo-

pause), prevents the Camanchaca from going up in altitude (a temperature inversion is almost

an insurmountable wall for air masses, with only the stratocumulus clouds having enough

energy to cross this border).

3 Methodology

Human learning is majorly associated, directly and indirectly, with visual stimulation, whereas

almost half of the neural tissue of the cognitive systems is related to pattern recognition

through the vision [12]. The area of InfoVis aims to develop and apply visual representations

towards the modeling and understanding of attribute values, relationships, and information

extraction from data [13, 14]. InfoVis takes advantage of human cognition abilities to

Fig 1. Water cycle sources (solid, liquid and vapor phases). Source: elaborated by the authors.

https://doi.org/10.1371/journal.pone.0275841.g001
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transform abstract data into visual information, since the effort to identify, interpret, and

extract patterns is reduced when raw data is depicted in the form of graphical elements [15].

InfoVis techniques have been successfully applied to the analyses of different data sets (e.g.,

those related to business planning, social networks, climate, pollution, finances, criminal cases,

etc.) [16–19] and in the identification of patterns and anomalies to be used as information to

support decision-making [20], and can represent, both, unidimensional and multidimensional

data (data sets with a large number of attributes related to each data record). InfoVis approach

graphically represent information through computer systems, which show alternative data

visions to describe their structures [21]. However, a large gap lies between the generation and

storage of data, and the ability of analytical tools to process, organize and properly display the

extracted information [22, 23].

In this manner, the following three-phase procedure is adopted towards the collected data:

a Descriptive Analysis is combined with InfoVis, then an inference analysis is made through

Learning Structure approach, with the unit-Lindley regression model (summarized in Fig 2).

In the following subsections, we will present, in details, the inferences related to the unit-

Lindley distribution (Subsection 3.1), then its extension to SPC reasoning, as well as comple-

mentary regression (Subsection 3.2).

3.1 The unit-Lindley learning

Recently, [7] have introduced a one-parameter continuous probability distribution, defined by

the interval (0, 1), called the unit-Lindley (UL) distribution. In this study, we shall consider a

mean parameterized form of the UL distribution, also presented by the authors.

A random variable Y has a UL distribution with parameter 0< μ< 1, denoted by Y� UL

(μ), if its cumulative distribution function is given by

Fðy j mÞ ¼ 1 � 1 �
yð1 � mÞ
y � 1

� �

expf�
yð1 � mÞ
mð1 � yÞ

g; for 0 < y < 1:

The corresponding probability density function (PDF) is

f ðy j mÞ ¼
ð1 � mÞ

2

mð1 � yÞ3
expf�

yð1 � mÞ
mð1 � yÞ

g; for 0 < y < 1:

If Y� UL(μ), then the mean and variance of Y are given, respectively, by

E½Y� ¼ m and Var½Y� ¼ m
1

m
� 1

� �2

exp
1

m
� 1

� �

Ei 1;
1

m
� 1

� �� �

�
1

m
þ 2

" #

� m2;

in which Eiða; zÞ ¼
R1

1
y� ae� yz dy is the exponential integral function [24].

Fig 2. Visual representation of the adopted methodology.

https://doi.org/10.1371/journal.pone.0275841.g002
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The quantile function of the UL(μ) distribution can be written as

Qðp j mÞ ¼ F� 1ðp j mÞ ¼

1

m
þW� 1

ðp � 1Þ

m
exp �

1

m

� �� �

1þW� 1

ðp � 1Þ

m
exp �

1

m

� �� � ; for 0 < p < 1; ð1Þ

in which W−1 is the negative branch of the Lambert W function [25].

In a regression analysis, it is very common to model the mean of the response variable (the

variable of interest) as a function of several other variables, also called explanatory variables or

covariates. The UL distribution described above can be easily and promptly used in this con-

text, as demonstrated by [7].

Let Y1, Y2, . . ., Yn be n independent random variables, in which Yi� UL(μi), for i = 1, 2, . . .,

n. The so-called UL regression model is defined assuming that the mean of Yi satisfies the fol-

lowing functional relation (linear predictor):

gðmiÞ ¼ x>i β; ð2Þ

in which β ¼ ðb1; b2; . . . ; bkÞ
>
2 Rk denotes a k-dimensional vector of regression coefficients

(k< n), x>i ¼ ðxi1; xi2; . . . ; xikÞ represents the observations on k known covariates, and g(�) is a

strictly monotonic and twice differentiable function that maps the interval (0, 1) intoR (mean

link function).

In this study, as in [7], we shall consider the logit link function, which ensures that the pre-

dicted mean stays within bounds (0, 1). Hence, the regression structure for μi is given by

logitðmiÞ ¼ log
mi

1 � mi

� �

¼ x>i β:

Among other possible choices for the mean link function, we should mention the probit,

cauchit, log-log and complementary log-log link functions (for these and other useful link

functions, see [26]).

Under a classical inference approach, the unknown parameter vector β = (β1, β2, . . ., βk)
>

can be estimated by maximizing the log-likelihood function:

‘ðβÞ ¼
Xn

i¼1

‘ðmiÞ;

in which

‘ðmiÞ ¼ 2logð1 � miÞ � logðmiÞ � 3logð1 � yiÞ �
yið1 � miÞ

mið1 � yiÞ

and

mi ¼ logit
� 1
ðx>i βÞ ¼

expfx>i βg
1þ expfx>i βg

:

Since the maximum likelihood (ML) estimator β̂ of β cannot be expressed in closed form,

we must resort to iterative methods, such as the Newton-Raphson and Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithms (for further details, see, e.g., [27]), to obtain the parame-

ter estimates.
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3.2 The unit-Lindley regression control chart

Let us start this subsection with a brief review about the UL control chart [1], which is useful

to statistically monitor variables of rate or proportion type, that are independent and with no

control variables being present. Subsequently, we will present the proposed UL regression con-

trol chart.

Suppose that a process (e.g., a manufacturing or business process) generates outputs

according to a UL(μ) distribution, and the probability of false alarm (or equivalently, type I

error) is given by α. Then, the lower control limit (LCL), centerline (CL) and upper control

limit (UCL) of the UL control chart are defined as follows [1]:

LCL ¼ Qða=2 j mÞ; CL ¼ m; UCL ¼ Qð1 � a=2 j mÞ;

in which Q(.) is the quantile function presented in Eq (1).

It is worth mentioning that the use of the quantile function is justified by [28].

Nevertheless, the UL control chart does not consider situations in which the practitioner is

required to impose a regression structure for the variable of interest. Our interest lies in cases

in which the mean of the quality characteristic of interest (of rate or proportion type) is affected

by control variables and can, then, be modeled as a function of them and unknown parameters.

Thus, considering the regression structure for μi defined in Eq (2) (e.g., using the logit link

function), and a probability of false alarm equal to α (e.g., α = 0.0027, which corresponds to

the standard three-sigma rule or Six Sigma program), we have that the non-constant (or obser-

vation-specific) LCL, CL and UCL of the proposed UL regression control chart are given by

LCLi ¼ Qða=2 j miÞ; CLi ¼ mi; UCLi ¼ Qð1 � a=2 j miÞ;

for i = 1, 2, . . ., n.

In practice, the ML estimator of μi is considered, with m̂i ¼ g � 1ðx>i β̂Þ, in which β̂ is the ML

estimator of β.

It is important to mention that there are two natural ways to visually represent and monitor

this conditional structure: by adopting the varying conditional mean representation, or

through its residual representation (that is, centralizing the process on zero by subtracting the

expected value from the observed value).

4 Numerical evaluation

In this section, we conduct Monte Carlo (MC) simulations to assess and compare the perfor-

mance of the proposed UL regression control chart with the existing beta regression control

chart [28]. The performance comparisons are made in terms of the average run length (ARL),

the median run length (MRL), and the standard deviation of the run length (SDRL). All statis-

tical analyses were conducted using the R software version 3.6.3 [29].

The ARL is a popular measure used to assess the performance of control charts. The in-con-

trol and out-of-control ARLs are denoted as ARL0 and ARL1, respectively. The first one is

defined as the average number of points plotted on the control chart until a signal occurs (that

is, a single point falls beyond the control limits), assuming that the process is in control;

whereas the second one represents the average number of observations that are taken before a

mean shift is first detected when the process is out of control [30].

The MRL is the 50th percentage point of the run length (RL) distribution. In constrast to

the ARL, the MRL is less affected by the skewness of the RL distribution [31]. The SDRL is a

useful measure to estimate the dispersion of the RL distribution. Moreover, we will use the in-

control (MRL0 and SDRL0) and out-of-control (MRL1 and SDRL1) versions of such metrics.
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Let Y be the output of a process that follows a UL(μ) distribution, for instance. Also, let μ(0)

be the average of the process under control, and let μ(1) be the average of the out-of-control

process. Then, the ARL0, MRL0 and SDRL0 are defined as

ARL0 ¼ 1=a; MRL0 ¼ logð0:5Þ=logð1 � aÞ; SDRL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � aÞ=a2

p
;

for a ¼ PðY=2½LCL;UCL� j m ¼ mð0ÞÞ. Whereas the ARL1, MRL1 and SDRL1 are given by

ARL1 ¼ 1=ð1 � gÞ; MRL1 ¼ logð0:5Þ=logðgÞ; SDRL1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g=ð1 � gÞ
2

q

;

for g ¼ PðY 2 ½LCL;UCL� j m ¼ mð1ÞÞ.
In the usual Six Sigma program, α = 0.0027 and, therefore, ARL0 = 1/0.0027� 370, MRL0 =

log(0.5)/log(1 − 0.0027)� 256 and SDRL0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � 0:0027Þ=0:00272

p
� 370. This means, e.g.

for the ARL0, that even though the process is in control, on average, a false alarm (incorrect

out-of-control signal) will be generated at every 370 points [32]. On the other hand, low (i.e.,

close to one) values of ARL1 are desired, mainly for large-size shifts in the process mean.

4.1 General specifications

Without loss of generality, we may consider UL and beta processes with (in-control) mean

parameter: μ(0)� 0.2, 0.5 and 0.8, whose PDF plots are shown in Fig 3 (UL) and Fig 4 (beta), as

Fig 3. General description of the UL density function, followed by its illustration in different locations

conditioned to the process mean parameter (μ).

https://doi.org/10.1371/journal.pone.0275841.g003

Fig 4. General description of the beta density function, followed by its illustration in different locations

conditioned to the process mean parameter (μ).

https://doi.org/10.1371/journal.pone.0275841.g004
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well as two distinct values for the probability of false alarm: α = 0.1 (which corresponds to

ARL0 = 10, MRL0� 6.579 and SDRL0� 9.487) and 0.01 (which corresponds to ARL0 = 100,

MRL0� 68.968 and SDRL0� 99.499). We also use different sample sizes for each process:

n = 100, 200, 500 and 1, 000. These n observations are devoted to Phase I or retrospective anal-

ysis (process parameter estimation! assessment of process stability! control limits estab-

lishment). Whereas n� = 5, 000 new observations are used to Phase II or prospective analysis

(process monitoring! assessment of control chart performance). For the numerical evalua-

tion, we consider 5,000 MC simulations (or replicates), which, according to [33], and also

pointed out by other authors (e.g., [34]), is sufficient to obtain accurate results.

The generation of the data under control is based on the UL and beta regression models,

with structure for the mean μi (around μ(0)) given by

log
mi

1 � mi

� �

¼ b0 þ b1xi;

in which the values of the single covariate are drawn from the Uniform(0, 1) and Normal(1,

0.01) distributions, for the UL and beta processes, respectively, that is, Xi�
iid Uniformð0; 1Þ, for

i = 1, 2, . . ., n, n + 1, . . ., n + n�, when the true data-generating process is UL distributed, and

Xi�
iid Normalð1; 0:01Þ, for i = 1, 2, . . ., n, n + 1, . . ., n + n�, when the true data-generating pro-

cess is beta distributed. Here, the abbreviation iid stands for “independent and identically dis-

tributed”. The parameter values for the mean structure of each regression model are presented

in Table 1 (UL) and Table 2 (beta).

For the estimation of beta regression model parameters, the R package gamlss [35] is

used.

Finally, to compute the ARL1, MRL1 and SDRL1, we consider shifts at different levels, rep-

resenting percentage decreases and increases p in the process mean. The assumed levels are:

p = 1% (down-shifted mean: μ(1)� 0.198, 0.495 and 0.792; up-shifted mean: μ(1)� 0.202, 0.505

and 0.808) to 10% (down-shifted mean: μ(1)� 0.18, 0.45 and 0.72; up-shifted mean: μ(1)�

0.22, 0.55 and 0.88) and 20% (down-shifted mean: μ(1)� 0.16, 0.4 and 0.64; up-shifted mean:

μ(1)� 0.24, 0.6 and 0.96). The parameter values for the mean structure of each regression

model are shown in Table 3.

Table 1. Parameter values for scenarios considered in the simulation, when the true data-generating process is UL

distributed (in-control condition).

Scenario β0 β1 Characteristic

1 1.00 -6.16 μ� 0.2

2 1.00 -2.00 μ� 0.5

3 1.00 0.77 μ� 0.8

https://doi.org/10.1371/journal.pone.0275841.t001

Table 2. Parameter values for scenarios considered in the simulation, when the true data-generating process is

beta distributed (in-control condition).

Scenario β0 β1 Characteristic

1 1.00 -2.39 μ � 0.2 and σ � 0.37

2 1.00 -1.00 μ � 0.5 and σ � 0.45

3 1.00 0.40 μ � 0.8 and σ � 0.38

https://doi.org/10.1371/journal.pone.0275841.t002
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4.2 Simulation results

The results obtained with MC simulations, performed for each situation studied, are available

in S1 Appendix. In short, such results seem to indicate (despite some slight to moderate dis-

crepancies between the theoretical/target values of the performance measures, and the values

calculated through simulations in some cases, which are, in fact, expected due to the effect of

parameter estimation on control chart properties; see, for instance [36–38]) a good perfor-

mance of the proposed regression control chart, mainly when the true data-generating process

is UL distributed, and with increases in the process mean (this latter finding is in agreement

with the results of [1]). In the cases in which data are generated from the beta distribution, the

UL regression control chart tends to show slightly higher false alarm rates, whereas performing

reasonably well when changes (increases and decreases) in the process mean occur. Once

again, it is worth pointing out that the proposed regression control chart has its basis on a dis-

tribution with a single parameter (and, thus, more straightforward than the two-parameter

beta distribution).

5 Application

The relative humidity of the air in the city of Copiapó, Chile, is particularly interesting to be

monitored given that it is located in the heart of Atacama Desert, and also because it is an

important northern Chilean city. The main economic source is related to the extraction of

minerals and agriculture, both demanding great volume of water sources. Nevertheless, a natu-

ral water particle flux happens periodically given the geolocation of this city (placed in a valley,

and about 60 kilometers open-field from the Chilean coast).

As a consequence, water events monitoring is needed, in relation to other natural phenom-

ena, thus creating an opportunity to adopt the UL regression control chart for real data source.

The data set adopted in this study was acquired from the Dirección General De Aeronáutica
Civil, Dirección Meteorológica de Chile—Servicios Climáticos, which provides several sets

Table 3. Parameter values for scenarios considered in the simulation (out-of-control condition).

UL Beta Characteristic

β0 β1 β0 β1

0.48 -5.77 0.58 -2.26 μ� 0.160

0.70 -5.89 0.91 -2.41 μ� 0.180

0.91 -6.08 0.97 -2.37 μ� 0.198

0.96 -6.11 1.02 -2.37 μ� 0.202

1.18 -6.30 1.06 -2.35 μ� 0.220

1.46 -6.57 1.35 -2.50 μ� 0.240

0.47 -1.76 0.46 -0.87 μ� 0.400

0.76 -1.91 0.67 -0.87 μ� 0.450

1.05 -2.11 1.00 -1.02 μ� 0.495

1.12 -2.16 1.07 -1.05 μ� 0.505

1.48 -2.43 1.33 -1.14 μ� 0.550

1.95 -2.88 1.69 -1.28 μ� 0.600

0.37 0.40 0.37 0.22 μ� 0.640

0.68 0.50 0.70 0.25 μ� 0.720

0.99 0.67 1.02 0.32 μ� 0.792

1.05 0.76 0.98 0.47 μ� 0.808

1.39 1.22 1.44 0.57 μ� 0.880

1.27 5.35 1.13 2.12 μ� 0.960

https://doi.org/10.1371/journal.pone.0275841.t003
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related to natural sources in Chile. Additionally, the water relative humidity-related Wind,

Temperature, Solar Radiacion, and Humidity Pressure sets of the studied city. All records were

taken from January 1st, 2019 to June 30th, 2021 (per minute), period in which some missing

data are noticeable, resulting in a total of 1,237,596 data points. After data wrangling, we

obtained a unified set containing 12 covariates: six related to the Wind dimension (ddInst,
ffInst, dd02Minutos, ff02Minutos, dd01MinutosMax, ff01MinutosMax), two related to Temper-

ature (ts, td), one related to Radiation (radiacionGlobalInst), and three related to Humidity

(hr, p0, qff). The adopted data set is available at: https://doi.org/10.34740/KAGGLE/DSV/

4051087, while the developed R script is available at: https://github.com/ProfNascimento/

ULreg.

Since all variables are continuous, as a first relation metric, we used the Spearman’s rank

correlation coefficient. Fig 5 shows that, considering the relativity humidity (hr) variable, in

module, the most associated covariates considering the same time period per dimension were:

current temperature (ts), wind speed (ffInst), and solar radiation (radiacionGlobalInst). More-

over, in the Wind dimension, in module, the greatest correlated variable was ff01MinutosMax,

thus highly positive related to the instantaneous speed (ffInst).
The first step before starting to seek some association across these explanatory variables

(X’s), was to perform a multicollinearity checking. After adjusting an Ordinary Least Squares

(OLS) model, three variables (p0, qff, ts) presented high Variance Inflation Factor (VIF),

greater than 500 units in module, and were then excluded. Additionally, a presence of three

clusters was noticed related to the response of the Wind, Temperature, and Radiation. Based

Fig 5. Correlation plot across weather variables.

https://doi.org/10.1371/journal.pone.0275841.g005
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on the expert knowledge, the selected variables to represent those clusters, and might be

related to the relative humidity (theoretically), were the instantaneous wind speed (ffInst),
instantaneous solar radiation (radiacionGlobalInst), and 24-hour temperature variation (td).

Looking closer into the instantaneous wind speed variable across time, Fig 6 depicts the

monthly dynamic of this variable (left-hand panel), as well as the dynamic related to the

instantaneous temperature (middle panel), and the solar radiation (right-hand panel). The

lowest average records were from May to August, and the highest from December to February

for all of these variables.

Fig 7 displays the variables’ multidimensional relation, through the parallel plot, in which

each line is a day-related record. Specifically, the top graphics are related to 10:00–10:01 a.m.

Fig 6. Radar plots: monthly wind variation (left-hand panel), 24-hour temperature variation (middle panel), and

monthly solar radiation (right-hand panel). The red dots represent the minimum relative record for each month.

https://doi.org/10.1371/journal.pone.0275841.g006

Fig 7. Parallel plots describing the records variation throughout time and across variables. The top graphics are

related with Phase I, at 10 a.m., and, the bottom graphics, at 4 p.m. The summer period months (mostly pink tones)

present great range of records across weather variables (wind, 24-hour temperature variation, solar radiation and

relative humidity).

https://doi.org/10.1371/journal.pone.0275841.g007
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(first minute), and the bottom graphics to 4:00–4:01 p.m. (first minute). Moreover, the bright

colors are related to November until March (seasons in which the days receive sunlight ear-

lier). For instance, higher values are noticeable in the summer time, during the morning

(given the sunlight incidence), and vary more throughout the year in the afternoon.

The theoretical model adopted for this problematic was:

Relative Humidityi � ULðmiÞ; in which

logit
mi

1 � mi

� �

¼ b0 þ b1Wind Speedi þ b2 DTemperaturei þ b3 Solar Radiationi;

for i = 1, 2, . . ., 1, 207, 079 (Phase I).

Table 4 shows the estimates related to the three EI, which play an important role in the

predictability, and association, of relative humidity. Since the link function related to the

UL regression model is the logit function, further interpretation of β parameters requires

to be transformed before. That is, for a unit increase in wind speed, on average, a change of

exp{−0.0695�X}/(1 + exp{−0.0695�X})! X = 1� 0.483 in the mean of the relative humidity,

or the odds rate is to be expected. It is important to mention that a fraction contribution can

also be adopted (based on proportion), since the response variable is a unit.

Thus, through the use of Phase II observation points, that is, the last 23 days, it is also possi-

ble to confirm the similarity across the association obtained from the UL regression results

from Phase I. Fig 8 shows the pair relation across the studied variables, from which negative

Spearman’s rank correlation coefficients were obtained across Relative Humidity and Solar

Radiation, and Relative Humidity and Wind Speed (similar to the estimated β coefficients

from the UL regression model).

Table 4. UL regression model adjusted for relative humidity data.

Estimate Std. error t stat p-value

Intercept 0.7103 0.0026 301.5 <0.0001

Wind Speed -0.0695 0.0003 -259.7 <0.0001

ΔTemperature 0.0585 0.0002 266.7 <0.0001

Solar Radiation -0.0013 <0.0001 -665.1 <0.0001

https://doi.org/10.1371/journal.pone.0275841.t004

Fig 8. Pairwise representations adopting the Phase II observations, and their Spearman correlations.

https://doi.org/10.1371/journal.pone.0275841.g008
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The historical data were captured per minute, and the relative humidity, for Phase II, was

observed during June 9th, 7:21 p.m. and July 1st, midnight. The total number of observation

points was of 30,517, and the adoption of the UL regression model enables to estimate the pro-

cess mean varying in time. Table 5 summarizes the expected air humidity, per minute, and its

variation in Copiapó city. Considering a Six Sigma policy supervision, on average per minute,

the relative humidity fluctuation is centered in 62.1%, with range between 18.2% and 77.9%.

The maximum that could be observed was up to 94.1% of humidity (thus, some influx of water

particles from the ocean happens, even though the analyzed city is placed at 350 m from the

sea level and no elevation is placed between the coast and this city).

Moreover, the obtained SPC boundaries help to detect some massive water flux events, like

Camanchaca, revealed by their discrepancy. Fig 9 shows the control chart in which the minutes

Table 5. Relative humidity’s summary statistics obtained from the UL regression analysis, given time-varying

SPC, for its expected mean and boundaries.

LCL CL (μ) UCL

Minimum 0.014 0.182 0.436

1st Quartile 0.115 0.545 0.833

Median 0.223 0.669 0.898

Mean 0.207 0.621 0.863

3rd Quartile 0.289 0.718 0.918

Maximum 0.399 0.779 0.941

https://doi.org/10.1371/journal.pone.0275841.t005

Fig 9. UL regression control chart (Phase II) adopting the residual representation (top panel), and the covariates’

dynamic plots (lower panels).

https://doi.org/10.1371/journal.pone.0275841.g009
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when this suddenly discrepant water-related event started (top graphic, in blue colors), and the

covariates’ response during this event (lower graphics).

We also compared the performance of the proposed approach with the one presented in

[28]. That is, we also built control charts based on the beta regression model with constant and

varying dispersion parameter (hereafter, beta 1 and beta 2 models, respectively). Note that the

beta 1 model was already considered in Section 4. First, a performance comparison of the

three models (UL, beta 1 and beta 2), in terms of Akaike Information Criterion (AIC) [39],

Bayesian or Schwarz Information Criterion (BIC) [40], and Root Mean Squared Error

(RMSE), is presented in Table 6. Observe that these models are practically equivalent in terms

of RMSE, although considering the AIC and BIC criteria, the beta 2 model performs the best

(i.e., it provides the best fit). The complete estimation results for the beta models, as well as the

corresponding control charts, are shown in S2 Appendix.

Taking a closer look into the predictive statistics (RMSE), for Phase II, the UL model

showed 1,221 (4%) of out-of-control observations, whereas the beta 1 model showed 15 out-

of-control observations (0.0005%) and 0 (0%) out-of-control observations adopting the beta 2

model. An important effect is that the observed month in Phase II is June (transition from

Autumn to Winter season), which is characterized by lower temperatures through high

changes in solar radiation, wind speed, and temperature variation. Therefore, further investi-

gations can be performed towards verification of the quality of the adjusted models consider-

ing the time frequency per minute.

In addition, Table 7 shows the computational cost required to adjust and summarize the

three models, considering Phase I data. Observe that the UL model showed to be three times

faster than the beta 1 model, and five times faster than the beta 2 model. Therefore, the pro-

posed UL model-based SPC approach has an advantage over the existing beta models-based

SPC approach, in terms of the computational time and space required.

Furthermore, a lower Random-Access Memory (RAM) consumption is required by the

flexible although simpler (i.e., with fewer parameters) UL model, allowing simple computers

to process greater/large data sets. In the simulation studies, beta models took up over 20,000

times more memory space than the UL models. For the real data application, it was used a

notebook with AMD Ryzen 5 3500U and 12 GB DDR4 RAM.

6 Conclusion

Learning structures are often used to describe association across variables. Nonetheless, infer-

ential procedures are required to guarantee robustness on the analysis. For instance, the OLS

Table 6. Performance comparison of the selected regression models using AIC, BIC and RMSE (Phase I data).

AIC BIC RMSE

UL -1,296,760 -1,296,656 0.129

Beta 1 -1,727,663 -1,727,603 0.124

Beta 2 -1,777,595 -1,777,499 0.126

https://doi.org/10.1371/journal.pone.0275841.t006

Table 7. Computational cost (time and memory space) required for each regression model (Phase I data).

Fit (sec) Model Summary (sec) RAM Memory (bytes)

UL 108 0.01 60,048

Beta 1 324 213 1,149,182,240

Beta 2 456 374.4 1,207,127,200

sec = seconds.

https://doi.org/10.1371/journal.pone.0275841.t007
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regression, with normal assumption for the response variable (Y). This is not the case of pro-

portional/rate data, which present truncated and skewed information in a bounded (0, 1)

interval. Therefore, this study considered a flexible UL regression model, which can model

symmetric, right- and left-asymmetric truncated unit data, despite having a single parameter.

Variables integrated in the current study were previously chosen by other authors in the

study of fog/humidity distribution. [6] developed a method for calculating diurnal patterns of

air temperature, wind speed, global radiation and relative humidity, and validated it with data

from different countries. Some other studies, as [41], have also demonstrated the relevance of

scheduling appropriately the sampling frequency of climatic variables, in order to adequately

estimate land surface fluxes. A study based on solar radiation, air temperature, relative humid-

ity and dew point [42], daily and monthly reported over a year, has revealed the minimum rel-

ative humidity coinciding with the driest month of the year.

The process of reference evapotranspiration (ET) calculation is commonly estimated

through Penman-Monteith ET [43]. This equation, based on the original [44]’s equation,

determines evaporation based on the combination of energy balance and aerodynamic for-

mula; and the [45]’s modification, that includes the surface resistance denominator. Finally,

the FAO adapted the formula for crops [46]. This ET estimating reference has previously used

daily weather forecast [47]. The solar radiation provides energy to vaporize water and heat up

the atmosphere and ground. So, a day scale monitoring for wind speed, temperature, and solar

radiation was used to describe the relative humidity in the air. Accordingly, to the FAO formu-

lation, for hourly periods, the soil heat flux (G) can be daylight periods estimated with net radi-

ation (0.1�Rn) for night-time (0.5�Rn).

Occurrence and distribution of Camanchaca along northern Chile had been previously

described [48–51]. It is characterized by diurnal and interannual variability with dependence on

atmospheric conditions at regional and global scales [52]. It is necessary to highlight that flora

and fauna distribution in the arid area is fog-dependent [53]. Therefore, this fog plays a key role

in maintaining the assemblage of animal species of the ecosystem, especially during adverse cli-

matic periods. But it also supposes an important water resource for human settlement [48].

Results from the current study agree with [54]’s study, which determined that Camanchaca
derived from the marine inversion layer from the Atacama Desert was more persistent, though

weaker, during summer months (November-March), but greater condensed and shallower in

winter months, with uncharacteristically dry air and high temperatures occurring at and above

400 m above sea level. The authors explained that the stability of the temperature inversion

depends on a seasonal consistent high-humidity, onshore breeze. On the other hand, diurnal

variations in wind speed and direction and moisture content and temperature, show that, dur-

ing summer, there is almost no offshore breeze and that the humidity of the air mass over that

site is nearly constant. However, the land-sea breeze cycle is enhanced in winter, in a way that

there is considerable diurnal variation in specific humidity, correlated with the night-time

breeze from the inland desert. But when night falls, wind begins to blow from the east, which

lowers the atmospheric humidity. At day break, winds shift to the west and humidity rises as

marine air moves east. In other words, winter-fog is more intense and shallower, in compari-

son to summer-fog.

It is important to highlight that, as a model, it is subjected to limitations. So, further statisti-

cal models should include some interannual variations or distinguish patterns affected by the

climatic conditions, such as the ENSO (El Niño-Southern Oscilation); for example, La Niña

conditions promote a lower cloud amount [52]. In this manner, SPC models can assess the

weather monitoring, whenever its suppositions are carefully adopted. Further studies shall

explore more the data structure dependence in the statistical inference procedure, such as spa-

tial-temporal memory.
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