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Abstract
The completeness relation for the eigenfunctions of a self-adjoint operator generally involves a divergent series or integral. 
In this paper, we show, using the eigenfunctions of the infinite square well as an example, that these divergent objects can 
be interpreted as distributions. This should be obvious since the right-hand side of these completeness relations is the Dirac 
delta function but the direct calculation of the right-hand side can be very laborious, but instructive.
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1  Introduction

It is well known that the eigenfunctions of a self-adjoint 
operator form a complete set; see, for instance, [1] or [2]. 
However, it is not so well known that the closure relation 
[3] (see Eq. (4)) does not converge [4–7]. This fact is not 
emphasized in quantum mechanics books.

This fact is so well known in mathematics that it is some-
what surprising to see a recent article by Bender et al. [8] 
draw attention to this mathematical fact. They show that 
there is a problem with the closure relation (its left side 
diverges) and they present a solution to this problem, that 
is to use a summation method to fix this. To be fair with 

Bender et al. [8], although the “problem” with the complete-
ness relation (4) was suggested by Dirac in the first edition 
of his book on quantum mechanics [9], this “problem” they 
raise is not well explained in quantum mechanics books. The 
objective of this note is to present an alternative solution to 
the “problem” discussed by Bender et al. [8] that we think is 
more natural, and well known to mathematicians.

In Sect. 2, we discuss the problem by considering the 
infinite square well problem, that is a particle moving in 
the interval [0,�] of the real axis. As is well known, this 
system has a purely discrete spectrum. In Sect. 3, we discuss 
an alternative solution to the divergence problem. As men-
tioned, such a solution is not new and it consists in consider-
ing these infinite series as distributions. An early paper on 
this subject is Braga and Schönberg [7]. Finally in Sect. 4, 
we discuss some other problems when dealing with diver-
gent series or integrals in Physics.

In this paper, we shall use remarks to point out that some 
concepts and manipulations used in Physics are not rigorous 
from the mathematical point of view. These remarks can be 
ignored by a reader that is used to the physical literature in 
the subject.

2 � The System to be Considered

To follow Bender et al. [8], we consider a particle moving 
freely in the interval [0,�] of the real axis whose Hamilto-
nian action is
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As is well known, the normalized eigenfunctions of Ham-
iltonian, that vanish at x = 0 and x = � , are

and the corresponding eigenvalues are

It is well known the eigenfunctions of a such a system 
satisfy the following completeness (closure) relation

The problem raised by Bender et al. [8], that as men-
tioned before should be well known, is that the series on 
the left side with the functions given by Eq. (2) diverges. 
Although not mentioned by Bender et al. [8], the right-hand 
side �(x − y) is not a function but a distribution, the so-called 
Dirac delta function.

Bender et al. [8] showed that the divergent series can 
be summed. We think that it is preferable to show that the 
mathematical object

can be interpreted in the sense of distributions and is in fact 
the Dirac delta function distribution, as written in Eq. (4). 
We show this is the next section.

3 � Infinite Series Interpreted as Distributions

3.1 � A Brief Recapitulation of the Approaches 
to Distributions: Schwartz [10] and Temple [11, 
12] Frameworks

The concept of distribution [10–12] is presented in almost all  
books on mathematical physics. For completeness, we reca-
pitulate here a few concepts that will be used in the sequel.

3.1.1 � The Schwartz Definition

A distribution is a linear operator (a functional) that when 
acting on a good function (called a test function in the math-
ematical literature) produces a number. A simple example of 
a functional is a function F(x) that acts on a good function 
f(x) as follows

(1)H = −
1

2

d2

dx2
.

(2)�n(x) =

√
2

�
sin(nx)

(3)En =
1

2
n2 .

(4)
∞∑
n=1

�∗
n
(x)�n(y) =

2

�

∞∑
n=1

sin(nx) sin(ny) = �(x − y) .

(5)
∞∑
n=1

�∗
n
(x)�n(y) =

2

�

∞∑
n=1

sin(nx) sin(ny)

We say that F(x) generates the functional of Eq. (6).
The Dirac delta function is the following distribution

Note that there is no ordinary function that generates this 
functional. Nevertheless in physics, we usually write (7) as

Remark 1  The above equation is wrong from the math-
ematical point of view. This integral does not exist because 
the symbol �(y − x) is not a function. The delta is a func-
tional that acting on a function f(x), �[f ] produces a number 
�[f ] = f (0) . However, most physicists interpret the above 
formula as

where �N(x − y) is a delta converging sequence; see, for 
instance, [13, 14]. This definition of distribution or general-
ized function as they are also called is due to Temple [11, 12].

Distributions that are “generated” by functions like in Eq. 
(6) are called regular distributions. Distributions that are not 
generated by functions are called irregular. The Dirac delta 
function is an irregular distribution. See [15] for the use of 
delta function relations without worrying with mathematical 
details as physicists usually do.

Some distributions are defined just in a part of the real 
axis, for example, in a interval [a, b]. In this case, the Eq. 
(8) becomes

For further information, see [16].

3.1.2 � The Temple Definition

The Temple definition is based on the concept of weak con-
vergence. A sequence of differentiable functions �n ∶ R → R , 
n = 1, 2, 3… is said to be weakly convergent if for any test 
function f(x) the limit of numbers

exists.

(6)∫
∞

−∞

dx F(x)f (x) = Number .

(7)Dirac Delta (x − y) acting on f (x) = f (y) .

(8)�
∞

−∞

dx �(y − x)f (x) = f (y) ≡ �y[f ] .

(9)
∫

∞

−∞

dx �(y − x)f (x) = lim
N→∞∫

+∞

−∞

dx �N(x − y)f (x) = f (y)

(10)∫
b

a

dx �(x − y)f (x) = f (y) if y ∈ (a, b) .

(11)lim
n→∞∫

∞

−∞

dx f (x)�n(x)
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A distribution (or generalized function) D is an equivalent 
class of weakly convergent sequences of functions [ �n ] and 
we write

Two weakly convergent sequences [ �n ] and [ �n ] are 
equivalent if their difference converges weakly to zero.

As an example of a weakly convergent sequence, that 
shall use below, we prove that

This result is classical: see Lichthill [17] or Perelemov and 
Zel’dovich [18] for a graphical interpretation or Braga [19], 
whose rigorous demonstration we reproduce below.

Let f(x) be a test function whose support, that is, the 
interval where f(x) is different from zero, is contained in the 
interval [−A,A] . Then, we can write

Now we define �(x) = (f (x) − f (0))∕x , which is infinitely 
differentiable and its value and the value of its derivatives at 
zero can be calculated by L’Hospital rule. Then, integrating 
by parts the first integral we have

which goes to zero as � → ∞ . The remaining integral in Eq. 
(14) is well known, see reference [22], and when � → ∞ it 
goes to � . Therefore, we have

which demonstrates Eq. (13).

3.2 � Distribution Interpretation of Eq. (4)

Our task now is to show that the object on left-hand side 
of Eq. (4) is in fact the Dirac delta function. To accom-
plish this, we shall prove that this object can be associated 
to a sequence that converges to the Dirac delta function. 
Another proof is to show that it satisfies the property (10) 
and we take this as a definition of the Dirac delta function.

(12)∫ dx D(x)f (x) = lim
n→∞∫

∞

−∞

dx f (x)�n(x) .

(13)lim
�→∞

sin(�x)

�x
= �(x) .

(14)
∫

A

−A

dx
sin(�x)

x
f (x) =∫

A

−A

dx sin(�x)x

[
f (x) − f (0)

x

]

+ f (0) ∫
A

−A

dx
sin(�x)

x
.

(15)
∫

A

−A

dx sin(�x)�(x) = −
cos(�x)

�
�(x)

||||
A

−A

+
1

� ∫
A

−A

dx cos(�x)
d�(x)

dx
,

(16)lim
�→∞∫

∞

−∞

dx
sin(�x)

x
f (x) = �f (0) ,

3.2.1 � First Method

Now, we show that in the sense of distributions the object

is the Dirac delta function. This is carried out by the follow-
ing calculation. First let us note that

Taking the limit N → ∞ on both sides of Eq. (19), we 
have

since limx→0
sinx

x
= 1 and the factor 

1

2
(x−y)

sin
(

1

2
(x−y)

) is bounded by 

one and tends to one when x → y.
Then we can write

where we have used Eq. (13).

(17)
∞∑
n=1

�∗
n
(x)�n(y) =

2

�

∞∑
n=1

sin(nx) sin(ny)

(18)
n=N∑
n=−N

ein(x−y) =
e−iN(x−y)(ei(2N+1)(x−y) − 1)

ei(x−y) − 1

(19)=
sin

((
N +

1

2

)
(x − y)

)

sin
(

1

2
(x − y)

) .

(20)lim
N→∞

n=N�
n=−N

ein(x−y) = lim
N→∞

⎡⎢⎢⎢⎣

sin
�
N +

1

2

�
(x − y)

sin
�

1

2
(x − y)

�
⎤⎥⎥⎥⎦

(21)

= lim
N→∞

sin (N(x − y))

sin
(

1

2
(x − y)

)

= lim
N→∞

(
1

2
(x − y)

)

sin
(

1

2
(x − y)

) sin (N(x − y))(
1

2
(x − y)

)

(22)=

(
1

2
(x − y)

)

sin
(

1

2
(x − y)

) lim
N→∞

sin (N(x − y))(
1

2
(x − y)

)

(23)=

(
1

2
(x − y)

)

sin
(

1

2
(x − y)

)2��(x − y) = 2��(x − y)

(24)
lim
N→∞

n=N∑
n=−N

ein(x−y) = lim
N→∞

sin (N(x − y))
1

2
(x − y)

= 2��(x − y) ,
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On the other hand, we can write

Therefore,

and we have that object given in Eq. (5) becomes

To calculate the first term, A, in Eq. (30) we note that it 
becomes

Or using Eqs. (19) and (24)

We now show that the term B, the second term in Eq. (30), 
is zero in the sense of distributions. In fact, this term is

which can be written

Comparing with Eq. (24), we see that if we replace x by 
−x to get

(25)sin(nx) sin(ny) = −
1

2

{
cos

[
n(x + y)

]
− cos

[
n(x − y)

]}

(26)= −
1

2
Re

[
ein(x+y) − ein(x−y)

]
.

(27)
N∑

n=−N

sin(nx) sin(ny) =

N∑
n=−N

(−)
1

2
Re

[
ein(x+y) − ein(x−y)

]

(28)
2

�

∞∑
n=1

sin(nx) sin(ny) =
1

�

∞∑
n=−∞

sin(nx) sin(ny)

(29)=
1

2�

∞∑
n=−∞

Re
[
ein(x−y)

]
+

1

2�

∞∑
n=−∞

(−)Re
[
ein(x+y)

]

(30)= A + B .

(31)A =
1

2�

∞∑
n=−∞

Re
[
ein(x−y)

]
=

1

2�
Re lim

N→∞

N∑
n=−N

ein(x−y) .

(32)A =
1

2�
Re lim

N→∞

N∑
n=−N

ein(x−y)

(33)=
1

2�
lim
N→∞

sin
((

N +
1

2

)
(x − y)

)

1

2
(x − y)

= �(x − y) .

(34)B =
1

2�

∞∑
n=−∞

(−)Re
[
ein(x+y)

]

(35)B =
1

2�

∞∑
n=−∞

(−)Re
[
ein(−x−y)

]
.

But this is zero because x ∈ [0,�] then y ∈ [−�, 0] and our 
functions are defined in the interval [0,�].

We have therefore shown that

3.2.2 � Second Method

We now present another demonstration of Eq. (38) that basi-
cally consists in showing that property Eq. (10) is satisfied. 
This property will be taken as a definition of the Delta func-
tion. This approach was used in Brownstein [20] and Amaku 
et al. [21] and is commonly used in the physical literature.

We now define

to prove that

The proof of Eq. (40) is as follows:
The first step of the proof is to write Eq. (39) for a finite 

N in the form

and then to calculate it. Using that

we can obtain that

(36)B =
1

2�

∞∑
n=−∞

(−)Re
[
ein(−x−y)

]

(37)= − lim
N→∞

1

2�

sin
[
N(−x − y)

]
1

2
(x − y)

= −�(−x − y) .

(38)

2

�

∞∑
n=1

sin(nx) sin(ny) =
1

�

∞∑
n=−∞

sin(nx) sin(ny) = �(x − y) .

(39)BN(x, y) =
2

�

N∑
n=1

sin(nx) sin(ny) ,

(40)lim
N→∞

(
∫

�

0

BN(x, y)�(y)dy

)
= �(x)

(41)BN(x, y) =
1

�

N∑
−N

sin(nx) sin(ny) ,

(42)sin(nx) sin(ny) = −
1

2

[
cos n(x + y) + cos n(x − y)

]

(43)= −
1

2
Re

[
ein(x+y) − e−in(x−y)

]

(44)BN(x, y) =
1

2

N∑
−N

Re
[
ein(x+y) − e−in(x−y)

] ≡ D + E .
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Calculating the second term in Eq. (44), that is E, we have

As explained before, since limx→0
sin x

x
= 1 we can to sim-

plify the notation by replacing in the denominator of Eq. 
(47) sin

(
1

2
(x − y)

)
 by 1

2
(x − y) . This saves us to carry a fac-

tor 
1

2
(x−y)

sin
1

2
(x−y)

 , which is bounded by one and when x → y tends 

to one, in the rest of the calculation.
We now show that

In Eq. (48), we now change variables to

note that while x ∈ [0,�] , y ∈ [0,�] we have x� ∈ [−�,�] so 
that Eq. (48) becomes

We can write the left-hand side of Eq. (50) as

At this point, it is convenient to define

This function is for each x, continuous and differenti-
able in x′ ; the derivative �

�x�
Ψ(x, x�) may be computed using 

(45)E = −
1

2

n=N∑
n=−N

Re e−in(x−y)

(46)=
1

2

[
e−iN(x−y)

(
e2N+1(x−y) − 1

)
ei(x−y) − 1

]

(47)=
sin

((
N +

1

2

)
(x − y)

)

sin
(

1

2
(x − y)

) .

(48)lim
N→∞

1

� ∫
�

0

dy

sin
[(

N +
1

2

)
(x − y)

]

1

2
(x − y)

�(y) = �(x) .

(49)x − y = x�; y = x� − x

(50)

lim
N→∞

1

� ∫
�

−�

dx�
sin

[(
N +

1

2

)
x�
]

x�
�
(
x − x�

)
dx� = �(x) .

(51)lim
N→∞

⎧⎪⎨⎪⎩
1

� ∫
�

−�

dx�
sin

��
N +

1

2

��
x�

x�

�
�(x − x�) − �(x)

�

(52)+ �(x)∫
�

−�

dx�
sin

��
N +

1

2

��
x�

x�

⎫⎪⎬⎪⎭
.

(53)Ψ(x, x�) =
�(x − x�) − �(x)

x�
.

l’Hospital rule for x� = 0 . The first integral of Eq. (52) can 
be integrated by parts writing

The boundary terms at +� and −� are zero so we are left 
with

which is zero.
Now in the term E, the second term of Eq. (52) performs 

the change of variables

which gives

where we have used the result given in reference [22]

to prove Eq. (50). It remains to demonstrate that term D in 
Eq. (44) vanishes when N → ∞.

Comparing the above expression with the left-hand side 
of Eq. (47), we have that replacing x by −x in Eq. (48) its 
left-hand side becomes

However, note that x ∈ [0,�] and therefore −x ∈ [−�, 0] 
and since �(x) = 0 in this interval Eq. (60) is zero.

We have therefore proved that Eq. (40), viz.

is true.

Remark 2  The notion of limit in Eq. (61) above may be pic-
tured as BN(x, y) being BN(x − y) and approximating for large 
N the delta function, that is limN→∞ BN(x − y) = �(x − y) . 
Therefore, we could think of Eq. (61) as being

(54)sin
[(

N +
1

2

)
x�
]
=

−1(
N +

1

2

) d

dx�
cos

[(
N +

1

2

)
x�
]
.

(55)lim
N→∞∫

�

−�

dx� cos
[(

N +
1

2

)
x�
]
�

�x�
Ψ(x, x�)

(56)x�� =
(
N +

1

2

)
x�

(57)�(x) lim
N→∞∫

�

(
N+

1

2

)

−�
(
N+

1

2

) dx��
sin x��

x��
= ��(x) .

(58)∫
∞

0

dx
sin x

x
=

�

2

(59)1

2

n=N∑
n=−N

Re ein(x+y) =
1

2

n=N∑
n=−N

Re ein(−x−y) .

(60)E = lim
N→∞

1

� ∫
�

0

dy

sin
(
N +

1

2

)
(−x − y)

1

2
(x − y)

�(y) .

(61)lim
N→∞

(
∫

�

0

dy BN(x, y)�(y)

)
= �(x)
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But the “delta function” is not a function, because it 
would be ( +∞ ) at one point and zero elsewhere and since 
the integral of a function is not altered by changing the func-
tion at a discrete set of points the left-hand side of Eq. (62) 
would be zero.

The definition of the distribution �x as a functional, as for 
example in reference [23], is very simple. It maps a func-
tion � at its value at a given point x. That is we say that it is 
a functional

Notice that in this language in Eq. (61)

with

BN is also a “functional,” but not defined in the same 
fashion as �x , because for every finite N, ∫ �

0
dyBN(x − y)�(y) 

exists. Notice, however, that right-hand side of Eq. (65) 
becomes more and more concentrated around x = y as N 
grows. For more of these sequences [17].

So, we have proved by using two methods that

4 � Another Divergent Series and Other 
Problems

In their paper, Bender et al. [8] present another problem 
related to the square well problem. They consider the infinite 
square well and the completeness relation of its eigenfunc-
tions. The Hamiltonian operator of the system is

and the completeness relation of its eigenfunctions is, as we 
have seen,

Bender et al. [8] wanted to calculate the explicit coordi-
nate representation of H, that is,

(62)∫
�

0

dy �(x − y)�(y) = �(x) .

(63)�x[�] = �(x) .

(64)lim
N→∞

BN[�] → �x[�]

(65)BN[�] = ∫
�

0

dy BN(x − y)�(y) .

(66)
2

�

∞∑
n=1

sin(nx) sin(ny) = �(x − y) .

(67)H = −
1

2

d2

dx2

(68)
∞∑
n=1

�∗
n
(x)�n(y) =

2

�

∞∑
n=1

sin(nx) sin(ny) = �(x − y) .

We have

So it is tempting to write (70) as

But the authors argue that they cannot write Eq. (70) 
as Eq. (72) because they cannot interchange the sum with 
the differentiation. This would be allowed only if the sum 
on the left-hand side of Eq. (72) were absolutely and uni-
formly convergent. But in fact the left-hand summation 
of Eq. (70) is divergent, that is, the summation on Eq. 
(68) is divergent and as we have argued above has to be 
interpreted in the sense of distribution. We shall elaborate 
on this on the sequel.

Bender et al. [8] tried to circumvent the problem men-
tioned above by considering the function

which is absolutely and uniformly convergent for |t| < 1 . 
However, the limit t → 1− that must be taken to recover Eq. 
(68) cannot be taken because Eq. (73) does not converge 
absolutely and uniformly for t ≤ 1 . Indeed, as mentioned in 
the appendix of Bender et al. [8] the convergence as t → 1− 
is in the sense of distributions. However, they do not men-
tion this fact explicitly.

The physical quantities associated to an operator 
like the one given in Eq. (67) are its expectation values 
on suitable regular wave functions f(x). Since f(x) van-
ishes outside the interval [0,�] this regularity manifests 
as the requirement that these wave functions satisfy the 
conditions

The reader should note that when we write Eq. (4) we 
have interpreted the wave functions �n(x) as distributions, in 
fact regular distributions (see Remark 1). The test functions, 
f(x), in this case, are infinitely differentiable functions with 
support in the interval [0,�] . These functions vanish with 

(69)⟨x�H�y⟩ = −
1

2

d2

dx2
�(x − y) .

(70)

⟨x�H�y⟩ =
∞�
n=1

En�
∗
n
(x)�n(y) =

1

�

∞�
n=1

n2 sin(nx) sin(ny) .

(71)⟨x�H�y⟩ = −
1

2

d2

dx2

�
2

�

∞�
n=1

sin(nx) sin(ny)

�

(72)= −
1

2

d2

dx2
�(x − y) .

(73)K(x, y, t) =
2

�

∞∑
n=1

tn sin(nx) sin(ny)

(74)f (0) = f (�) = 0 and
df (0)

dx
=

df (�)

dx
= 0 .
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their derivatives at the points 0 and � . The operator given 
by Eq. (67) acts on test functions with the properties given 
by Eq. (74).

The expectation value of H on such functions is

If we write

we get, comparing with Eq. (77), that

Previously, we proved that

Now we have that

where we used in the first equality that BN is symmetric 
under the exchange of x by y and in the second one we just 
integrated by parts. Taking the limit N → ∞ leads to

where we used Eq. (79). Therefore, we proved Eq. (72).
Equations (79) and (81) are the precise distributional 

versions of Eqs. (68) and (72), using the notion of “delta 
sequences” as explained in the appendix of Bender et al. [8]. 
That is Eq. (79) is a “delta sequence” definition of the Dirac 
delta function.

Remark 3  This remark is intended to explain some subtleties 
involved in Eq. (4). It is only an introduction to the problems 
overlooked in the physical literature about the infinite square 
well and will be the subject of a more comprehensive article 
now in preparation.

(75)⟨f �H�f ⟩ = ∫
�

0

dy f (y)(Hf )(y) ,

(76)= ∫
�

0

dy f (y)

(
−
1

2

d2f (y)

dy2

)
.

(77)(Hf )(x) = ∫
�

0

dy ⟨x�H�y⟩f (y)

(78)∫
�

0

dy ⟨x�H�y⟩f (y) = −
1

2

d2f (x)

dx2
.

(79)lim
N→∞

(
∫

�

0

dy BN(x, y)f (y)

)
= f (x) .

(80)

∫
�

0

dy

(
−
1

2

d2

dx2
BN(x, y)

)
f (y) = ∫

�

0

dy

(
−
1

2

d2

dy2
BN(x, y)

)
f (y)

= ∫
�

0

dy BN(x, y)

(
−
1

2

d2f (y)

dy2

)
,

(81)

lim
N→∞∫

�

0

dy

�
−
1

2

d2

dx2
BN(x, y)

�
f (y) = −

1

2

d2f (x)

dx2

= ∫
�

0

dy ⟨x�H�y⟩f (y) ,

The astute reader should note that when we write Eq. (4), 
we are compelled to interpret the wave functions �n(x) as 
distributions, in fact regular distributions; see Remark 1. The 
test functions, f(x), in this case are infinitely differentiable 
functions with support in the interval [0,�] . These functions 
vanish with their derivatives at the points 0 and � . The usual 
distributions have test functions with support in R that is in 
the whole real line.

Is this important? It is because it means that only func-
tions with support in [0,�] can be expanded in series of 
�n(x) . Some excellent textbooks like [24] writes that “any 
other function, f(x) can be expanded in term of it.” This is 
not entirely correct since it is true only if we periodically 
extend f(x).

We shall comment below how it is possible to define 
these distributions that have support in a finite interval of 
the real line. But first, we show that with this interpretation 
we can solve one of the questions students ask about the fact 
that the wave function of the square well have discontinuous 
derivatives at 0 and � . In fact, the students sometimes ask 
if the functions

satisfy the Schödinger equation

with �(0) = �(�) = 0.
They ask this because they learned that if a function is 

discontinuous, then its derivative have a delta function on 
the discontinuity. But if �n(x) is interpreted as a distribution 
we should differentiate it as a distribution. Distributions are 
infinitely differentiable. For example, the first derivative D′ 
of say a distribution D acting on a test function f is

Take, for example, the step function (Heaviside function)

that we now consider as a distribution with its action defined 
by Eq. (6). Notice that the space of test functions (f(x)) is 
the set of infinite differentiable function defined in a finite 
interval of the real numbers containing the point x1 . So, the 
distribution �(x − x1) is the functional

According to Eq. (84), the derivative of �[f ] is

(82)�n(x)

√
2

�
sin(�x)

(83)−
1

2

d2�(x)

dx2
= E�(x)

(84)D�[f ] = D[−f �] .

(85)𝜃(x − x1)

{
1 for x > x1
0 for x < x1

(86)�[f ] = ∫
∞

−∞

dx �(x − x1)f (x) = ∫
∞

x1

dx f (x) .
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where we used that f (±∞) = 0 . However, this functional is 
the Dirac delta function defined in Eqs. (7) and (8).

In the case of the wave functions �n(x) , the corresponding 
regular distributions are the functional

and the distribution d�n∕dx is

This functional nor the next derivative has delta functions 
on the points x = 0 or x = � because the test functions and 
all its derivatives vanishes on these points. Is this important? 
Yes it shows how to use distributions defined with test func-
tions defined in a finite interval of the real axis correctly. In 
fact, we have more to say about this below.

Distributions that have test functions with support in an 
interval of the real line are defined, for example in, the paper 
by Pandey and Pathak [6]. In this paper, they demonstrate 
the following result: A generalized function ( distribution) 
can be expanded in terms of a complete set of normalized 
eigenfunctions Ψn(x) of a Sturm-Liouville system. Let these 
eigenfunctions be defined in an interval I = [a, b] . Consider 
a space of test functions f(x) in this interval. Then if �(x) is a 
generalized function defined in the same interval we define

and we expand f(x) as follows:

Now substituting Eq. (90) into the last expression allows 
us to write

Hence, we have that

(87)

��[f ] = −�[f �] = −∫
∞

x1

dx
df

dx
= −f (∞) + f (x1) = f (x1)

(88)�n[f ] = ∫
�

0

dx �n(x)f (x)

(89)
d�n

dx
[f ] = ∫

�

0

dx �n(x)
df (x)

dx
.

(90)F(n) = ∫
b

a

dx� Ψ⋆

n
(x�)f (x�)

(91)f (x) = lim
N→∞

N∑
N=1

F(n)Ψn(x) .

(92)f (x) = lim
N→∞∫

b

a

dx�
N∑
n=1

Ψn(x)Ψ
⋆(x�)f (x�)

(93)= ∫
b

a

dx�

(
lim
N→∞

N∑
n=1

Ψn(x)Ψ
⋆(x�)

)
f (x�) .

(94)lim
N→∞

N∑
n=1

Ψn(x)Ψ
⋆(x�) = 𝛿(x − x�) .

If the time independent Schrödinger equation (TISE) has 
a singular interaction then to interpret the wave function 
as a distribution is not so simple. For example, if the TISE 
defined on (−∞.∞) has a delta function or a singularity at 
the origin like in the one-dimensional hydrogen atom we 
can follow the method of self-adjoint extensions [25] for the 
case of the delta function and for the case of the Hydrogen 
atom  [26]. A didactic introduction to the self-adjoint exten-
sion method can be found in [27] and [28] and references 
there. On the other hand, the paper [29] explain how to treat 
the delta function problem as a distribution and [30] treats 
the hydrogen atom in the same way.

Finally, we would like to comment on a problem that is 
never mentioned in the quantum mechanics textbooks with 
the exception of [31]. This problem is that the operator

operating on functions defined in the interval [0,�] with 
boundary conditions �(0) = �(�) = 0 is not self-adjoint. 
To define a self-adjoint operator, we need to restrict the Ô 
domain as follows:

However, ��(x) is the weak (distributional) derivative of 
�(x) . The operator so defined have the same eigenfunctions 
and eigenvalues as the usual operator defined in the quantum 
mechanics textbooks.

The treatment given in [31] is a bit abstract and can be  
generalized. Therefore, we shall analyze this problem in 
another paper. The reader could benefit from the more 
intuitive paper [32] that we also examine in this forthcom-
ing paper. If, however, the reader is anxious to see practi-
cal consequence of the non-selfadjointness of the infinite 
square well potential he/she should see [28].

5 � Concluding Remarks

We have shown in this paper that the methods used by 
Bender et al. [8], in their appendix coincide with the meth-
ods of distribution theory explained for example in the book 
by Schwartz [23] or for sequences of delta functions in the 
book of Lichthill [17].

The advantages of using distribution theory to explain the 
problems raised by Bender et al. article [8] are many: 

1.	 One deals with objects that are finite quantities and 
hence physically motivated. Infinite quantities like the 
ones in Eqs. (68) and (70) simply do not arise.

(95)Ô = −
d2

dx2

(96)

D(Ô) = {𝜑(x) ∈ L2(I = [0,𝜋]) | 𝜑�(x) ∈ L2(I = [0,𝜋])

and 𝜑(0) = 𝜑(𝜋) = 0} .
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2.	 The methods used are elementary because they require 
techniques that within the reach of undergraduates phys-
ics students.

3.	 The theory can be used directly. For example, we do 
not have to use the Euler summation to “reconstruct” a 
Hamiltonian from its eigenstates and eigenfunctions as 
proposed by Bender et al. [8].

On the other hand, much more serious infinities arise 
in applications of mathematics to physics as suggested by 
Bender et al. [8]. We shall deal with them in a separate paper.
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