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Abstract. We study the nonlinear Schrödinger equation with an arbitrary real potential V (x) ∈ (L1 +
L∞)(�) on a star graph �. At the vertex an interaction occurs described by the generalized Kirchhoff
condition with strength −γ < 0. We show the existence of ground states ϕω(x) as minimizers of the action
functional on the Nehari manifold under additional negativity and decay conditions on V (x). Moreover, for

V (x) = − β

xα
, in the supercritical case, we prove that the standing waves eiωtϕω(x) are orbitally unstable

in H1(�) when ω is large enough. Analogous result holds for an arbitrary γ ∈ R when the standing waves
have symmetric profile.

1. Introduction

We consider the following focusing nonlinear Schrödinger equation on an infinite
star graph �:

{
i∂t u(t, x) = −	γ u(t, x) + V (x)u(t, x) − |u(t, x)|p−1 u(t, x), (t, x) ∈ R × �,

u(0, x) = u0(x),

(1.1)

where γ > 0, p > 1, u(t, x) : R×� → C
N , and 	γ is the Laplace operator with the

generalized Kirchhoff condition at the vertex of � (·′ stands for spatial derivative):

v1(0) = · · · = vN (0),
N∑

e=1

v′
e(0) = −γ v1(0).

We assume that the potential V (x) = (Ve(x))Ne=1 is real-valued and satisfies the
Assumptions (see notation section):

1. Self-adjointness assumption: V (x) ∈ L1(�) + L∞(�).

2. Weak continuity assumption: lim
x→∞ Ve(x) = 0.
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3. Minimizing assumption:
∫
R+ Ve(x)|φ(x)|2dx < 0 for all φ(x) ∈ H1(R+) \ {0}.

4. Virial identity assumption: xV ′(x) ∈ L1(�) + L∞(�).

Notice that Assumption 3 essentially guarantees (Vu, u)2 < 0, u ∈ H1(�) \ {0}, and
V (x) ≤ 0 a.e. on � (see Remark 1.2).

NLS equation (1.1) models wave propagation in thin waveguides (we refer the
reader to [6,7,19,22] for the details). The study of stability properties of the multi-
dimensional NLS with a linear potential

i∂t u(t, x) = −	u(t, x) + V (x)u(t, x) − |u(t, x)|p−1 u(t, x),

(t, x) ∈ R × R
n, 1 + 4/n ≤ p < 1 + 4/(n − 2),

was initiated in [27]. More precisely, the authors proved orbital stability of eiωtϕω(x)
forω sufficiently close tominus the smallest eigenvalue of the operator−	+V (under
the assumptions V (x) ∈ L∞(Rn), lim|x |→∞ V (x) = 0). In [15], the stability results

obtained by [27] were improved for V (x) satisfying more general assumptions.

Recently in [25], the author studied strong instability (by blow-up) of the standing
waves in the case of harmonic potential V (x) = |x |2. In particular, he proved strong
instability under certain concavity condition for the associated action functional (cf.
Theorem 1.4 below). The same ideawas applied in [13] to investigate strong instability

for V (x) = − β

|x |α , 0 < α < min{2, n}, β > 0. The reader is also referred to [24]

for more information about NLS near soliton dynamics.

In the case V (x) ≡ 0, the well-posedness in H1(�), variational and stability/
instability properties of (1.1) have been extensively studied during the last decade.
The well-posedness results were obtained in [2,18], whereas the existence, stability
and variational properties of ground states were studied in [1–4,20]. Moreover, the
regularity and strong instability results were elaborated in [18].

On the other hand, the NLS with potential on graphs is little studied. To our knowl-
edge, the only results concerning the existence and stability of standing waves were
obtained in [5,9,10]. In the subcritical (1 < p < 5) and critical (p = 5) case, orbitally
stable standing waves eiωtϕω(x) were constructed in [9,10] under specific conditions
on V (x). Subsequently, in [5] the orbital stability of eiωtϕω(x) was studied in the
supercritical case (p > 5). More precisely, it was shown (by solving a local energy
minimization problem) that eiωtϕω(x) is stable when the mass of ϕω(x) is sufficiently
small.

In this paper, we show the existence and orbital instability of the standing wave
solutions to (1.1) relying on methods developed in [13,16]. Moreover, we state regu-
larity of the solutions to the Cauchy problem for the initial data from the domain of
the operator −	γ + V (x). This result is used to show virial identity which is the key
ingredient in the proof of the instability result.
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1.1. Notation

We consider a graph � consisting of a central vertex ν and N infinite half-lines
attached to it. One may identify � with the disjoint union of the intervals Ie = (0,∞),
e = 1, . . . , N , augmented by the central vertex ν = 0. Given a function v : � → C

N ,
v = (ve)

N
e=1, where ve : (0,∞) → C denotes the restriction of v to Ie. We denote by

ve(0) and v′
e(0) the limits of ve(x) and v′

e(x) as x → 0+.
We say that a function v is continuous on � if every restriction ve is continuous on

Ie and v1(0) = . . . = vN (0). The space of continuous functions is denoted by C(�).

The natural Hilbert space associated with the Laplace operator 	γ is L2(�), which
is defined as L2(�) = ⊕N

e=1 L
2(R+), and is equipped with the norm

‖v‖22 =
∫

�

|v|2 dx =
N∑

e=1

∫ ∞

0
|ve(x)|2 dx .

The inner product in L2(�) is denoted by (·, ·)2. The space Lq(�) for 1 ≤ q ≤ ∞ is
defined analogously, and ‖ · ‖q stands for its norm. The Sobolev spaces H1(�) and
H2(�) are defined as

H1(�) =
{
v ∈ C(�) : ve ∈ H1(R+), e = 1, . . . , N

}
,

H2(�) =
{
v ∈ C(�) : ve ∈ H2(R+), e = 1, . . . , N

}
.

We consider the self-adjoint operator Hγ,V on L2(�):

(Hγ,V v)e = −(	γ v)e + Veve = −v′′
e + Veve,

dom(Hγ,V ) =
{

v ∈ H1(�) : −v′′
e + Veve ∈ L2(R+),

N∑
e=1

v′
e(0) = −γ v1(0)

}
.

(1.2)

When γ = 0, the condition at the vertex in (1.2) is usually referred as free or Kirchhoff
boundary condition. For γ ∈ R, the operator Hγ,V has a precise interpretation as
the self-adjoint operator on L2(�) uniquely associated with the closed semibounded
quadratic form Fγ,V defined on H1(�) by (see Lemma 4.10 in Appendix)

Fγ,V (v) = ‖v′‖22 − γ |v1(0)|2 + (V v, v)2

=
N∑

e=1

∫ ∞

0

∣∣v′
e(x)

∣∣2 dx − γ |v1(0)|2 +
N∑

e=1

∫ ∞

0
Ve(x)|ve(x)|2 dx . (1.3)

Note that we can formally rewrite (1.1) as

i∂t u(t) = E ′(u(t)),
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where E is the energy functional defined by

E(u) = 1

2
Fγ,V (u) − 1

p + 1
‖u‖p+1

p+1.

The energy functional is well defined on H1(�) since the potential V (x) belongs to
(L1 + L∞)(�) (see Lemma 4.10 in Appendix).

1.2. Standing waves and instability results

By a standing wave of (1.1), we mean a solution of the form eiωtϕ(x), where ω ∈ R

and ϕ is a solution of the stationary equation

Hγ,Vφ + ωφ − |φ|p−1 φ = 0. (1.4)

We define two functionals on H1(�):

Sω(v) : = 1

2
Fγ,V (v) + ω

2
‖v‖22 − 1

p + 1
‖v‖p+1

p+1 (action functional),

Iω(v) : = Fγ,V (v) + ω ‖v‖22 − ‖v‖p+1
p+1.

Observe that (1.4) is equivalent to S′
ω(φ) = 0 (see [2, Theorem 4]) and Iω(v) =

∂λSω(λv) |
λ=1 = 〈S′

ω(v), v〉. Denote the set of non-trivial solutions to (1.4) by

Bω =
{
v ∈ H1(�)\{0} : S′

ω(v) = 0
}
.

A ground state for (1.4) is a function ϕ ∈ Bω that minimizes Sω on Bω, and the set of
ground states is given by

Gω =
{
φ ∈ Bω : Sω(φ) ≤ Sω(v) for all v ∈ Bω

}
.

We consider the minimization problem on the Nehari manifold

dω = inf
{
Sω(v) : v ∈ H1(�)\{0}, Iω(v) = 0

}
,

and the set of minimizers

Mω =
{
φ ∈ H1(�)\{0} : Sω(φ) = dω, Iω(φ) = 0

}
.

We now state the first result, which provides the existence of the minimizer for dω

when the strength −γ is sufficiently strong. Denote (see Lemma 4.13)

− ω0 := inf σ(Hγ,V ) = min σp(Hγ,V ) < 0. (1.5)

Proposition 1.1. Let p > 1, ω > ω0, and V (x) = V (x) satisfy Assumptions 1-3.
Then there exists γ ∗ > 0 such that the setGω is not empty for any γ > γ ∗, in particular,
Gω = Mω. If ϕω ∈ Gω, then there exist θ ∈ R and a positive function φ ∈ dom(Hγ,V )

such that ϕω(x) = eiθφ(x).
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To be precise, γ ∗ is given in [2] by∫ 1

0
(1 − t2)

2
p−1 dt = N

2

∫ 1

γ ∗
N

√
ω

(1 − t2)
2

p−1 dt. (1.6)

The condition γ > γ ∗ guarantees that the action functional Sω constrained to the
Nehari manifold admits an absolute minimum when V (x) ≡ 0.

Remark 1.2. The proof of the last assertion of Proposition 1.1 essentially uses that
V (x) ≤ 0 a.e. on �, which is a consequence of Assumption 3.
To show this, one observes that

∫
R+ −Ve(x)φ(x)dx ≥ 0 for all nonnegative func-

tions φ(x) from Cc(R
+) (the set of continuous functions with compact support).

Indeed, let φ̃(x) be an extension onto R by zero of a nonnegative function φ(x) ∈
Cc(R

+). Take {φn(x)} ⊂ C∞
c (R) such thatφn −→

n→∞

√
φ̃ uniformly, and suppφ̃, suppφn

⊂ K ⊂ R
+, where K is a compact set. Then, φ2

n −→
n→∞ φ̃ uniformly, and, by the Dom-

inated Convergence Theorem, we get

−
∫
R+

Ve(x)φ
2
n(x)dx −→

n→∞ −
∫
R+

Ve(x)φ(x)dx ≥ 0.

Now, since f (φ) = − ∫
R+ Ve(x)φ(x)dx is a positive linear functional on Cc(R

+),
then, by the Riesz–Markov–Kakutani representation theorem for positive linear func-
tionals, we conclude the existence of a unique Radon measure μ on R

+
such that f (φ) = ∫

R+ φ(x)dμ(x). On the other hand, f (φ) = ∫
R+ v(x)φ(x)dν(x),

where ν(A) = ∫
A |Ve|dx for A from the Borel σ -algebra on R

+, and v(x) ={
Ve(x)|Ve(x)| , x ∈ {x : Ve(x) �= 0}

0, otherwise.
Finally, from the uniqueness stated in [12, Theorem

2.5.12] it follows that μ = ν and v = 1 ν-a.e. on R
+, hence −Ve ≥ 0 ν-a.e. on

R
+. This implies −Ve ≥ 0 Lebesgue-a.e. on R+ since the Lebesgue measure and the

measure ν are mutually absolutely continuous on the set {x : Ve(x) �= 0}.
The next step in the study of ground states for (1.4) is to investigate their stability

properties. We define orbital stability as follows.

Definition 1.3. For ϕω ∈ Gω, we set

Nδ(ϕω) := {
v ∈ H1(�) : inf

θ∈R

∥∥∥v − eiθϕω

∥∥∥
H1(�)

< δ
}
. (1.7)

We say that a standing wave solution eiωtϕω(x) of (1.1) is orbitally stable in H1(�)

if for any ε > 0 there exists δ > 0 such that for any u0 ∈ Nδ(ϕω), the solution u(t) of
(1.1) satisfies u(t) ∈ Nε(ϕω) for all t ≥ 0. Otherwise, eiωtϕω(x) is said to be orbitally
unstable in H1(�).

Using the ideas developed in [13,16], we obtain a sufficient condition for the in-
stability of standing waves when p > 5 (supercritical case). The main result of this
paper is the following:



A. H. Ardila et al. J. Evol. Equ.

Theorem 1.4. Assume that p > 5, γ > γ ∗, ω > ω0, and V (x) = V (x) satisfies
Assumptions 1-4. If ϕω(x) ∈ Gω and ∂2λE(ϕλ

ω) |λ=1 < 0, where ϕλ
ω(x) := λ1/2ϕω(λx)

for λ > 0, then the standing wave solution eiωtϕω(x) of (1.1) is orbitally unstable in
H1(�).

To prove Theorem 1.4, we use the variational characterization given in Proposition
1.1 and virial identity (2.4). Notice that the standing wave solution eiωtϕω(x) of (1.1)
with γ > 0 and V (x) ≡ 0 is unstable in H1(�) when p > 5 and ω is large enough
(see [2, Remark 6.1] and also [18, Theorem 1.4]). Below we state that this also holds

true for γ > 0 and slowly decaying potential V (x) = −β

xα
, 0 < α < 1, β > 0 (i.e.,

∂2λEω(ϕλ
ω) |λ=1 < 0 for sufficiently large ω). The choice of the potential is due to its

“homogeneity” property, which is principal for the proof (see formula (4.7)).

Corollary 1.5. Assume that V (x) = −β

xα
, β > 0, 0 < α < 1, γ > γ ∗, p > 5.

If ϕω(x) ∈ Gω, then there exists ω∗ = ω∗(β, α, γ, p) ∈ (ω0,∞) such that for any
ω ∈ (ω∗,∞) the standing wave solution eiωtϕω(x) of (1.1) is orbitally unstable in
H1(�).

As far asweknow, these are thefirst results on instability of ground states for theNLS
with potential on graphs. In Subsect. 4.3, we state the counterparts to Proposition 1.1,
Theorem 1.4, Corollary 1.5 in the space H1

eq(�) of symmetric functions and arbitrary
γ ∈ R.

The paper is organized as follows. In Sect. 2, we prove Proposition 2.2 that con-
cerns local well-posedness in the energy domain. In Sect. 3, we provide the proof of
Proposition 1.1. Section 4 is devoted to the proof of Theorem 1.4 and Corollary 1.5.
In Appendix, we discuss some properties of the operator Hγ,V .

2. Local existence results and virial identity

We start with the proof of the following key lemma involving the estimate of H1-
norm of the unitary group generated by the self-adjoint operator Hγ,V .

Lemma 2.1. Let e−i Hγ,V t be aunitary groupgeneratedby Hγ,V . Then, e−i Hγ,V t H1(�)

⊆ H1(�) and

‖e−i Hγ,V tv‖H1(�) ≤ C‖v‖H1(�). (2.1)

Proof. The idea of the proof was given in [10] (see formula (2.5)). However, some
additional technical details seem useful.
Let m > ω0, where ω0 is given by (1.5). Remark that H1(�) = dom

(
Fγ,V

) =
dom((Hγ,V +m)1/2) (see, for instance, [21,ChapterVI, Problem2.25]). Since e−i Hγ,V t

is bounded, we get for v ∈ H1(�)

e−i Hγ,V t (Hγ,V + m)1/2v = (Hγ,V + m)1/2e−i Hγ,V tv.
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Hence e−i Hγ,V tv ∈ H1(�) and e−i Hγ,V t H1(�) ⊆ H1(�). Further, using L2-unitarity
of e−i Hγ,V t , we obtain for v ∈ H1(�)

Fγ,V (v) + m‖v‖22 =
(
(Hγ,V + m)1/2v, (Hγ,V + m)1/2v

)
2

=
(
e−i Hγ,V t (Hγ,V + m)1/2v, e−i Hγ,V t (Hγ,V + m)1/2v

)
2

=
(
(Hγ,V + m)1/2e−i Hγ,V tv, (Hγ,V + m)1/2e−i Hγ,V tv

)
2

= Fγ,V (e−i Hγ,V tv) + m‖e−i Hγ,V tv‖22.
From the proof of Lemma 4.13-(ii), we get

C2‖e−i Hγ,V tv‖2H1(�)
≤ Fγ,V (e−i Hγ,V tv) + m‖e−i Hγ,V tv‖22

= Fγ,V (v) + m‖v‖22 ≤ C1‖v‖2H1(�)
,

and (2.1) follows easily. �
The proposition below states the local well-posedness of (1.1).

Proposition 2.2. For any u0 ∈ H1(�), there exist T = T (u0) > 0 and a unique
solution u(t) ∈ C([0, T ], H1(�)) ∩ C1([0, T ], (H1(�))′) of problem (1.1). For each
T0 ∈ (0, T ) the mapping u0 ∈ H1(�) �→ u(t) ∈ C([0, T0], H1(�)) is continuous.
Moreover, problem (1.1) has a maximal solution defined on an interval of the form
[0, TH1), and the following “blow-up alternative” holds: either TH1 = ∞ or TH1 <

∞ and

lim
t→TH1

‖u(t)‖H1(�) = ∞.

Finally, the conservation of energy and charge holds: for t ∈ [0, TH1)

E(u(t)) = 1

2
Fγ,V (u(t)) − 1

p + 1
‖u(t)‖p+1

p+1 = E(u0), ‖u(t)‖22 = ‖u0‖22 . (2.2)

Proof. A sketch of the proof was given in [10]. However, the rigorous proof (which
serves for p > 1) might be obtained repeating the one of [11, Theorem 4.10.1]. In
particular, one needs to use the fact that g(u) = |u|p−1u ∈ C1(C,C) (i.e., Im(g) and
Re(g) are C1-functions of Reu, Imu) for p > 1 and apply inequality (2.1).

The proof of conservation laws (2.2) might be obtained involving regularization
procedure analogous to the one introduced in the proof of [11, Theorem 3.3.5] and
using the uniqueness of the solution (see [11, Theorem 3.3.9]). �
Remark 2.3. (i) For p ≥ 4, the conservation laws follow easily from Proposition 2.4
below and continuous dependence on initial data.
(ii) For 1 < p < 5, problem (1.1) is globally well-posed in H1(�). To see that one

might repeat the proof of [11, Theorem 3.4.1], where condition (3.4.1) follows from

‖u‖p+1
p+1 − (Vu, u)2 + γ |u1(0)|2 ≤ C‖u′‖

p−1
2

2 ‖u‖
p+3
2

2 + 2ε‖u′‖22 + C1‖u‖22
≤ 3ε‖u′‖22 + C2‖u‖

2(p+3)
5−p

2 + C1‖u‖22 ≤ 3ε‖u‖2H1(�)
+ C(‖u0‖2).
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The above estimate is induced by the conservation of charge, estimate (4.19), the
Gagliardo–Nirenberg inequality (see (2.1) in [10]) and the Young inequality ab ≤
δaq + Cδbq

′
, 1

q + 1
q ′ = 1, q, q ′ > 1, a, b ≥ 0. Observe that the key point is that

q = 4
p−1 > 1 for 1 < p < 5.

Now, letm ≥ 1+2ω0. Introduce the norm ‖v‖Hγ,V := ‖(Hγ,V +m)v‖2 that endows
dom(Hγ,V )with the structure of a Hilbert space.We denote DHγ,V = (dom(Hγ,V ), ‖·
‖Hγ,V ).

Proposition 2.4. Let p ≥ 4 and u0 ∈ dom(Hγ,V ). Then, there exists T > 0 such that
problem (1.1) has a unique solution u(t) ∈ C([0, T ], DHγ,V ) ∩ C1([0, T ], L2(�)).
Moreover, problem (1.1) has a maximal solution defined on an interval of the form
[0, THγ,V ), and the following “blow-up alternative” holds: either THγ,V = ∞ or
THγ,V < ∞ and

lim
t→THγ,V

‖u(t)‖Hγ,V = ∞.

Proof. The proof repeats the one of [18, Theorem 2.3] observing that dom(Hγ,V ) ⊂
H1(�) = dom((Hγ,V + m)1/2) and, by m ≥ 1 + 2ω0,

‖u‖∞ ≤ C1‖u‖H1(�) ≤ C2‖(Hγ,V + m)1/2u‖2 ≤ C2‖(Hγ,V + m)u‖2.

�

Remark 2.5. Notice that due to estimate (4.19), Propositions 2.2 and 2.4 hold for any
γ ∈ R and V (x) ∈ (L1 + L∞)(�).

Set

P(v) = ∥∥v′∥∥2
2 − 1

2

∫
�

xV ′(x)|v(x)|2 dx − γ

2
|v1(0)|2 − p − 1

2(p + 1)
‖v‖p+1

p+1 , v ∈ H1(�).

Proposition 2.6. Let �(�) = {v ∈ H1(�) : xv ∈ L2(�)}. Assume that u0 ∈ �(�),
andu(t) is the correspondingmaximal solution to (1.1). Then, u(t) ∈ C([0, TH1),�(�)),
and the function

f (t) :=
∫

�

x2|u(t)|2dx = ‖xu(t)‖22

belongs to C2[0, TH1). Moreover,

f ′(t) = 4Im
∫

�

xu∂xu dx, and (2.3)

f ′′(t) = 8P(u(t)), t ∈ [0, TH1). (virial identity) (2.4)
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Proof. The proof is similar to the one of [11, Proposition 6.5.1].We provide the details
since the virial identity is the key ingredient in the instability analysis. Firstly, we show
(2.3), secondly we prove (2.4) for u0 ∈ dom(Hγ,V ), and then, we conclude that (2.4)
holds for u0 ∈ H1(�) using continuous dependence on the initial data.
Step 1. Let ε > 0, define fε(t) = ‖e−εx2xu(t)‖22, for t ∈ [0, T ], T ∈ (0, TH1).

Then, observing that e−2εx2x2u(t) ∈ H1(�) and taking (H1)′ − H1 duality product
of equation (1.1) with ie−2εx2x2u(t), we get

f ′
ε(t) = 2Im

∫
�

(
∂xu ∂x (e

−2εx2x2u) − e−2εx2x2|u|p+1
)
dx

= 4Im
∫

�

{
e−εx2(1 − 2εx2)

}
uxe−εx2∂xu dx . (2.5)

Remark that |e−εx2(1 − 2εx2)| ≤ 2 for any x . From (2.5), by the Cauchy–Schwarz
inequality, we obtain

| f ′
ε(t)| ≤ 4

∣∣∣∣
∫

�

{
e−εx2(1 − 2εx2)

}
uxe−εx2∂xu dx

∣∣∣∣ ≤ 8
∫

�

|e−εx2xu∂xu| dx

≤ 8
N∑
j=1

‖∂xu j‖2‖e−εx2xu j‖2 ≤ C‖u‖H1(�)

√
fε(t). (2.6)

From (2.6), one implies∫ t

0

f ′
ε(s)√
fε(s)

ds ≤ C
∫ t

0
‖u(s)‖H1(�)ds,

and therefore,

√
fε(t) ≤ ‖xu0‖2 + C

2

∫ t

0
‖u(s)‖H1(�)ds, t ∈ [0, T ].

Letting ε ↓ 0 and applying Fatou’s lemma, we get that xu(t) ∈ L2(�) and f (t) is
bounded in [0, T ]. Observe that from (2.5) one induces

fε(t) = fε(0) + 4Im
∫ t

0

∫
�

{
e−εx2(1 − 2εx2)

}
uxe−εx2∂xu dx ds. (2.7)

We have the following estimates for any positive x and ε:

e−2εx2x2|u(t)|2 ≤ x2|u(t)|2,
e−2εx2x2|u0|2 ≤ x2|u0|2,
|e−εx2(1 − 2εx2)uxe−εx2∂xu| ≤ 2|∂xu‖xu|.

(2.8)

Having pointwise convergence, and using (2.8), by the Dominated Convergence The-
orem, we get from (2.7)

f (t) = ‖xu(t)‖22 = ‖xu0‖22 + 4Im
∫ t

0

∫
�

xu∂xu dx ds.
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Since u(t) is strong H1-solution, f (t) is C1-function, and (2.3) holds for any t ∈
[0, TH1).

Using continuity of ‖xu(t)‖2 and the inclusion u(t) ∈ C([0, TH1), H1(�)), by the
Brezis–Lieb lemma [8], we get for t0, tn ∈ [0, TH1)

lim
tn→t0

‖xu(tn) − xu(t0)‖22 = lim
tn→t0

‖xu(tn)‖22 − ‖xu(t0)‖22 = 0,

hence u(t) ∈ C([0, TH1),�(�)).

Step 2. Let u0 ∈ dom(Hγ,V ). By Proposition 2.4, the solution u(t) to the corre-
sponding Cauchy problem belongs to C([0, THγ,V ), DHγ,V ) ∩C1([0, THγ,V ), L2(�)).

Let ε > 0 and θε(x) = e−εx2 . Define

hε(t) = Im
∫

�

θεxu∂xu dx for t ∈ [0, T ], T ∈ (0, THγ,V ). (2.9)

First, let us show that

h′
ε(t) = −Im

∫
�

∂t u
{
2θεx∂xu + (θε + xθ ′

ε)u
}
dx (2.10)

or equivalently

hε(t) = hε(0) − Im
∫ t

0

∫
�

∂su
{
2θεx∂xu + (θε + xθ ′

ε)u
}
dx ds. (2.11)

Let us prove that identity (2.11) holds foru(t) ∈ C([0, T ], H1(�))∩C1([0, T ], L2(�)).

Note that by density argument it is sufficient to show (2.11) for u(t) ∈ C1([0, T ],
H1(�)) ∩ C1([0, T ], L2(�)). From (2.9), it follows

h′
ε(t) = −Im

∫
�

{
θεx∂t u∂xu + θεxu∂2xt u

}
dx . (2.12)

Note that

θεxu∂2xt u = θεxu∂2t x u = ∂x
(
θεxu∂t u

)− θεu∂t u − θεx∂xu∂t u − xθ ′
εu∂t u,

which induces∫
�

θεxu∂2xt u dx = −
∫

�

∂t u
{
θε(u + x∂xu) + xθ ′

εu
}
dx .

Therefore, from (2.12) we get

h′
ε(t) = −Im

∫
�

{
θεx∂t u∂xu + ∂t u

(
θε(u + x∂xu) + xθ ′

εu
)}

dx .

Consequently, we obtain (2.11) for u(t) ∈ C1([0, T ], H1(�)) ∩ C1([0, T ], L2(�)),
and hence, for u(t) ∈ C([0, T ], H1(�)) ∩ C1([0, T ], L2(�)) which implies (2.10).



Instability of ground states for the NLS equation

Since u(t) ∈ C([0, THγ,V ), DHγ,V ), from (2.10) we get

h′
ε(t) = Re

∫
�

(Hγ,V u − |u|p−1u)
{
2θεx∂xu + (xθε)

′u
}
dx . (2.13)

Below we will consider separately linear and nonlinear part of identity (2.13). Inte-
grating by parts, we obtain

− Re
∫

�

	γ u
{
2θεx∂xu + (xθε)

′u
}
dx = −γ |u1(0)|2

+ 2
∫

�

xθ ′
ε|∂xu|2dx +

∫
�

(2θ ′
ε + xθ ′′

ε )Re(u∂xu)dx + 2
∫

�

θε|∂xu|2dx .
(2.14)

Noting that

Re
(
V (x)u

{
2θεx∂xu + (xθε)

′u
}) = ∂x

(
xV (x)θε|u|2

)
− xV ′(x)θε|u|2,

we get

Re
∫

�

V (x)u
{
2θεx∂xu + (xθε)

′u
}
dx = −

∫
�

xV ′(x)θε|u|2dx . (2.15)

Moreover,

Re
∫

�

−|u|p−1u
{
2θεx∂xu + (xθε)

′u
}
dx

= −
∫

�

|u|p+1θε dx −
∫

�

|u|p+1xθ ′
ε dx −

∫
�

(|u|2) p−1
2 ∂x (|u|2)xθε dx

= − p − 1

p + 1

∫
�

|u|p+1θε dx − p − 1

p + 1

∫
�

|u|p+1xθ ′
ε dx . (2.16)

Finally, from (2.13)-(2.16) we get

h′
ε(t) =

[
2
∫

�

θε|∂xu|2dx −
∫

�

xV ′(x)θε|u|2dx − γ |u1(0)|2 − p − 1

p + 1

∫
�

|u|p+1θεdx

]

+
[
2
∫

�

xθ ′
ε|∂xu|2dx +

∫
�

(2θ ′
ε + xθ ′′

ε )Re(u∂xu) dx

]
− p − 1

p + 1

∫
�

|u|p+1xθ ′
ε dx .

Since θε, θ ′
ε, xθ

′
ε, xθ

′′
ε are bounded with respect to x and ε, and

θε → 1, θ ′
ε → 0, xθ ′

ε → 0, xθ ′′
ε → 0 pointwise as ε ↓ 0,

by the Dominated Convergence Theorem, we have

lim
ε↓0 h

′
ε(t) = 2‖∂xu‖22 −

∫
�

xV ′(x)|u|2dx − γ |u1(0)|2 − p − 1

p + 1
‖u‖p+1

p+1 =: g(t).

Moreover, again by the Dominated Convergence Theorem,

lim
ε↓0 hε(t) = Im

∫
�

xu∂xu dx =: h(t).
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Using continuity of g(t) and the fact that the operator A = d

dt
in the space C[0, T ]

with dom(A) = C1[0, T ] is closed, we arrive at h′(t) = g(t), t ∈ [0, T ], i.e.,

h′(t) = 2‖∂xu‖22 −
∫

�

xV ′(x)|u|2dx − γ |u1(0)|2 − p − 1

p + 1
‖u‖p+1

p+1,

and h(t) is C1 function. Finally, (2.4) holds for u0 ∈ dom(Hγ,V ).
Step 3. To conclude the proof, consider {un0}n∈N ⊂ dom(Hγ,V ) such that un0 → u0

in H1(�) and xun0 → xu0 in L2(�) as n → ∞. Let un(t) be the maximal solutions
of the corresponding Cauchy problem associated with (1.1). From (2.3) and (2.4), we
obtain

‖xun(t)‖22 = ‖xun0‖22 + 4tIm
∫

�

xun0∂xu
n
0 dx +

∫ t

0

∫ s

0
8P(un(y))dy ds.

Using continuous dependence and repeating the arguments from [11, Corollary 6.5.3],
we obtain as n → ∞

‖xu(t)‖22 = ‖xu0‖22 + 4tIm
∫

�

xu0∂xu0 dx +
∫ t

0

∫ s

0
8P(u(y))dy ds,

that is, (2.4) holds for u0 ∈ H1(�). �

3. Existence of ground states

In this section, we prove Proposition 1.1. We begin with two technical lemmas.
Throughout this section, we assume that ω > ω0.

Lemma 3.1. If Iω(v) < 0, then

dω <
p − 1

2(p + 1)
‖v‖p+1

p+1 , and dω <
p − 1

2(p + 1)

(
Fγ,V (v) + ω ‖v‖22

)
.

Moreover,

dω = inf

{
p − 1

2(p + 1)
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Iω(v) ≤ 0

}

= inf

{
p − 1

2(p + 1)

(
Fγ,V (v) + ω ‖v‖22

)
: v ∈ H1(�)\{0}, Iω(v) ≤ 0

}
.

(3.1)

Proof. Noting that

Sω(v) = 1

2
Iω(v) + p − 1

2(p + 1)
‖v‖p+1

p+1 , v ∈ H1(�), (3.2)

we get

dω = inf

{
p − 1

2(p + 1)
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Iω(v) = 0

}
.
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Set

d∗
ω := inf

{
p − 1

2(p + 1)
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Iω(v) ≤ 0

}
.

It is clear that d∗
ω ≤ dω. Let v ∈ H1(�)\{0} and Iω(v) < 0. Put

λ1 :=
(
Fγ,V (v) + ω ‖v‖22

‖v‖p+1
p+1

) 1
p−1

.

Then, since Iω(λv) = λ2
(
Fγ,V (v) + ω ‖v‖22

) − λp+1 ‖v‖p+1
p+1 =: f (λ), we obtain

Iω(λ1v) = 0 and 0 < λ1 < 1 (one needs to remark that f (1) < 0, f (0) = 0, and
f ′(λ) > 0 for small positive λ). Hence, we have

dω ≤ p − 1

2(p + 1)
‖λ1v‖p+1

p+1 = p − 1

2(p + 1)
λ
p+1
1 ‖v‖p+1

p+1 <
p − 1

2(p + 1)
‖v‖p+1

p+1 .

Thus, we obtain dω ≤ d∗
ω. Similarly, we can show dω <

p−1
2(p+1)

(
Fγ,V (v) + ω ‖v‖22

)
and the second part of (3.1) since we can rewrite

dω = inf

{
p − 1

2(p + 1)

(
Fγ,V (v) + ω ‖v‖22

)
: u ∈ H1(�)\{0}, Iω(v) = 0

}
.

�

To get the existence of the minimizers of dω, one has at a certain point to compare
the action Sω for γ > 0 with the action S0ω of the nonpotential case (V (x) ≡ 0, γ > 0).
Set

S0ω(v) = 1

2
‖v′‖22 + ω

2
‖v‖22 − γ

2
|v1(0)|2 − 1

p + 1
‖v‖p+1

p+1,

I 0ω(v) = ‖v′‖22 + ω‖v‖22 − γ |v1(0)|2 − ‖v‖p+1
p+1,

d0ω = inf
{
S0ω(v) : v ∈ H1(�)\{0}, I 0ω(v) = 0

}
= inf

{
p − 1

2(p + 1)
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, I 0ω(v) = 0

}
,

and

M0
ω :=

{
φ ∈ H1(�)\{0} : I 0ω(φ) = 0, S0ω(φ) = d0ω

}
.

It is known that for γ > γ ∗, where γ ∗ is defined by (1.6), the set M0
ω is not empty

(see [2]). Throughout this section, we assume γ > γ ∗.

Lemma 3.2. d0ω > dω > 0.
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Proof. First, we show that dω > 0. Let v ∈ H1(�)\{0} satisfy Iω(v) = 0. Then,

‖v‖p+1
p+1 = Fγ,V (v) + ω ‖v‖22 .

Since ω > ω0, by the Sobolev embedding and Lemma 4.13-(ii), we have

‖v‖2p+1 ≤ C1 ‖v‖2H1(�)
≤ C2

(
Fγ,V (v) + ω ‖v‖22

)
= C2 ‖v‖p+1

p+1 .

Hence, we obtain C
−1
p−1
2 ≤ ‖v‖p+1. Taking the infimum over v, we get dω > 0. Next,

we prove d0ω > dω. Since M0
ω is not empty, we can take φ ∈ M0

ω. By Assumption 3,

Iω(φ) = (Vφ, φ)2 < 0.

Then, by Lemma 3.1, we obtain

dω <
p − 1

2(p + 1)
‖φ‖p+1

p+1 = d0ω.

�

Lemma 3.3. Let {vn} ⊂ H1(�)\{0} be aminimizing sequence for dω, i.e., Iω(vn) = 0
and lim

n→∞ Sω(vn) = dω. Then, there exist a subsequence {vnk } of {vn} and v0 ∈
H1(�)\{0} such that lim

k→∞
∥∥vnk − v0

∥∥
H1(�)

= 0, Iω(v0) = 0 and Sω(v0) = dω.

Therefore, Mω is not empty.

Proof. Since ω > ω0 and

Sω(vn) = p − 1

2(p + 1)

(
Fγ,V (vn) + ω ‖vn‖22

)
= p − 1

2(p + 1)
‖vn‖p+1

p+1 −→
n→∞ dω, (3.3)

the sequence {vn} is bounded in H1(�) (see Lemma 4.13-(ii)). Hence, there exist a
subsequence {vnk } of {vn} and v0 ∈ H1(�) such that {vnk } converges weakly to v0 in
H1(�). We may assume that vnk �= 0 and define

λk =
⎛
⎝∥∥v′

nk

∥∥2
2
+ ω

∥∥vnk∥∥22 − γ
∣∣vnk ,1(0)∣∣2∥∥vnk∥∥p+1

p+1

⎞
⎠

1
p−1

.

Notice that λk > 0 and I 0ω(λkvnk ) = 0. Therefore, by Lemma 3.2 and the definition
of d0ω, we obtain

dω < d0ω ≤ p − 1

2(p + 1)

∥∥λkvnk∥∥p+1
p+1 = λ

p+1
k

p − 1

2(p + 1)

∥∥vnk∥∥p+1
p+1 , for all k ∈ N.

(3.4)
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Furthermore, by Iω(vnk ) = 0, (3.3) and the weak continuity of (V v, v)2 =∫
�

V (x)|v(x)|2dx (see [23, Theorem 11.4]), we get

lim
k→∞ λk = lim

k→∞

⎛
⎝
∥∥vnk∥∥p+1

p+1 − (V vnk , vnk )2∥∥vnk∥∥p+1
p+1

⎞
⎠

1
p−1

=
(
dω − p−1

2(p+1) (V v0, v0)2

dω

) 1
p−1

.

Taking the limit in (3.4), we obtain dω < lim
k→∞ λ

p+1
k dω. Since dω > 0, we arrive at

lim
k→∞ λk > 1, and consequently, −(V v0, v0)2 > 0. Thus, v0 �= 0.

By the weak convergence, we obtain

lim
k→∞

{(
Fγ,V (vnk ) − Fγ,V (vnk − v0)

)+ ω
(∥∥vnk∥∥22 − ∥∥vnk − v0

∥∥2
2

)}
(3.5)

= Fγ,V (v0) + ω ‖v0‖22 .

Next, passing to a subsequence of {vnk } if necessary, we may assume that vnk −→
k→∞

v0 a.e. on �. Therefore, by the Brezis–Leib lemma [8],

lim
k→∞ Iω(vnk ) − Iω(vnk − v0) = lim

k→∞ −Iω(vnk − v0) = Iω(v0).

Since v0 �= 0, then the right-hand side of (3.5) is positive. It follows from (3.3) and
(3.5) that

p − 1

2(p + 1)
lim
k→∞

(
Fγ,V (vnk − v0) + ω

∥∥vnk − v0
∥∥2
2

)

<
p − 1

2(p + 1)
lim
k→∞

(
Fγ,V (vnk ) + ω

∥∥vnk∥∥22) = dω.

Hence, by (3.1), we have Iω(vnk −v0) > 0 for k large enough. Thus, since−Iω(vnk −
v0) −→

k→∞ Iω(v0), we obtain Iω(v0) ≤ 0. Then, by (3.1) and the weak lower semicon-

tinuity of norms, we see that

dω ≤ p − 1

2(p + 1)

(
Fγ,V (v0) + ω ‖v0‖22

) ≤ p − 1

2(p + 1)
lim
k→∞

(
Fγ,V (vnk ) + ω

∥∥vnk∥∥22) = dω.

Therefore, from (3.5) we get

lim
k→∞ Fγ,V (vnk − v0) + ω

∥∥vnk − v0
∥∥2
2 = 0,

and consequently, by Lemma 4.13-(ii), we have vnk −→
k→∞ v0 in H1(�) and Iω(v0) = 0.

This concludes the proof. �
Proof of Proposition 1.1. Step 1. We prove that Gω = Mω. Let ϕ ∈ Mω. Since
Iω(ϕ) = 0, we have〈
I ′
ω(ϕ), ϕ

〉 = 2
(
Fγ,V (ϕ) + ω ‖ϕ‖22

)
− (p + 1) ‖ϕ‖p+1

p+1 = −(p − 1) ‖ϕ‖p+1
p+1 < 0.

(3.6)
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There exists a Lagrange multiplier μ ∈ R such that S′
ω(ϕ) = μI ′

ω(ϕ). Furthermore,
since

μ
〈
I ′
ω(ϕ), ϕ

〉 = 〈
S′
ω(ϕ), ϕ

〉 = Iω(ϕ) = 0,

then, by (3.6), μ = 0. Hence, S′
ω(ϕ) = 0. Moreover, for v ∈ H1(�)\{0} satisfying

S′
ω(v) = 0, we have Iω(v) = 〈

S′
ω(v), v

〉 = 0. Then, from the definition of Mω, we
get Sω(ϕ) ≤ Sω(v). Hence, we obtain ϕ ∈ Gω. Now, let φ ∈ Gω. Since Mω is not
empty, we take ϕ ∈ Mω. By the first part of the proof, we have ϕ ∈ Gω; therefore,
Sω(φ) = Sω(ϕ) = dω. This implies φ ∈ Mω.
Step 2.Letϕ ∈ Gω. Belowwe show thatϕ has the formϕ(x) = eiθφ(x)with positive

φ(x) ∈ dom(Hγ,V ). Set φ := |ϕ|, then ∥∥φ′∥∥2
2 ≤ ∥∥ϕ′∥∥2

2 and Sω(φ) ≤ Sω(ϕ) = dω.
Using Gω = Mω, we obtain Iω(ϕ) = 0, then Iω(φ) ≤ 0. It follows from Lemma 3.1
that φ ∈ Mω and Sω(ϕ) = Sω(φ). Observe that this implies

‖φ′‖22 =
N∑

e=1

∫ ∞

0

∣∣φ′
e(x)

∣∣2 dx =
N∑

e=1

∫ ∞

0

∣∣ϕ′
e(x)

∣∣2 dx = ‖ϕ′‖22. (3.7)

From S′
ω(φ) = 0, repeating the proof of [2, Theorem 4] (see also [5, Lemma 4.1]),

one gets φ ∈ dom(Hγ,V ) and

Hγ,Vφ + ωφ − φ p = 0,

therefore,

−φ′′
e + ωφe + Ve(x)φe − φ

p
e = 0, x ∈ (0,∞), e = 1, . . . , N .

Recalling that V (x) ≤ 0 a.e. on � (see Remark 1.2) and using [28, Theorem 1], we
have that φe is either trivial or strictly positive on (0,∞). Indeed, to prove that, we
need to set β(s) := ωs − s p and observe that β(s) ∈ C1[0,∞) is nondecreasing for

s small, and β(0) = β(ω
1

p−1 ) = 0.
Now assume φe(0) = φ′

e(0) = 0 and put

φ̃e(x) =
{

φe(x), x ∈ [0,∞)

0, x ∈ (−δ, 0).

Then, by the Sobolev extension theorem, we have φ̃e ∈ H2(−δ,∞). Moreover,

−φ̃′′
e + ωφ̃e + Ve(x)φ̃e − φ̃

p
e = 0, on (−δ,∞).

Therefore, by [28, Theorem 1], arguing as above, we find that φ̃e = 0 on (−δ,∞).
Next assume φ(0) = 0, i.e., φ1(0) = . . . = φN (0). Since φe ∈ C1(0,∞), φe ≥ 0

and φe(0) = 0, then φ′
e(0) ≥ 0. By

∑N
e=1 φ′

e(0) = −γφ1(0) = 0, we get φe(0) =
φ′
e(0) = 0. Then, φe = 0 on (0,∞) for all e = 1, . . . , N , and by continuity φ = 0 on
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�, which is absurd since φ ∈ Mω. Hence, φe(0) > 0 for all e = 1, . . . , N ; therefore,
φe > 0 on (0,∞) for all e = 1, . . . , N , i.e., φ > 0 on �.
Step 3. Now, we can write ϕe(x) = φe(x)τe(x), where τe ∈ C1(0,∞), |τe| = 1.

Then,

ϕ′
e = φ′

eτe + φeτ
′
e = τe(φ

′
e + φeτ eτ

′
e).

Using Re(τ eτ ′
e) = 0, we have

∣∣ϕ′
e

∣∣2 = ∣∣φ′
e

∣∣2 + ∣∣φeτ
′
e

∣∣2. Therefore, from (3.7) we
obtain

N∑
e=1

∫ ∞

0

∣∣φ′
e

∣∣2 dx =
N∑

e=1

∫ ∞

0

∣∣ϕ′
e

∣∣2 dx =
N∑

e=1

∫ ∞

0

∣∣φ′
e

∣∣2 dx +
N∑

e=1

∫ ∞

0

∣∣φeτ
′
e

∣∣2 dx .
So far as φe > 0, we have τ ′

e = 0 for all e = 1, . . . , N . Since τe ∈ C1(0,∞), there
exists a constant θe ∈ R such that τe(x) = eiθe on (0,∞). By the continuity at the
vertex, we obtain θe = θ = const for all e = 1, . . . , N . This ends the proof. �

4. Instability of standing waves

In this section, we prove Theorem 1.4 and Corollary 1.5.

4.1. Proof of the main result

We begin with the following lemma.

Lemma 4.1. Let ϕω ∈ Mω. Then,

(i) ‖ϕω‖p+1
p+1 = inf

{
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Iω(v) = 0
}

= inf
{
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Iω(v) ≤ 0
}

,

(i i) Sω(ϕω) = inf{Sω(v) : v ∈ H1(�), ‖v‖p+1
p+1 = ‖ϕω‖p+1

p+1}.
Proof. (i) This is an immediate consequence of Lemma 3.1
(ii) Set d∗∗

ω := inf{Sω(v) : v ∈ H1(�), ‖v‖p+1
p+1 = ‖ϕω‖p+1

p+1}. As far as d∗∗
ω ≤

Sω(ϕω), it suffices to prove Sω(ϕω) ≤ d∗∗
ω . If v ∈ H1(�) satisfies ‖v‖p+1

p+1 = ‖ϕω‖p+1
p+1,

then, by item (i) and (3.2), we have Iω(v) ≥ 0. Hence, by (3.2),

Sω(ϕω) = p − 1

2(p + 1)
‖ϕω‖p+1

p+1 = p − 1

2(p + 1)
‖v‖p+1

p+1 ≤ Sω(v).

Thus, we obtain Sω(ϕω) ≤ d∗∗
ω . �

Recall that

P(v) = ∥∥v′∥∥2
2 − 1

2

∫
�

xV ′(x)|v(x)|2 dx − γ

2
|v1(0)|2 − p − 1

2(p + 1)
‖v‖p+1

p+1 .
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Lemma 4.2. If ∂2λE(ϕλ
ω) |λ=1 < 0, then there exist δ > 0 and ε > 0 such that the

following holds: for any v ∈ Nε(ϕω) satisfying ‖v‖22 ≤ ‖ϕω‖22, there exists λ(v) ∈
(1 − δ, 1 + δ) such that E(ϕω) ≤ E(v) + (λ(v) − 1)P(v), where Nε(ϕω) is defined
by (1.7).

Proof. Since ∂2λE(ϕλ
ω) |λ=1 < 0 and ∂2λE(vλ) is continuous in v (we mean ”orbit”-

continuity) and λ, there exist positive constants ε and δ such that ∂2λE(vλ) < 0 for
any v ∈ Nε(ϕω) and λ ∈ (1 − δ, 1 + δ). Using P(v) = ∂λE(vλ) |λ=1 , the Taylor
expansion at λ = 1 gives

E(vλ) ≤ E(v) + (λ − 1)P(v), λ ∈ (1 − δ, 1 + δ), v ∈ Nε(ϕω). (4.1)

Let v ∈ Nε(ϕω) satisfy ‖v‖22 ≤ ‖ϕω‖22. We define

λ(v) :=
(‖ϕω‖p+1

p+1

‖v‖p+1
p+1

) 2
p−1

.

Then,
∥∥vλ(v)

∥∥p+1
p+1 = ‖ϕω‖p+1

p+1 and we can take ε small enough to guarantee λ(v) ∈
(1 − δ, 1 + δ). Since

∥∥vλ(v)
∥∥2
2 = ‖v‖22 ≤ ‖ϕω‖22, by Lemma 4.1-(ii), we have

E(vλ(v)) = Sω(vλ(v)) − ω

2

∥∥∥vλ(v)
∥∥∥2
2

≥ Sω(ϕω) − ω

2
‖ϕω‖22 = E(ϕω),

which together with (4.1) implies that E(ϕω) ≤ E(v) + (λ(v) − 1)P(v). �

To prove Theorem 1.4, we introduce the following definition.

Definition 4.3. Let ε be the positive constant given by Lemma 4.2. Set

Zε(ϕω) := {v ∈ Nε(ϕω) : E(v) < E(ϕω), ‖v‖22 ≤ ‖ϕω‖22 , P(v) < 0},

and for any u0 ∈ Nε(ϕω), we define the exit time from Nε(ϕω) by

Tε(u0) = sup{T > 0 : u(t) ∈ Nε(ϕω), 0 ≤ t ≤ T },

with u(t) being a solution of (1.1).

Lemma 4.4. Assume ∂2λE(ϕλ
ω) |λ=1 < 0, then for any u0 ∈ Zε(ϕω), there exists

b = b(u0) > 0 such that P(u(t)) ≤ −b for 0 ≤ t < Tε(u0).

Proof. Set b0 := E(ϕω) − E(u0) > 0, with u0 ∈ Zε(ϕω). From the conservation of
energy and Lemma 4.2, we have

b0 ≤ (λ(u(t)) − 1)P(u(t)), 0 ≤ t < Tε(u0). (4.2)
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Therefore, for 0 ≤ t < Tε(u0) we get P(u(t)) �= 0. Indeed, if P(u(t0)) = 0
for some t0 ∈ [0, T (u0)), then from (4.2) it follows b0 ≤ 0, which contradicts the
definition of b0. Since P(u0) < 0 and the function t �→ P(u(t)) is continuous, we see
that P(u(t)) < 0 for 0 ≤ t < Tε(u0), and hence, λ(u(t))−1 < 0 for 0 ≤ t < Tε(u0).
Thus, from Lemma 4.2 and (4.2), we have

P(u(t)) ≤ b0
λ(u(t)) − 1

≤ −b0
δ

, 0 ≤ t < Tε(u0).

Hence, taking b = b0
δ
, we arrive at P(u(t)) ≤ −b for 0 ≤ t < Tε(u0). �

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Observe that P(v) = ∂λSω(vλ)|λ=1 = 〈
S′
ω(v), ∂λv

λ|λ=1
〉
.

Since S′
ω(ϕω) = 0, we obtain P(ϕω) = ∂λSω(ϕλ

ω) |λ=1 = 0. Moreover, by P(ϕλ
ω) =

λ∂λE(ϕλ
ω), we have ∂λE(ϕλ

ω) |λ=1 = 0. Then, from the assumption ∂2λE(ϕλ
ω) |λ=1 <

0, we get E(ϕλ
ω) < E(ϕω) and P(ϕλ

ω) < 0 for λ > 1 close enough to 1.

Let ε > 0 be given by Lemma 4.2. Since lim
λ→1

∥∥ϕλ
ω − ϕω

∥∥
H1(�)

= 0 and
∥∥ϕλ

ω

∥∥2
2 =

‖ϕω‖22, by continuity of E and P , for any δ ≤ ε there existsλ1 such thatϕ
λ1
ω ∈ Z δ

2
(ϕω).

Suppose that χ ∈ C∞
c (R+) is the function satisfying

0 ≤ χ ≤ 1, χ(x) = 1, if x ∈ [0, 1], and χ(x) = 0 if x ≥ 2.

For a > 0, we define χa ∈ C∞
c (�) by

(χa)e(x) = χ
( x
a

)
, x ∈ R

+, e = 1, . . . , N .

Then, we have lim
a→∞

∥∥∥χaϕ
λ1
ω − ϕ

λ1
ω

∥∥∥
H1(�)

= 0 and
∥∥∥χaϕ

λ1
ω

∥∥∥2
2

≤
∥∥∥ϕλ1

ω

∥∥∥2
2

= ‖ϕω‖22 for
all a > 0. Thus, by continuity of E and P , for any δ ≤ ε there exists a1 > 0 such that
χa1ϕ

λ1
ω ∈ Z δ

2
(ϕ

λ1
ω ), therefore χa1ϕ

λ1
ω ∈ Zδ(ϕω) ⊆ Zε(ϕω).

Observe that χa1ϕ
λ1
ω ∈ �(�) (see Proposition 2.6 for the definition of �(�)), and

by virial identity (2.4), we see that

d2

dt2
‖xu1(t)‖22 = 8P(u1(t)), 0 ≤ t ≤ Tε(χa1ϕ

λ1
ω ), (4.3)

where u1(t) is the solution to (1.1) with u1(0) = χa1ϕ
λ1
ω . From Lemma 4.4, there

exists b = b(λ1, a1) > 0 such that

P(u1(t)) ≤ −b, 0 ≤ t < Tε(χa1ϕ
λ1
ω ). (4.4)

Then, from (4.4) and (4.3), we can see that Tε(χa1ϕ
λ1
ω ) < ∞.

Summarizing the above, we affirm: there exists ε > 0 (given by Lemma 4.2) such
that for all δ > 0 there exist u0 = χa1ϕ

λ1
ω ∈ Nδ(ϕω) and t1 > 0 such that the

corresponding solution u1(t) of (1.1) satisfies u1(t1) /∈ Nε(ϕω). Hence, the standing
wave solution eiωtϕω of (1.1) is orbitally unstable. �



A. H. Ardila et al. J. Evol. Equ.

4.2. Rescaled variational problem and proof of Corollary 1.5

Assume that V (x) = −β

xα
, β > 0, 0 < α < 1. Recall that vλ(x) = λ1/2v(λx) for

λ > 0. By simple computations, we have

E(vλ) = λ2

2
‖v′‖22 + λα

2
(V v, v)2 − λ

2
γ |v1(0)|2 − λ

p−1
2

p + 1
‖v‖p+1

p+1,

∂2λE(vλ) |λ=1 = ‖v′‖22 + α(α − 1)

2
(V v, v)2 − (p − 1)(p − 3)

4(p + 1)
‖v‖p+1

p+1.

Since P(ϕω) = ∂λSω(ϕλ
ω) |λ=1 = 0, then we get

∂2λE(ϕλ
ω) |λ=1 = −α(2 − α)

2
(Vϕω, ϕω)2 + γ

2

∣∣ϕω,1(0)
∣∣2 − (p − 1)(p − 5)

4(p + 1)
‖ϕω‖p+1

p+1,

and ∂2λE(ϕλ
ω) |λ=1 < 0 is equivalent to

−α(2 − α)(Vϕω, ϕω)2 + γ
∣∣ϕω,1(0)

∣∣2
‖ϕω‖p+1

p+1

<
(p − 1)(p − 5)

2(p + 1)
. (4.5)

Below we prove that the left-hand side of (4.5) converges to 0 as ω → ∞. To this
end, we consider the following rescaling of ϕω ∈ Mω:

ϕω(x) = ω
1

p−1 ϕ̃ω(
√

ωx), ω ∈ (ω0,∞), (4.6)

and observe

−ω− 2−α
2 α(2 − α)(V ϕ̃ω, ϕ̃ω)2 + ω− 1

2 γ
∣∣ϕ̃ω,1(0)

∣∣2
‖ϕ̃ω‖p+1

p+1

= −α(2 − α)(Vϕω, ϕω)2 + γ
∣∣ϕω,1(0)

∣∣2
‖ϕω‖p+1

p+1

.

(4.7)

Put

Ĩω(v) : = ‖v′‖22 + ‖v‖22 − ω− 2−α
2 β

∫
�

|v(x)|2
xα

dx − ω− 1
2 γ |v1(0)|2 − ‖v‖p+1

p+1,

Ĩ0(v) : = ‖v′‖22 + ‖v‖22 − ‖v‖p+1
p+1.

Consider the minimization problem

d̃0 := inf
{
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Ĩ0(v) ≤ 0
}

. (4.8)

In [2, Theorem 3], it was shown that d̃0 > 0. The following lemma is the key result to
prove Corollary 1.5.
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Lemma 4.5. Assume that γ > 0, β > 0, 0 < α < 1 and p > 5. Let ϕω ∈ Mω, and
ϕ̃ω(x) be the rescaled function given in (4.6). Then,

(i) lim
ω→∞ ‖ϕ̃ω‖p+1

p+1 = d̃0,

(i i) lim
ω→∞ Ĩ0(ϕ̃ω) = 0,

(i i i) lim
ω→∞ ‖ϕ̃ω‖2H1(�)

= d̃0.

Proof. Notice that

‖ϕ̃ω‖p+1
p+1 = inf

{
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Ĩω(v) = 0
}

= inf
{
‖v‖p+1

p+1 : v ∈ H1(�)\{0}, Ĩω(v) ≤ 0
}

:= d̃ω.
(4.9)

By definition, we have

Ĩ0(v) = Ĩω(v) − ω− 2−α
2 (V v, v)2 + ω− 1

2 γ |v1(0)|2 , and (4.10)

Ĩ0(v) = λ−2 Ĩ0(λv) + (λp−1 − 1)‖v‖p+1
p+1. (4.11)

Using, (4.10), (4.11), Ĩω(ϕ̃ω) = 0, estimate (4.18), and the Sobolev embedding, for
any λ > 1 we get

λ−2 Ĩ0(λϕ̃ω) = −ω− 2−α
2 (V ϕ̃ω, ϕ̃ω)2 + ω− 1

2 γ
∣∣ϕ̃ω,1(0)

∣∣2 − (λp−1 − 1)‖ϕ̃ω‖p+1
p+1

≤ C1ω
− 2−α

2 ‖ϕ̃ω‖2H1(�)
+ C2ω

− 1
2 γ ‖ϕ̃ω‖2H1(�)

− (λp−1 − 1)‖ϕ̃ω‖p+1
p+1.

(4.12)

Moreover, from Ĩω(ϕ̃ω) = 0, we deduce

‖ϕ̃ω‖2H1(�)
= −ω− 2−α

2 (V ϕ̃ω, ϕ̃ω)2 + ω− 1
2 γ
∣∣ϕ̃ω,1(0)

∣∣2 + ‖ϕ̃ω‖p+1
p+1

≤ C1ω
− 2−α

2 ‖ϕ̃ω‖2H1(�)
+ C2ω

− 1
2 γ ‖ϕ̃ω‖2H1(�)

+ ‖ϕ̃ω‖p+1
p+1.

This implies (
1 − C1ω

− 2−α
2 − C2ω

− 1
2 γ
)

‖ϕ̃ω‖2H1(�)
≤ ‖ϕ̃ω‖p+1

p+1.

Since for ω sufficiently large
(
1 − C1ω

− 2−α
2 − C2ω

− 1
2 γ
)

> 0, from (4.12) we get

λ−2 Ĩ0(λϕ̃ω) ≤ −
(

λp−1 − 1 − C1ω
− 2−α

2 + C2ω
− 1

2 γ

1 − C1ω
− 2−α

2 − C2ω
− 1

2 γ

)
‖ϕ̃ω‖p+1

p+1. (4.13)

Hence, for any λ > 1, there exists ω1 = ω1(λ) ∈ (ω0,∞) such that Ĩ0(λϕ̃ω) < 0
for ω ∈ (ω1,∞). Thus, by (4.8), d̃0 ≤ λp+1‖ϕ̃ω‖p+1

p+1 for ω ∈ (ω1,∞). Observe
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that Ĩ0(v) ≤ 0 implies Ĩω(v) ≤ 0; then, from (4.9) we obtain d̃ω = ‖ϕ̃ω‖p+1
p+1 ≤ d̃0.

Therefore,

λ−(p+1)d̃0 ≤ ‖ϕ̃ω‖p+1
p+1 ≤ d̃0, ω ∈ (ω1,∞). (4.14)

Letting λ ↓ 1, we get that ω → ∞, and from (4.14) it follows (i).
Now, assume that λ = 1 in (4.13); then, using (i), we deduce

lim sup
ω→∞

Ĩ0(ϕ̃ω) ≤ 0. (4.15)

Furthermore, define

λ1(ω) =
(

‖ϕ̃′
ω‖22 + ‖ϕ̃ω‖22
‖ϕ̃ω‖p+1

p+1

) 1
p−1

> 0,

then Ĩ0(λ1(ω)ϕ̃ω) = 0. Therefore, we have

d̃0 ≤ λ1(ω)p+1‖ϕ̃ω‖p+1
p+1. (4.16)

Thus, by (i) and (4.16), we arrive at

lim inf
ω→∞ λ1(ω) ≥ lim inf

ω→∞

(
d̃0

‖ϕ̃ω‖p+1
p+1

) 1
p+1

= 1.

Moreover, by (4.11), Ĩ0(λ1(ω)ϕ̃ω) = 0 and (i), we have

lim inf
ω→∞ Ĩ0(ϕ̃ω) = lim inf

ω→∞ (λ1(ω)p−1 − 1) ‖ϕ̃ω‖p+1
p+1 ≥ 0,

which together with (4.15) implies (ii). Finally, from (i) and (ii), we obtain

d̃0 = lim
ω→∞ ‖ϕ̃ω‖p+1

p+1 = lim
ω→∞ ‖ϕ̃ω‖2H1(�)

,

which shows (iii). �
Proof of Corollary 1.5. Recall that, by Theorem 1.4, if ∂2λE

(
ϕλ

ω

) |λ=1 < 0, then
eitϕω(x) is orbitally unstable. Since

∂2λE
(
ϕλ

ω

) |λ=1 < 0 ⇐⇒ −α(2 − α) (Vϕω, ϕω)2 + γ
∣∣ϕω,1(0)

∣∣2
‖ϕω‖p+1

p+1

<
(p − 1)(p − 5)

2(p + 1)
,

by (4.7), it suffices to prove

lim
ω→∞

−ω− 2−α
2 α(2 − α)(V ϕ̃ω, ϕ̃ω)2 + ω− 1

2 γ
∣∣ϕ̃ω,1(0)

∣∣2
‖ϕ̃ω‖p+1

p+1

= 0. (4.17)

We have

0 ≤ −ω− 2−α
2 α(2 − α)(V ϕ̃ω, ϕ̃ω)2 + ω− 1

2 γ
∣∣ϕ̃ω,1(0)

∣∣2
≤
(
C1ω

− 2−α
2 + C2ω

− 1
2 γ
)

‖ϕ̃ω‖2H1(�)
.

Hence, by Lemma 4.5-(i), (iii), we obtain (4.17). This concludes the proof. �
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4.3. Instability results in H1
eq(�)

We discuss counterparts of Proposition 1.1, Theorem 1.4, Corollary 1.5 for arbitrary
γ ∈ R and symmetric V (x), i.e., V1(x) = . . . = VN (x), in the space

H1
eq(�) = {v ∈ H1(�) : v1(x) = . . . = vN (x), x > 0}.

The well-posedness in H1
eq(�) follows analogously to [17, Lemma 2.6]. We use index

·eq to denote counterparts of the objects for the space H1
eq(�).

It is known that d0ω,eq = S0ω(φγ ) (see page 12 in [18]) for any γ ∈ R, where

φγ (x) =
({

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 x + arctanh( γ

N
√

ω
)
)} 1

p−1
)N

e=1
.

Then, for 0 < ω0,eq < ω (observe that ω0,eq ≤ ω0) one can repeat all the proofs
in Sect. 3 and Subsect. 4.1 and 4.2 with H1

eq(�) instead of H1(�). Thus, we get the
following results.

Proposition 4.6. Let p > 1, γ ∈ R, ω > ω0,eq. If V (x) = V (x) is symmetric
and satisfies Assumptions 1–3, then the set of ground states Gω,eq is not empty, in
particular, Gω,eq = Mω,eq. If ϕω ∈ Gω,eq, then there exist θ ∈ R and a positive
function φ ∈ H1

eq(�) such that ϕω(x) = eiθφ(x).

Theorem 4.7. Let p > 5, γ ∈ R, ω > ω0,eq. If V (x) = V (x) is symmetric and
satisfies Assumptions 1–4, ϕω(x) ∈ Gω,eq, and ∂2λE(ϕλ

ω) |λ=1 < 0, then the standing
wave solution eiωtϕω(x) of (1.1) is orbitally unstable in H1

eq(�) and therefore in

H1(�).

Corollary 4.8. Assume that V (x) = −β

xα
, β > 0, 0 < α < 1, γ ∈ R. Let p > 5 and

ϕω(x) ∈ Gω,eq. Then, there exists ω∗
eq ∈ (ω0,eq,∞) such that for any ω ∈ (ω∗

eq,∞)

the standing wave solution eiωtϕω(x) of (1.1) is orbitally unstable in H1(�).

Remark 4.9. (i) Observe that when dealing with H1
eq(�), no restriction on γ appears.

This is due to the fact that the corresponding constrained variational problem is closely
related to the one on R, which in turn admits a minimizer for any γ (see [18, Remark
3.1]).
(ii) Consider

i∂t u(t, x) = −∂2x u(t, x) − γ δ(x)u(t, x) + V (x)u(t, x) − |u(t, x)|p−1 u(t, x),

(t, x) ∈ R×R, γ ∈ R. Notice that the above results are valid with H1
eq(�) substituted

by H1
rad(R) = { f ∈ H1(R) : f (x) = f (−x)} and analogous assumptions on V (x).

One only needs to recall that d0
ω,rad = S0ω(φγ ) (see [14, Theorem 1]), where

φγ (x) =
{

(p+1)ω
2 sech2

(
(p−1)

√
ω

2 |x | + arctanh( γ

2
√

ω
)
)} 1

p−1
.
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Appendix

Below we show some properties of the operator Hγ,V introduced by (1.2).

Lemma 4.10. Let γ ∈ R and V (x) = V (x) ∈ L1(�) + L∞(�). The quadratic form
Fγ,V given by (1.3) is semibounded and closed, and the operator Hγ,V defined by

(Hγ,V v)e = −v′′
e + Veve,

dom(Hγ,V ) =
{

v ∈ H1(�) : −v′′
e + Veve ∈ L2(R+),

N∑
e=1

v′
e(0) = −γ v1(0)

}
.

is the self-adjoint operator associated with Fγ,V in L2(�).

Proof. We can write V (x) = V1(x) + V2(x), with V1 ∈ L1(�) and V2 ∈ L∞(�).
Thus, using the Gagliardo–Nirenberg inequality (see formula (2.1) in [10]) and the
Young inequality, we have∣∣∣∣

∫
�

V (x) |v(x)|2 dx
∣∣∣∣ ≤ ‖V1‖1 ‖v‖2∞ + ‖V2‖∞ ‖v‖22
≤ C ‖V1‖1

∥∥v′∥∥
2 ‖v‖2 + ‖V2‖∞ ‖v‖22

≤ ε
∥∥v′∥∥2

2 + Cε ‖v‖22 , ε > 0. (4.18)

Similarly, by the Sobolev embedding, we obtain∣∣∣γ |v1(0)|2
∣∣∣ ≤ |γ |‖v‖2∞ ≤ C‖v′‖2 ‖v‖2 ≤ ε

∥∥v′∥∥2
2 + Cε ‖v‖22 .

Therefore,∣∣∣∣γ |v1(0)|2 +
∫

�

V (x)|v(x)|2dx
∣∣∣∣ ≤ 2ε

∥∥v′∥∥2
2 + Cε ‖v‖22 , for every ε > 0.

(4.19)

Then, by the KLMN theorem [26, Theorem X.17], we infer that the quadratic form
Fγ,V is associated with a semibounded self-adjoint operator Tγ,V defined by (observe
that A = H0,0 in [26, Theorem X.17], i.e., V ≡ 0, γ = 0)

dom(Tγ,V ) =
{
u ∈ H1(�) : ∃ y ∈ L2(�) s.t.∀v ∈ H1(�), Fγ,V (u, v) = (y, v)2

}
,

Tγ,V u = y.



Instability of ground states for the NLS equation

It is easily seen that dom(Hγ,V ) ⊆ dom(Tγ,V ) and Tγ,V u = Hγ,V u, u ∈ dom(Hγ,V ).
Hence, it is sufficient to prove that dom(Tγ,V ) ⊆ dom(Hγ,V ).

Let ũ ∈ dom(Tγ,V ) and ṽ ∈ H1(�), then there exists ỹ ∈ L2(�) such that

Fγ,V (ũ, ṽ) =
∫

�

(ũ′ṽ′ + V ũṽ)dx − γ ũ1(0)ṽ1(0) = (ỹ, ṽ)2. (4.20)

Observe that ỹ − V ũ ∈ L1
loc(�) and set

z = (ze)
N
e=1, ze(x) =

∫ x

0
(ỹe(t) − Ve(t)ũe(t)) dt.

Suppose now additionally that ṽ has a compact support, then

∫
�

(ỹ − V ũ)ṽdx =
∫

�

z′ṽdx = −ṽ1(0)
N∑

e=1

ze(0) −
∫

�

zṽ′dx . (4.21)

From (4.20), we deduce∫
�

(ỹ − V ũ)ṽdx =
∫

�

ũ′ṽ′dx − γ ũ1(0)ṽ1(0). (4.22)

Combining (4.21) and (4.22), we get

∫
�

(ũ′ + z)ṽ′dx + ṽ1(0)

(
−γ ũ1(0) +

N∑
e=1

ze(0)

)
= 0. (4.23)

Choose ṽ = (ṽe)
N
e=1 such that ṽ1(x) ∈ C∞

0 (R+) and ṽ2(x) ≡ . . . ≡ ṽN (x) ≡ 0. Then
we obtain ∫ ∞

0
(ũ′

1 + z1)ṽ′
1dx = 0,

therefore ũ′
1 + z1 ≡ const ≡ c1. We have used that ũ′

1 + z1 ∈ Ran(A)⊥, where
Av = v′ with dom(A) = C∞

0 (R+) in L2(R+). Analogously ũ′
e + ze ≡ const ≡

ce, e = 2, . . . , N . Finally, from (4.23) we deduce

ṽ1(0)

(
−γ ũ1(0) −

N∑
e=1

(ũ′
e(0) + ze(0)) +

N∑
e=1

ze(0)

)
= 0.

Assuming that ṽ1(0) �= 0, we arrive at
N∑

e=1
ũ′
e(0) = −γ ũ1(0). Moreover, −ũ′′ +

V ũ = z′ + V ũ = ỹ − V ũ + V ũ = ỹ ∈ L2(�). Hence, ũ ∈ dom(Hγ,V ) and
dom(Tγ,V ) ⊆ dom(Hγ,V ). �
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Lemma 4.11. Suppose that V (x) = V (x) ∈ L2
ε(�)+ L∞(�), i.e., for any ε > 0 and

V ∈ L2
ε(�) + L∞(�) there exists a representation V = V1 + V2, V1 ∈ L2(�), V2 ∈

L∞(�), with ‖V1‖22 ≤ ε. Then, we have

dom(Hγ,V ) =
{

v ∈ H1(�) : ve ∈ H2(R+),

N∑
e=1

v′
e(0) = −γ v1(0)

}
:= DH2 .

(4.24)

Moreover, for m sufficiently large, Hγ,V -norm ‖(Hγ,V +m) · ‖2 is equivalent to H2-
norm on �.

Proof. Observe that, by V (x) ∈ L2
ε(�)+ L∞(�), the Sobolev and the Young inequal-

ities we get

‖V v‖22 ≤ ‖V1‖22‖v‖2∞ + ‖V2‖2∞‖v‖22 ≤ ε‖v‖2H2(�)
+ C‖v‖22 (4.25)

and

|(v′′, V v)2| ≤ ‖v′′‖2‖V v‖2 ≤ ‖v′′‖2‖V1‖2‖v‖∞ + ‖v′′‖2‖V2‖∞‖v‖2
≤ C1‖v′′‖2‖V1‖2‖v‖H2(�) + C2‖v′′‖2‖v‖2 ≤ ε‖v‖2H2(�)

+ ε‖v′′‖22
+Cε‖v‖22 ≤ 2ε‖v‖2H2(�)

+ Cε‖v‖22. (4.26)

It is immediate from (4.25), (4.26) that

‖Hγ,V v‖22 = ‖v′′‖22 + 2Re(v′′, V v)2 + ‖V v‖22 ≤ C1‖v‖2H2(�)
. (4.27)

And for m sufficiently large, inequalities (4.25) and (4.26) imply

‖Hγ,V v‖22 + m2‖v‖22 = ‖v′′‖22 + 2Re(v′′, V v)2 + ‖V v‖22 + m2‖v‖22
≥ C2‖v‖2H2(�)

. (4.28)

Thus, we get (4.24).
The second assertion follows from (4.27),(4.28), and

‖(Hγ,V + m)v‖22 = ‖Hγ,V v‖22 + m2‖v‖22 + 2m(Hγ,V v, v)2,

|(Hγ,V v, v)2| ≤ ‖Hγ,V v‖2‖v‖2 ≤ ε‖Hγ,V v‖22 + Cε‖v‖22.
�

Remark 4.12. Observe that there exists potential V (x) satisfying Assumptions 1–4
such that dom(Hγ,V ) �= DH2 . For example, consider V (x) = −1/xα, 1/2 ≤ α < 1,
and N = γ = 2, then v = (e−x , e−x ) ∈ DH2 , but

‖Hγ,V v‖22 = 2‖ − v′′
1 − v1

xα
‖22 > 2e−2ε

∫ ε

0

dx

x2α
= ∞.
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Lemma 4.13. Let γ > 0 and V (x) = V (x) satisfy Assumptions 1–3. Then, the
following assertions hold.
(i) The number −ω0 defined by (1.5) is negative.

(ii) Let also m > ω0, then
√
Fγ,V (v) + m‖v‖22 defines a norm equivalent to the

H1-norm.
(iii) The number −ω0 is the first eigenvalue of Hγ,V . Moreover, it is simple, and there
exists the corresponding positive eigenfunction ψ0 ∈ dom(Hγ,V ), i.e., Hγ,Vψ0 =
−ω0ψ0.

Proof. (i) To show −ω0 < 0, observe that

−ω0 = inf σ(Hγ,V ) = inf
{
Fγ,V (v) : v ∈ H1(�), ‖v‖22 = 1

}
. (4.29)

Consider vλ(x) = λ
1
2 v(λx) with λ > 0. Hence,

Fγ,V (vλ) = λ2
∥∥v′∥∥2

2 − λγ |v1(0)|2 + (V vλ, vλ)2.

For λ small enough, we have Fγ,V (vλ) < 0. Finally, −ω0 is finite since Fγ,V (v) is
lower semibounded.
(ii) Let ε > 0. Firstly, notice that from (4.19) one easily gets

Fγ,V (v) + m‖v‖22 ≤ (1 + 2ε)‖v′‖22 + (C + m)‖v‖22 ≤ C1‖v‖2H1(�)
.

Secondly, for ε and δ sufficiently small,

Fγ,V (v) + m‖v‖22 = δ‖v′‖22 + (1 − δ)

(
‖v′‖22 + 1

1 − δ
(V v, v)2 − γ

1 − δ
|v1(0)|2

)
+ m‖v‖22 ≥ δ‖v′‖22 − (1 + ε)(1 − δ)ω0‖v‖22 + m‖v‖22 ≥ C2‖v‖2H1(�)

.

Indeed, the family of sesquilinear forms

t(κ)[u, v] = (u′, v′)2 + 1

1 − κ
(Vu, v)2 − γ

1 − κ
(u1(0)v1(0))

is holomorphic of type (a) in the sense of Kato in the complex neighborhood of
zero (see [21, Chapter VII, §4] for the definition and [21, Chapter VI, §1, Example
1.7] for the proof of sectoriality). Using inequality (4.7) in [21, Chapter VII] with
κ = κ2 = 0, κ1 = δ, we obtain |t(δ)[v] − t(0)[v]| ≤ ε|t(0)[v]|. Hence,

t(δ)[v] ≥ t(0)[v] − ε|t(0)[v]| = Fγ,V (v) − ε|Fγ,V (v)| ≥ −(1 + ε)ω0‖v‖22.

(iii) Step 1. Let {vn} be a minimizing sequence, that is, Fγ,V (vn) −→
n→∞ −ω0, ‖vn‖22 =

1 for all n ∈ N. From (ii), we deduce that {vn} is bounded in H1(�). Then, there exist
a subsequence {vnk } of {vn} and v0 ∈ H1(�) such that {vnk } converges weakly to v0
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in H1(�). Observe that, by the weak lower semicontinuity of L2-norm and Fγ,V (·),
we get ‖v0‖2 ≤ 1 and

Fγ,V (v0) ≤ lim
k→∞ Fγ,V (vnk ) = −ω0 < 0.

We have ‖v0‖2 = 1, since, otherwise, there would exist λ > 1 such that ‖λv0‖2 = 1
and Fγ,V (λv0) = λ2Fγ,V (v0) < −ω0, which is a contradiction. Consequently, v0 is
a minimizer for (4.29).
Let ψ0 = |v0|, then ψ0 ≥ 0 on � and ‖ψ0‖22 = ‖v0‖22 = 1. Notice that

∥∥ψ ′
0

∥∥2
2 ≤∥∥v′

0

∥∥2
2 , therefore Fγ,V (ψ0) ≤ Fγ,V (v0). Then, ψ0 is a minimizer of (4.29). This

implies the existence of the Lagrange multiplier −μ such that

F ′
γ,V (ψ0) = −μQ′(ψ0), Q(v) = ‖v‖22.

Repeating the arguments from the proof of [2, Theorem 4], we get ψ0 ∈ dom(Hγ,V )

and

Hγ,Vψ0 = −μψ0.

Multiplying the above equation byψ0 and integrating, we concludeμ = ω0.Recalling
that V (x) ≤ 0 a.e. on �, and arguing as in the proof of Proposition 1.1, one can show
that ψ0 > 0 on �. Notice that one needs to apply [28, Theorem 1] with β(s) = ω0s.
Step 2. Suppose that u0 is a nonnegative solution of

Hγ,V u0 = −ω0u0. (4.30)

Let us show that there exists C > 0 such that u0(x) = Cψ0(x). Assume that this is
false. Then, there exists C > 0 such that ũ0(x) = u0(x)−Cψ0(x) takes both positive
and negative values. We have Hγ,V ũ0 = −ω0ũ0; consequently, ṽ0 = ũ0/‖ũ0‖2 is the
minimizer of (4.29). Arguing as in Step 1, one can show that |̃v0| is also a minimizer
and |̃v0| > 0. Therefore, ũ0(x) has a constant sign. This is a contradiction.

Suppose now that u0 is an arbitrary solution to (4.30) such that ‖u0‖22 = 1 (that is,
u0 is a minimizer of (4.29)). Define w0 = |Reu0| + i |Imu0|, then |w0| = |u0| and
|w′

0| = |u′
0|; consequently, Fγ,V (u0) = Fγ,V (w0) and ‖w0‖22 = 1. Therefore, w0 is

a minimizer of (4.29). This implies that w0 satisfies (4.30), and, in particular, |Reu0|
and |Imu0| satisfy (4.30). Thus, |Reu0| = C1ψ0 and |Imu0| = C2ψ0, C1,C2 > 0;
consequently, Reu0 = C̃1ψ0 and Imu0 = C̃2ψ0, C̃1, C̃2 ∈ R, since Reu0 and Imu0
do not change the sign. Finally, u0 = C̃1ψ0 + i C̃2ψ0 = C̃ψ0, C̃ ∈ C, and therefore,
−ω0 is simple.

�
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