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Instability of ground states for the NLS equation with potential on
the star graph

ALEX H. ARDILA, LILIANA CELY AND NATALIA GOLOSHCHAPOVA

Abstract. We study the nonlinear Schrodinger equation with an arbitrary real potential V(x) € @' +
L°)(I") on a star graph I". At the vertex an interaction occurs described by the generalized Kirchhoff
condition with strength —y < 0. We show the existence of ground states ¢, (x) as minimizers of the action
functional on the Nehari manifold under additional negativity and decay conditions on V (x). Moreover, for

Vx)=— xﬁ"" in the supercritical case, we prove that the standing waves el @ (x) are orbitally unstable

in HY(T") when w is large enough. Analogous result holds for an arbitrary y € R when the standing waves
have symmetric profile.

1. Introduction

We consider the following focusing nonlinear Schrédinger equation on an infinite
star graph I':

idpu(t, x) = —Ayu(t, x) + Vxu(t, x) — lut, )P ut,x), (¢, x)eRxT,
u(0, x) = up(x),

(1.1)

where y > 0, p > Lu(t,x) : RxT' — CV, and A, is the Laplace operator with the
generalized Kirchhoff condition at the vertex of " (-’ stands for spatial derivative):

N
vi(0) =~ =wN(0), Y v(0) =—yvi(0).

e=1
We assume that the potential V(x) = (V. (x))évz | is real-valued and satisfies the
Assumptions (see notation section):
1. Self-adjointness assumption: V (x) € L' (I") + L>®(I).

2. Weak continuity assumption: lim V,(x) = 0.
X—> 00
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3. Minimizing assumption: fR+ Ve(x)|¢(x)|2dx < Oforall ¢(x) € H'(RT) \ {0}.
4. Virial identity assumption: xV'(x) € LY(I') + L% (I").

Notice that Assumption 3 essentially guarantees (Vu, u), < 0, u € H'(I') \ {0}, and
V(x) <0a.e.onT (see Remark 1.2).

NLS equation (1.1) models wave propagation in thin waveguides (we refer the
reader to [6,7,19,22] for the details). The study of stability properties of the multi-
dimensional NLS with a linear potential

idu(t,x) = —Au(t, x) + VO ut, x) — lut, )P~ u, x),
t,x) eRxR", 1+4/n<p<1+4/(n—2),

was initiated in [27]. More precisely, the authors proved orbital stability of /“’ ¢, (x)

for w sufficiently close to minus the smallest eigenvalue of the operator —A + V (under

the assumptions V(x) € L*°(R"), | llim V(x) = 0). In [15], the stability results
X|—>00

obtained by [27] were improved for V (x) satisfying more general assumptions.

Recently in [25], the author studied strong instability (by blow-up) of the standing
waves in the case of harmonic potential V (x) = |x|?. In particular, he proved strong
instability under certain concavity condition for the associated action functional (cf.
Theorem 1.4 below). The same idea was applied in [13] to investigate strong instability

for V(x) = —lia, 0 < @ < min{2, n}, B > 0. The reader is also referred to [24]
X

for more information about NLS near soliton dynamics.

In the case V(x) = 0, the well-posedness in H'(I"), variational and stability/
instability properties of (1.1) have been extensively studied during the last decade.
The well-posedness results were obtained in [2,18], whereas the existence, stability
and variational properties of ground states were studied in [1-4,20]. Moreover, the
regularity and strong instability results were elaborated in [18].

On the other hand, the NLS with potential on graphs is little studied. To our knowl-
edge, the only results concerning the existence and stability of standing waves were
obtained in [5,9,10]. In the subcritical (I < p < 5) and critical (p = 5) case, orbitally
stable standing waves elot ¢, (x) were constructed in [9, 10] under specific conditions
on V(x). Subsequently, in [5] the orbital stability of el! Yo (x) was studied in the
supercritical case (p > 5). More precisely, it was shown (by solving a local energy
minimization problem) that elet ¢ (x) s stable when the mass of ¢, (x) is sufficiently
small.

In this paper, we show the existence and orbital instability of the standing wave
solutions to (1.1) relying on methods developed in [13,16]. Moreover, we state regu-
larity of the solutions to the Cauchy problem for the initial data from the domain of
the operator —A,, + V (x). This result is used to show virial identity which is the key
ingredient in the proof of the instability result.
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1.1. Notation

We consider a graph I' consisting of a central vertex v and N infinite half-lines
attached to it. One may identify I" with the disjoint union of the intervals I, = (0, 00),
e =1,..., N,augmented by the central vertex v = 0. Given a functionv : ' — CN,
v = (ve)év: 1» where v, : (0, oo) — C denotes the restriction of v to /.. We denote by
ve(0) and v/, (0) the limits of v, (x) and v} (x) as x — 07.

We say that a function v is continuous on I' if every restriction v, is continuous on
I, and v1(0) = ... = vy (0). The space of continuous functions is denoted by C(I").

The natural Hilbert space associated with the Laplace operator A, is L?(I"), which
is defined as L2(I") = @5:1 L?(R1), and is equipped with the norm

N o0
lvli3 =f v]* dx = Z/ |ve(0)[? dx.
r =1 0

The inner product in LZ(F) is denoted by (-, -)2. The space L9(I") for 1 < g < oo is
defined analogously, and | - ||, stands for its norm. The Sobolev spaces H L) and
H?(T") are defined as

H'(I) = {v eC): v, e HR"), e= 1,...,N],

H2(I) = {v eC(): v, € HXR"), e= 1,...,N}.

We consider the self-adjoint operator H,, y on L2(I):

(Hy,VU)e = _(Ayv)e + Veve = _U;/ + Veue,

N
dom(H, y) = {v e HY(I): —v/ + Vv, € L*(R™), Zv;(O) = —yvl(O)} )
e=1

(1.2)

When y = 0, the condition at the vertex in (1.2) is usually referred as free or Kirchhoff
boundary condition. For y € R, the operator H, v has a precise interpretation as
the self-adjoint operator on L?(I") uniquely associated with the closed semibounded
quadratic form F,, y defined on H ) by (see Lemma 4.10 in Appendix)

Fyv) = 1V[3 =y viO)F + (Vv, v),

N 00 N 00
=3 [l ds =y P + 3 [P s ()
e=1 e=1

Note that we can formally rewrite (1.1) as

idu(t) = E'(u(1)),
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where E is the energy functional defined by

1 1 pt1
E@) = 5Fy.vu)— m”uﬂpﬂ-

The energy functional is well defined on H'!(T") since the potential V (x) belongs to
(L' + L*>®)(T") (see Lemma 4.10 in Appendix).

1.2. Standing waves and instability results

By a standing wave of (1.1), we mean a solution of the form eiwtga(x), where w € R
and ¢ is a solution of the stationary equation

Hyye+owp—1"" ¢ =0. (1.4)

We define two functionals on H!(I):

1 w 1 1 . .
Sp(v) 1 = 5FJ,,V(v) + 5 v} - Y ||v||ZI1 (action functional),
1
I,() : = Fyv() + o lvl3 = vl 7]

Observe that (1.4) is equivalent to S, (¢) = 0 (see [2, Theorem 4]) and I,(v) =
9.80(Av) |,_, = (S,,(v), v). Denote the set of non-trivial solutions to (1.4) by

B, = {v e HY(D\0) : S, (v) = 0}.

A ground state for (1.4) is a function ¢ € B,, that minimizes S, on 5, and the set of
ground states is given by

Go={0 €8, : 5,9) = Su(v) forall v e B, |.
We consider the minimization problem on the Nehari manifold
d,, = inf {Sw(v) - ve H (DN}, 1,() = 0],
and the set of minimizers
Mo ={¢ € HAONO) : Su(@) = don 1u(®) =0}

We now state the first result, which provides the existence of the minimizer for d,
when the strength —y is sufficiently strong. Denote (see Lemma 4.13)

—wp :=inf o (H, y) =mino,(H, v) < 0. (1.5)

Proposition 1.1. Let p > 1, > wo, and V(x) = V (x) satisfy Assumptions 1-3.
Then there exists y* > O such that the set G, is not empty foranyy > y*, in particular,
Gw = Mo If o € G, then there exist 0 € R and a positive function ¢ € dom(H,, v)
such that ¢, (x) = ¢ (x).
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To be precise, y* is given in [2] by

1 2 N ! 2
/ (1= 2)7Tds = —/ (1 — )7 1dr. (1.6)
0 2 )
N/o

The condition y > y* guarantees that the action functional S, constrained to the
Nehari manifold admits an absolute minimum when V (x) = 0.

Remark 1.2. The proof of the last assertion of Proposition 1.1 essentially uses that
V(x) < 0a.e.onI', which is a consequence of Assumption 3.

To show this, one observes that f]R+ —Ve(x)¢(x)dx > O for all nonnegative func-
tions ¢ (x) from C.(R™") (the set of continuous functions with compact support).
Indeed, let ¢(x) be an extension onto R by zero of a nonnegative function ¢ (x) €

C.(RT). Take {¢p, (x)} C C2°(R) suchthat¢p, —> \/(; uniformly, and supp&, suppd,
n—oQ

C K C R™, where K is a compact set. Then, ¢,zl — ¢~> uniformly, and, by the Dom-
n—oo

inated Convergence Theorem, we get
—/ Vo(x)¢2 (x)dx —> —/ Ve(x)¢ (x)dx > 0.
R+ n—oo R+

Now, since f(¢) = — fR+ V. (x)¢ (x)dx is a positive linear functional on C.(R™),
then, by the Riesz—Markov—Kakutani representation theorem for positive linear func-
tionals, we conclude the existence of a unique Radon measure p on R™T
such that f(¢) = [p+ ¢ (x)dp(x). On the other hand, f(¢) = [+ v(x)P(x)dv(x),
where v(A) = fA |V.|dx for A from the Borel o-algebra on R, and v(x) =

WG X € s Vew) #£0)

. Finally, from the uniqueness stated in [12, Theorem
0, otherwise.

2.5.12] it follows that & = v and v = 1 v-a.e. on R", hence —V, > 0 v-a.e. on

R™T. This implies —V, > 0 Lebesgue-a.e. on R* since the Lebesgue measure and the

measure v are mutually absolutely continuous on the set {x : V,(x) # 0}.

The next step in the study of ground states for (1.4) is to investigate their stability
properties. We define orbital stability as follows.

Definition 1.3. For ¢, € G, we set

Ns(p) == {v e H'(T) : inf Hv — e'%wH 5). (1.7)

H(I) =
We say that a standing wave solution ¢/’ ¢,,(x) of (1.1) is orbitally stable in H )
if for any & > 0 there exists § > 0 such that for any ug € Ns(¢y), the solution u(t) of
(1.1) satisfies u(t) € N¢(¢,,) forall t > 0. Otherwise, e/’ ¢, (x) is said to be orbitally
unstable in H(I").

Using the ideas developed in [13,16], we obtain a sufficient condition for the in-
stability of standing waves when p > 5 (supercritical case). The main result of this
paper is the following:
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Theorem 1.4. Assume that p > 5, y > y* o > wy, and V(x) = V(x) satisfies
Assumptions 1-4. If p,,(x) € G, and 8)%E((p£‘)) lh=1 < O, where (pi‘)(x) = Al/z(pw(kx)
for & > 0, then the standing wave solution ' ¢,,(x) of (1.1) is orbitally unstable in
HYD).

To prove Theorem 1.4, we use the variational characterization given in Proposition
1.1 and virial identity (2.4). Notice that the standing wave solution ¢/’ ¢,, (x) of (1.1)
with y > 0 and V(x) = 0 is unstable in H'(I") when p > 5 and o is large enough
(see [2, Remark 6.1] and also [18, Theorem 1.4]). Below we state that this also holds

true for y > 0 and slowly decaying potential V (x) = _—a, O<a<l1, B>0de,
X

3)% Ew(<pé,) [r=1 < O for sufficiently large w). The choice of the potential is due to its
“homogeneity” property, which is principal for the proof (see formula (4.7)).

Corollary 1.5. Assume that V(x) = _—f, B>00<a<1ly>y"p>S5-
X

If 9, (x) € Gy, then there exists w* = w*(B,a,y, p) € (wy, 00) such that for any
w € (w*, 00) the standing wave solution €' ¢, (x) of (1.1) is orbitally unstable in
HY(I).

As far as we know, these are the first results on instability of ground states for the NLS
with potential on graphs. In Subsect. 4.3, we state the counterparts to Proposition 1.1,
Theorem 1.4, Corollary 1.5 in the space Héq(I‘) of symmetric functions and arbitrary
y € R.

The paper is organized as follows. In Sect. 2, we prove Proposition 2.2 that con-
cerns local well-posedness in the energy domain. In Sect. 3, we provide the proof of
Proposition 1.1. Section 4 is devoted to the proof of Theorem 1.4 and Corollary 1.5.
In Appendix, we discuss some properties of the operator H,, v .

2. Local existence results and virial identity

We start with the proof of the following key lemma involving the estimate of H'-
norm of the unitary group generated by the self-adjoint operator H, y.

Lemma 2.1. Lete™™7.V! be aunitary group generatedby H,y . Then, e~ v H (")
C HY(T') and

le™ HrViull g1y < Clvllg - 2.1)

Proof. The idea of the proof was given in [10] (see formula (2.5)). However, some
additional technical details seem useful.

Let m > wp, where wg is given by (1.5). Remark that H'(I') = dom (Fy,v) =
dom((H,,v +m)1/2) (see, forinstance, [21, Chapter VI, Problem 2.25]). Since e iHy.vt
is bounded, we get for v € H!(I")

ef"H%V’(Hy,v +m)!/?y = (Hy v + m)!2e= iy viy,
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Hence e ~#rviy ¢ HY(I") and e~ "H»v! HY(I") € H'(I"). Further, using L>-unitarity
of e7HHy.v! we obtain for v e H'(I")

Fyy @)+ milf = ((Hyy +m)20, (Hyy +m)'V20)
= (7 (Hyy +m) 2o, TV (Hy ) 0)

— ((Hy’v +m)]/267iHV'VlU, (Hy’V +m)]/267iHy'VtU>2

= Fyy (e Vo) £ mle” Mviu3.
From the proof of Lemma 4.13-(ii), we get

Calle™ V|3, 1 < Fyv(e” Hrvivy 4 mlle™ Hrviv|3

(D)
= Fyv @) +mllvl3 < Cillvlg )
and (2.1) follows easily. ]
The proposition below states the local well-posedness of (1.1).

Proposition 2.2. For any ug € H' ("), there exist T = T (ug) > 0 and a unique
solution u(t) € C([0, T1, HX(T)) n ([0, T1, (H(T"))") of problem (1.1). For each
To € (0, T) the mapping uy € H'\(") — u(r) € C([0, Tyl, HI(F)) is continuous.
Moreover, problem (1.1) has a maximal solution defined on an interval of the form
[0, Ty1), and the following “blow-up alternative” holds: either Ty1 = oo or Ty <
oo and

lim |u(t = 00.
(>T flue( )”H](F)

Finally, the conservation of energy and charge holds: fort € [0, Ty1)

1 1
E@(®0) = 5 Fy v (u(t) - pHnu(r)nZii = E(uo), llu@®I3 = luol5. (2.2)

Proof. A sketch of the proof was given in [10]. However, the rigorous proof (which
serves for p > 1) might be obtained repeating the one of [11, Theorem 4.10.1]. In
particular, one needs to use the fact that g(u) = |u|”~'u € C'(C, C) (i.e., Im(g) and
Re(g) are C'-functions of Reu, Imu) for p > 1 and apply inequality (2.1).

The proof of conservation laws (2.2) might be obtained involving regularization
procedure analogous to the one introduced in the proof of [11, Theorem 3.3.5] and
using the uniqueness of the solution (see [11, Theorem 3.3.9]). O

Remark 2.3. (i) For p > 4, the conservation laws follow easily from Proposition 2.4
below and continuous dependence on initial data.
(ii)For 1 < p < 5, problem (1.1) is globally well-posed in H 1(I"). To see that one
might repeat the proof of [11, Theorem 3.4.1], where condition (3.4.1) follows from
p;l p+3

] b=l pi
Il 5Ty = (Vi )2 + y | ) < Cllu'lly” Nlully® + 2¢lu’ll3 + Crllul3

2(p+3)

< 3ellu/ |5+ Callull,™ + Cullull3 < 3ellullfp ) + CCluoll).
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The above estimate is induced by the conservation of charge, estimate (4.19), the
Gagliardo—Nirenberg inequality (see (2.1) in [10]) and the Young inequality ab <
Sa? + Cgbq/, 5 + % =1, g,q" > 1, a,b > 0. Observe that the key point is that
q=ﬁ>1for1<p<5.

Now, letm > 142wy. Introduce the norm [[v| g, , := [|(H,, v +m)v]|2 thatendows
dom(H,, v) with the structure of a Hilbert space. We denote Dy, , = (dom(Hy,v), |-

I, )-

Proposition 2.4. Let p > 4 and ug € dom(H, v). Then, there exists T > 0 such that
problem (1.1) has a unique solution u(t) € C([0, T], DH)«V) N cl(o, 71, L3()).
Moreover, problem (1.1) has a maximal solution defined on an interval of the form
[0, Th, ), and the following “blow-up alternative™ holds: either Ty, , = 00 or
Th,, <00 and

lim |u()|#,, = oo.
t*)THy,V

Proof. The proof repeats the one of [18, Theorem 2.3] observing that dom(H, y) C
H'(T") = dom((H,,v +m)"/?) and, by m > 1 + 2wy,

lulloe < Cillullgiry < C2ll(Hyy +m)'2ully < Coll(Hy,y + mull2.

O

Remark 2.5. Notice that due to estimate (4.19), Propositions 2.2 and 2.4 hold for any
y € Rand V(x) € (L' + L®)().

Set

p— !
= vIPT, ve HYD).

2 1 , 5 y 5 1
P = )? == [ xv dr — L) - :
W = v Z/I_x () v(x)|*> dx 5 [v1(0)] 2+ Pl

Proposition 2.6. Let ©(I') = {v € H'(I') : xv € L>(I")}. Assume that ug € %(I),
and u(t) is the corresponding maximal solutionto (1.1). Then, u(t) € C([0, Ty1), X(I)),
and the function

70 = [ 3 Pa = )3
belongs to c?lo, Ty1). Moreover,

@) = 4Im/ xudcudx, and (2.3)
r

f"@) =8P (u(r)), tel0,Ty). (virial identity) 2.4)
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Proof. The proof is similar to the one of [ 11, Proposition 6.5.1]. We provide the details
since the virial identity is the key ingredient in the instability analysis. Firstly, we show
(2.3), secondly we prove (2.4) for uy € dom(H, v), and then, we conclude that (2.4)
holds for uo € H'(T") using continuous dependence on the initial data.

Step 1. Let ¢ > 0, define f.(1) = ||e_8"2xu(t)||%, fort € [0,T], T € (0, Ty).
Then, observing that e’zsxzxzu(t) € H'(I") and taking (H') — H! duality product

of equation (1.1) with ie’zsxzxzu(t), we get

f/([) = 2Im 3xu ax (e—stzxzﬁ) - 6_28x2x2|u|p+1 dr
&€
r
= 4Im/ {e_‘sxz(l — 28x2)} ﬁxe_”zaxu dx. (2.5)
r

Remark that |e‘”2( 1 — 2ex?)| < 2 for any x. From (2.5), by the Cauchy—Schwarz
inequality, we obtain

FAGIEX '/ {e‘”z(l - 28x2)} ﬁxe_gxzaxu dx
r

< 8/ |e_8x2xu8xu|dx
r

N
o2
<8 llaxujllalle™ xujlla < Cllull gy £ (). (2.6)
j=1

From (2.6), one implies

bfis) !
/O T scfo 1)l 1.

and therefore,

C t
VI < ||xuo||z+5/ Je(s)l g1 (ryds. 1 € [0, 1.
0

Letting ¢ | 0 and applying Fatou’s lemma, we get that xu(r) € L*(T') and f(z) is
bounded in [0, T']. Observe that from (2.5) one induces

£o(t) = £2(0) + 4Im /0 t /F {e*8x2(1 - 2sx2)] dxe oudeds. (27
We have the following estimates for any positive x and &:
2 2 < @),
2 x2 o1 < x2Juo|%, (2.8)
e (1 — 2ex?yiixe % yu| < 2|9 u||xul.

Having pointwise convergence, and using (2.8), by the Dominated Convergence The-
orem, we get from (2.7)

t
fo) = lxu®)3 = ||xu0||§+41m/ /xﬁaxudx ds.
0 JI
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Since u(t) is strong H I_solution, f@)is C !_function, and (2.3) holds for any t €
[0, Ty1).

Using continuity of ||xu(¢)||2 and the inclusion u(¢) € C([0, Ty1), H'(I")), by the
Brezis—Lieb lemma [8], we get for #g, #, € [0, Ty1)

Jim ) = xuo)lz = fim xul3 = xutio)lz =0.
hence u(t) € C([0, Ty1), Z(I")).
Step 2. Let ug € dom(H, v). By Proposition 2.4, the solution u(¢) to the corre-
sponding Cauchy problem belongs to C([0, Ty, ), Dy, ) N C ([0, Ty, ), L*(I)).
Lete > 0and 6, (x) = ¢~ Define
he(t) = Im/ Oexudyudx for t €[0,T], T € (0, Th, ). 2.9
r
First, let us show that
h,(t) = —Im / u {20:x9cu + (0 + x0))u} dx (2.10)
r
or equivalently
t —
he(t) = he(0) — Im/ / Ogu {20:x0cu + (6 +x0))u}dxds.  (2.11)
o Jr
Letus prove thatidentity (2.11) holds foru(r) € C([0, T], H/(T'))NC'([0, T], L3(I")).
Note that by density argument it is sufficient to show (2.11) for u(t) € C'([0, T],
HY(I) N Cl([0, T], L*(")). From (2.9), it follows

h.(t) = —Im/ 0.x 0,10, u—}—@gxué)xtu}d 2.12)

Note that

nguaftu = nguatzxu = 0y (Oquat_u) — Oguat_u — ngaxuat_u — x@éuat_u,

which induces
/ ngua udyx = — /; du {6 (u + x0xu) + xO0Lu} dx.
Therefore, from (2.12) we get
h.(t) = —Im/F {0sx0;udxu + 0pu (0 (U + x0,u) + x0]1) } dx.

Consequently, we obtain (2.11) for u(r) € C'([0, T], H'(I")) N C'([0, T, L*(I")),
and hence, for u(r) € C([0, T1, H'(I")) N C'([0, T], L*(I")) which implies (2.10).
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Since u(t) € C([0, TH%V), DH%V), from (2.10) we get

hL(t) = Re/ (Hyvu — [ul?~ u) {20.x0,u + (x6,)u} dx. (2.13)
r

Below we will consider separately linear and nonlinear part of identity (2.13). Inte-
grating by parts, we obtain

- Re/ Ayu{20:x9u + (x6,)u} dx = —y |uy (0)[?
r (2.14)
+2/ x9;|axu|2dx+/(29; +x9g)Re(ﬁaxu)dx+2/ 0c || dx.
r r r
Noting that
Re (V (x)u {20:x55u + (x6,)')) = 5 (xV(x)08|u|2> — XV ()0, |u|%,
we get
Re/ V()u {20:x0,u + (x6,)u} dx = —/ x V' (X)0 |u|>dx. (2.15)
r r
Moreover,
Re/ —lulP " u {20 x3cu + (x6,)w} dx
r
p—1
= —f lu|P*10, dx —/ |u|1’+1x9;dx—/(|u|2)’Tax(|u|2)x96 dx
r
—1
/|u|p+]98dx— /|u|P+‘x9;dx. (2.16)
p + p+1

Finally, from (2.13)-(2.16) we get
-1
RL(t) = [2/ 0, |9cu|>dx — / x V()0 |ul>dx — y|ui (0))? — L/ |u|p+198dx:|
r r p+1Jr

+ [2/Fx9;|axu|2dx+fr(2e; + x0!)Re(udu) dxi| - %/F P x0! dx.
Since 0, 6., x6., x6 are bounded with respect to x and ¢, and
0 — 1, 6, — 0, x0, — 0, x0 — 0 pointwise as ¢ |, 0,
by the Dominated Convergence Theorem, we have
lim (1) = 2[|9,u 3 — foV’<x>|u|2dx ylur(0)* — ||u||§i} =:g(1).
Moreover, again by the Dominated Convergence Theorem,

limhg(t) = Im/ xudyudx =: h(t).
el0 r
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d
Using continuity of g(¢) and the fact that the operator A = I in the space C[0, T']
with dom(A) = C1[0, T is closed, we arrive at (1) = g@®), te€]0,T], ie

h’(r)=2||axu||%—fxv<x>|u|2dx—y|u1(0)| — || [[oes
r

and h(t) is C! function. Finally, (2.4) holds for ug € dom(H, v).

Step 3. To conclude the proof, consider {u¢},en C dom(H,,y) such that u; — ug
in HY(I") and Xug — xug in L*(T") as n — oo. Let u” () be the maximal solutions
of the corresponding Cauchy problem associated with (1.1). From (2.3) and (2.4), we
obtain

lxu” (t)||2 = ||xu0||2+4t1m/xu Oxltg dx—i—/ / 8P (u" (y))dyds.

Using continuous dependence and repeating the arguments from [11, Corollary 6.5.3],
we obtain as n — 00

t s
lxu(®)ll3 = llxuoll3 + 4tIm / XTigdyuo dx + f / 8P (u(y))dy ds,
r 0 JO

that is, (2.4) holds for ug € H (). O

3. Existence of ground states

In this section, we prove Proposition 1.1. We begin with two technical lemmas.
Throughout this section, we assume that @ > wy.

Lemma 3.1. If1,(v) < O, then

-1 1 p—1
R TEe 1) ||v||[,:L, and d, < TR (Fy,v(v) ) ||u||%),
Moreover,
d, = inf{z( - IPF : ve H'IONO) L) < 0}
3.1)
, -1
= inf {h (Fy,v(v) to ||v||§) Cve H(D\O), L) < 0} .
Proof. Noting that
1
So(V) = S 1o (W) + 50— (p 5 Lot ven'm, (3.2)
we get
. P — 1, _
dy =1nf{2( - lIPT) s ve H'MNOY L) = 0}.
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Set

d} = inf{z( D lv ||§i} s ve H (M0}, I,(v) < 0}.

It is clear that d* < d,,. Letv € H'(I")\{0} and 1, (v) < 0. Put

1
N ORI
L= Pl :

loll25)

Then, since I,,(Av) = A2 (Fy,v (v) +  [v]|3) — APF! ||v||§j} =: f(1), we obtain
I,(Av) = 0and 0 < A1 < 1 (one needs to remark that /(1) < 0, £(0) = 0, and
f'(2) > 0 for small positive 1). Hence, we have

p—

1 p—1 I 1 1
dwsmn 1P = ——— 2P )Pt < ol 2~

TP Pt = 2( +1) Pl

Thus, we obtain d,, < d*. Similarly, we can show d,, < % (Fyv(w) +o ||v||%)
and the second part of (3.1) since we can rewrite

p—1

dy :inf{—
2(p+ 1

(Frv@+olvl3) : ue H'OWO) L =0}.

O

To get the existence of the minimizers of d,,, one has at a certain point to compare
the action S, for y > 0 with the action Sg of the nonpotential case (V (x) =0,y > 0).
Set

1 w Y 1 1
So@) = S IWI3 + vl = 7 o1 O)F — mnvnﬁ],

+1
Iyw) = VI3 + olvl3 =y [vi©F = [vllhT),

dy = inf {SS) : ve H'MNO), 190 =0}

inf{z(p )|| ||£I} v e HY(D)\{0}, 12(v)=0},
and
M= {0 € HIONO) : 10(6) =0. Sh(@) =d)}.

It is known that for y > y*, where y* is defined by (1.6), the set M9 is not empty
(see [2]). Throughout this section, we assume y > y*.

Lemma 3.2. d° > d,, > 0.
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Proof. First, we show thatd,, > 0. Letv € H! (IM\{0} satisty 1, (v) = 0. Then,

+1 2
lollP) = Fyy @) +@llvll; .

Since w > wy, by the Sobolev embedding and Lemma 4.13-(ii), we have
101241 = €l = C2 (Frv @ +ollvl) = C It
—1

Hence, we obtain CZ”_] < llvll p41- Taking the infimum over v, we get d,, > 0. Next,
we prove dO > d,,. Since MY is not empty, we can take ¢ € M. By Assumption 3,

Iy(@) = (V§, )2 < 0.
Then, by Lemma 3.1, we obtain

p—

ptl
2(+4NWMH

w

O
Lemma 3.3. Let {v,} € H'(I")\{0} be a minimizing sequence for d,, i.e., I,,(v,) = 0
and lim S,(v,) = d,. Then, there exist a subsequence {vy,,} of {v,} and vy €
n— 00
H'(T)\{0} such that klim vn, — =0, I,(vg) = 0 and S,(vo) = d,.
—00
Therefore, M, is not empty.

vo H\(T)

Proof. Since w > w( and

A
2(p+1)

p—

1
Sw(vp) = m

(Frv ) + 0 llual3) = lonllP5) — dos (33)

the sequence {v,} is bounded in H I(I'") (see Lemma 4.13-(ii)). Hence, there exist a
subsequence {vy, } of {v,} and vo € H 1(I") such that {vy, } converges weakly to vg in
H'(T"). We may assume that vy, 7 0 and define

v, 13 + @ Jon 5 = ¥ [on 1 O

o s

Notice that Ay > 0 and / 2()%1),,,{) = 0. Therefore, by Lemma 3.2 and the definition
of dg, we obtain

1 +1 1 p—1 +1
do <dg_m|| w0 =0T m””’“‘”i“’ forall k € N.
(3.4)
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Furthermore, by 1,(v,,) = 0, (3.3) and the weak continuity of (Vv,v); =
/ V(x)lv(x)lzdx (see [23, Theorem 11.4]), we get
r

1

1 =i _ =T
lim A = lim ”U"k Hﬁil - (V_:ﬂkv )2 | " I _ (d‘” B %(Vvo’ Uo)z)” ! .
k=00 k=00 ome ||Z+1 do

Taking the limit in (3.4), we obtain d,, < klim A,’: +1dw. Since d,, > 0, we arrive at
— 00
lim Ax > 1, and consequently, —(Vvg, vg)2 > 0. Thus, vy 7# O.

k— 00 )
By the weak convergence, we obtain

Tim {(Fyv n) = Froy o = 90) + 0 ([on[3 = [on —wl3)} 35
= Fy.v(vo) + o lvoll5.

Next, passing to a subsequence of {v,, } if necessary, we may assume that v,,, k—>
—00
vo a.e. on I'. Therefore, by the Brezis—Leib lemma [8],

lim Iw(vnk) - Iw(vnk —vp) = lim — a)(vnk —vg) = 1, (vo).
k— 00 k— 00

Since vy # 0, then the right-hand side of (3.5) is positive. It follows from (3.3) and
(3.5) that

—1 .
505415 1, (v m =0 0 o = o)
p—1

1 2
< s Am (Frrow) +o o 3) = do.

Hence, by (3.1), we have Iw(vnk —vp) > O for k large enough. Thus, since — 1, (v, —

Vo) k—) 1, (vp), we obtain 1, (vg) < 0. Then, by (3.1) and the weak lower semicon-
— 00

tinuity of norms, we see that

o
(Fy.v(w) +  lvoll3) <

d, <L < P77 iim
2 2(p+1) koo

-1
(p+1
Therefore, from (3.5) we get

(Frov a0 + @ o [)3) = o

klifr;oF%V(vnk — o) + o [[om, — ”0”5 =0,

and consequently, by Lemma 4.13-(ii), we have v, k—) voin H'(I") and 1, (vg) = 0.
—>00
This concludes the proof. g

Proof of Proposition 1.1. Step 1. We prove that G, = M,. Let ¢ € M,,. Since
1,(p) = 0, we have

(1@, ¢} =2 (Frv @ + 0ligld) = (0 + DIgl T = —(p = DlIglhT] <0.
3.6)
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There exists a Lagrange multiplier u € R such that S/ (¢) = wl/,(¢). Furthermore,
since

w1 (9). @) = (S,,(9). 9) = lu(p) = 0,

then, by (3.6), © = 0. Hence, S, (¢) = 0. Moreover, for v € Hl(F)\{O} satisfying
S.,(v) = 0, we have I,(v) = (S},(v), v) = 0. Then, from the definition of M,,, we
get S, (¢) < S,(v). Hence, we obtain ¢ € G,. Now, let ¢ € G,. Since M,, is not
empty, we take ¢ € M,,. By the first part of the proof, we have ¢ € G,; therefore,
Sw (@) = Sy () = d,,. This implies ¢ € M,,.

Step 2. Letg € G,,. Below we show that ¢ has the form ¢ (x) = e“’qb(x) with positive
$(x) € dom(Hy, ). Set ¢ = lpl, then [¢'[; < [|¢'[; and Su(®) < Su(p) = do.
Using G, = M,,, we obtain I, (¢) = 0, then I,(¢) < 0. It follows from Lemma 3.1
that ¢ € M, and S,,(¢) = S, (¢). Observe that this implies

N oo N oo
=3 [T owla=3 [Clholfa=iE e
e=1 e=1

From S(/u (¢) = 0, repeating the proof of [2, Theorem 4] (see also [5, Lemma 4.1]),
one gets ¢ € dom(H,, y) and

Hy,v¢ +wp —¢" =0,
therefore,
—¢, + 0o + Ve(¥)pe —¢¢ =0, x € (0,00), e=1,...,N.

Recalling that V(x) < 0 a.e. on I" (see Remark 1.2) and using [28, Theorem 1], we
have that ¢, is either trivial or strictly positive on (0, co). Indeed, to prove that, we
need to set B(s) := ws — sP and observe that B(s) € C'[0, co) is nondecreasing for
s small, and B(0) = B(w7T) = 0.

Now assume ¢, (0) = ¢,(0) = 0 and put

Pe(x), x €[0,00)

P =00 e (s.0),

Then, by the Sobolev extension theorem, we have 56 € H?(—8, 00). Moreover,
_aé/ + wae + Ve(x)a;e - (’55 =0, on (-6, 00).

Therefore, by [28, Theorem 1], arguing as above, we find that ae = 0on (—§, 00).
Next assume ¢(0) = 0, i.e., ¢1(0) = ... = ¢n(0). Since ¢, € C'(0, 00), ¢ > 0

and ¢, (0) = 0, then ¢(0) = 0. By )L, 4,(0) = —y¢1(0) = 0, we get ¢,(0) =

¢,(0) = 0. Then, ¢, = 0 on (0, o) foralle =1, ..., N, and by continuity ¢ = 0 on
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I, which is absurd since ¢ € M,,. Hence, ¢.(0) > O foralle =1, ..., N; therefore,
¢ >0o0n (0,00) foralle=1,...,N,ie,¢p >0onT.
Step 3. Now, we can write @, (x) = ¢.(x)t.(x), where 7, € c(0, 00), |7.| = 1.
Then,
(pé = ¢:37-'e + ¢efé = Te((ﬁ; + ¢e?efé)~

Using Re(T,7,) = 0, we have |<p;|2 = |¢é|2 + |¢el’é|2. Therefore, from (3.7) we
obtain

Nopeo Noopoo Noopoo N s )
3 RTARTED 3 ANTIRTED 3 ANTARTES Y M VEAR Y
e=1"0 e=1"0 e=1"0 e=1"0

So far as ¢, > 0, we have te’ =O0foralle=1,...,N.Since 7, € Cl(O, 00), there
exists a constant 6, € R such that 7, (x) = ¢'% on (0, c0). By the continuity at the
vertex, we obtain 6, = 6 = const foralle =1, ..., N. This ends the proof. O

4. Instability of standing waves

In this section, we prove Theorem 1.4 and Corollary 1.5.

4.1. Proof of the main result

We begin with the following lemma.

Lemma 4.1. Let ¢, € M,,. Then,
) ol =inf {10177} v e H' N0}, Lu(w) =0}
:inf{||v||p+l Cve HYMNOY, 1) < o},
(ii) Su(@w) =inf(Sy() : ve H'D), IITT] = lgollh T}

Proof. (1) This is an immediate consequence of Lemma 3.1

(i) Set d** := inf(S,(v) : v € H'(I), ||v||l’:ii = ||<pw||”+1} As far as d* <

S (@w), it suffices to prove S, (¢,) < d*.Ifv € H' () satisfies ||v||p_H = ||(pa,||£j:},
then, by item (i) and (3.2), we have 1,(v) > 0. Hence, by (3.2),
P p+1 p+1
Sw(Pw) = 2( n 1) e (‘)”[H—l 2( T 1) ”U”]H-l < So().
Thus, we obtain S, (¢,) < d}*. O
Recall that

1
P(v) = ||U/H§_E/vaf(x)|v(x)|2dx—%|v1(0)|2 2(1’ = v ||§j;{.
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Lemma 4.2. IfB)%E(cpi‘)) lr=1 < O, then there exist § > 0 and ¢ > 0 such that the
following holds: for any v € N.(¢,) satisfying ||U||% < ||g0w||%, there exists M(v) €
(1 — 8,14 98) such that E(p,) < E(v) + (A(v) — 1)P(v), where N¢ (@) is defined
by (1.7).

Proof. Since BfE(goi‘)) lr=1 < 0 and afE(v)‘) is continuous in v (we mean “orbit”-
continuity) and A, there exist positive constants ¢ and § such that 8)%E (") < 0 for
any v € Ng(¢p,) and A € (1 — 65,1 + 8). Using P(v) = 3, E (") |5=1, the Taylor
expansion at A = 1 gives

EW) <E@+ G —DPW), Ae(1—81+48), ve N:(@o). (4.1)
Let v € Ne (@) satisfy [v]3 < [l¢w 3. We define

2

1\ »=1

leul?Ei\ 7
)L(U) = (* .

ol

1
Then, [[v*® Hiil = ||<pwllii} and we can take & small enough to guarantee A(v) €

(1 —8,1+38). Since |v*® ||§ = [[v]|3 < ll@wll3, by Lemma 4.1-(ii), we have

) 2 )
EQH) = 5,0") = 2 |o*0 = S000) = 5 leall} = Epa),

which together with (4.1) implies that E(¢,) < E(v) + (A(v) — 1) P(v). O
To prove Theorem 1.4, we introduce the following definition.

Definition 4.3. Let ¢ be the positive constant given by Lemma 4.2. Set
Ze(po) 1= (v € Ne(@o) : E) < Ego), VI3 < llgl3. P(v) <0},
and for any ug € N, (¢,), we define the exit time from N, (¢,,) by
Te(uo) =sup{T >0 : u(?) € Ne(¢w), 0 <1 <T},
with u(#) being a solution of (1.1).

Lemma 4.4. Assume B%E((pé)) lr=1 < O, then for any ug € Z.(¢y), there exists
b = b(up) > 0 such that P(u(t)) < —b for 0 <t < T.(uop).

Proof. Set by := E(¢y) — E(ug) > 0, with ug € Z.(¢,). From the conservation of
energy and Lemma 4.2, we have

bo = (A(u(®)) = DHPu)), 0=t < Te(uo). (4.2)
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Therefore, for 0 < t < Tg(up) we get P(u(t)) # 0. Indeed, if P(u(t)) = 0
for some fy € [0, T (ug)), then from (4.2) it follows by < 0, which contradicts the
definition of by. Since P (1¢) < 0 and the function ¢ — P (u(t)) is continuous, we see
that P(u(t)) < Ofor0 <t < T¢(ug), and hence, A(u(t)) —1 < 0for0 <t < T (up).
Thus, from Lemma 4.2 and (4.2), we have

Py < —2 <N o <i
u —— < —, 01 < Te(up).
= 2wy —1- 35 eMo
b
Hence, taking b = —0, we arrive at P(u(t)) < —b for0 <t < T, (uo). O

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Observe that P(v) = 3.5,V =1 = <Sc’u(v), 8)»U)“|)L=1).
Since S/ (¢») = 0, we obtain P(¢,) = BASw((pé)) [r=1 = 0. Moreover, by P(goé)) =
ABAE(wj)), we have BAE(fp;\)) [r=1 = 0. Then, from the assumption 8)%E(<p(’})) [h=1
0, we get E(goc’})) < E(¢py) and P(go&) < 0 for A > 1 close enough to 1.

2
= 0and ¢} =

A

. . . )“
Let ¢ > 0 be given by Lemma 4.2. Since ){Lml ”%) — Y || HI(T)

l@w ||%, by continuity of E and P, forany § < & there exists A1 such that (pé,' ez s (V).
Suppose that x € C2°(R™) is the function satisfying

0<x<1, xG) =1, ifxe[0,1], and x(x)=0if x > 2.

For a > 0, we define x, € C°(I") by

(Xa)e(x)z)(()—c), X€R+, e=1,...,N.
a

2 2
,= lpwll5 for

Xa ' — 9i' iy = 0 and ‘ Xa 0! 2 < Hwi‘
all a > 0. Thus, by continuity of E and P, for any § < ¢ there exists a; > 0 such that
Xa 10 € Zy (¢%'). therefore Xq, 0% € Z5(¢0) S Ze(90).

Observe that x4, <po)}] € X(I") (see Proposition 2.6 for the definition of X(I")), and
by virial identity (2.4), we see that

Then, we have lim
a—> o0

d2
7 lxur())3 =8Pw1()), 0<t<Te(xa9t), (4.3)

where u(t) is the solution to (1.1) with u(0) = Xal(pi‘)'. From Lemma 4.4, there
exists b = b(Ay, a;) > 0 such that

Pui(t) < —b, 0=t < To(xae:h). (4.4)

Then, from (4.4) and (4.3), we can see that Tg(Xm(pf;') < 00.

Summarizing the above, we affirm: there exists ¢ > 0 (given by Lemma 4.2) such
that for all § > O there exist ug = Xal(pi‘)' € Ns(¢py) and t; > 0 such that the
corresponding solution u () of (1.1) satisfies u1(¢;) ¢ N.(¢,). Hence, the standing
wave solution e/’ ¢, of (1.1) is orbitally unstable. O
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4.2. Rescaled variational problem and proof of Corollary 1.5

Assume that V (x) = _—f, B >0,0 < a < 1. Recall that v* (x) = A'2v()x) for
X
A > 0. By simple computations, we have

22 A A 2 _ 2T +1
E@") = Ellv’llz + E(VU’ v)2 — 57 lv1 (0)] s IIvIIZH,
2 2, @le—1) (p—D(p—=3)  pt+i
9 E@") h=1 = VI3 + T(VU’ V)2 — WHUHPH'
Since P(¢p,) = 8;LSw(<pi‘)) lx=1 = 0, then we get
2 A a2 —a) 2 (p—D(p—-9 p+1
0 E(@y) =1 = ——(Vsow, o)+ 5 RO T2t el

and BfE((pZ‘)) [r=1 < 0is equivalent to

—2 =) (Ve )2 7[00 O _ (= D(p—5)

1
lwllh 2(p+ 1D

(4.5)

Below we prove that the left-hand side of (4.5) converges to 0 as @ — o0. To this
end, we consider the following rescaling of ¢, € M,,:

1

(Pw(x) - wil (\/_-x) w € (C()(), OO), (46)
and observe
2—
—0” 742 = (VG )2 + 02y |01 O]
(A%
4.7
—a2 =) (V. )2 + ¥ | @0, 1(0)\
lowll21]
Put
~ 2 |v(x)|2 1 1
o) s = W+ ol = o7 % [ D0 ar = oy @ - 1)
r
o 1
o) : =115+ vl3 = IvIh].
Consider the minimization problem
~ . 1 ~
do := inf {IIvIIZi1 s ve H(M\{0}, Io(v) < 0} . 4.8)

In [2, Theorem 3], it was shown that c70 > (. The following lemma is the key result to
prove Corollary 1.5.
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Lemma 4.5. Assume thaty > 0,8 > 0,0 <a < land p > 5. Let ¢,, € My, and
@ (x) be the rescaled function given in (4.6). Then,

N ~ p+l
() lim 131075 = d,
(ii) lim Io(@w) =0,
w—> 00
. ~ 12 5
(lll) wILmOO ||(Pw||H1(p) - d()'
Proof. Notice that

1151} =inf {102t} v e H'ONO), Tow) =0}

" 5 N 4.9)
_ inf{||u||§+1 ve H'(M\0), I,w) < 0} =d,.
By definition, we have
) = T,w) — o T (Vo0 + 0 2y (1 (0))*, and (4.10)
Tow) = 22 To(w) + WP~ = D)7 (4.11)

p+1

Using, (4.10), (4.11), Tw(g'ﬁw) = 0, estimate (4.18), and the Sobolev embedding, for
any A > 1 we get

0 .~ _2-a ~ o~ _1 ~ 2 _ ~ 1
21008 =~ 2 (Vi Gu)2 + 0727 (o1 O] — AP~ = DIGLII0T

_2-a _1 ~ — ~ +1
< Clo~ 7 @l + C207 2y 180l — AP~ = DIGolb -

4.12)

Moreover, from ’I:u(@w) =0, we deduce

~ _2-a ~ o~ _1 ~ 2 ~ +1
18ull3y ) = =077 (Vu, 8u)2 + 0 2y |01 O] + 18ulh

2=~ _1 ~ ~ +1
Cro™ 2 1@ullfyi ) + C207 2y 1@l oy + 180l -

IA

This implies
_2—a _1 ~ ~ 1
(1= €107 = o727 ) 180l ) = 1701011

Since for w sufficiently large (1 — Clw’z%a — Czw’% y) > 0, from (4.12) we get

: P @13)

2—a 1

Cio™ 2 +Cw 2y ~ . p+l
g [ @oll
l-Cio™ 2 —Cw 2y

A2 lo(hPw) < — (M’—l —1-

Hence, for any A > 1, there exists w; = w((A) € (wp, 00) such that INO()»(To‘w) <0
for € (w1, 00). Thus, by (4.8), dy < APH”‘%”ZE for w € (wi, 00). Observe
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that Io(v) < 0 implies 7,,(v) < 0; then, from (4.9) we obtain d,, = ||<75w||§i} < dy.
Therefore,
_ ~ ~ 1~
2Py < 1G0T < do, @ € (w1, 00). (4.14)
Letting A | 1, we get that w — 00, and from (4.14) it follows (i).
Now, assume that A = 1 in (4.13); then, using (i), we deduce
lim sup 7o(@,) < O. (4.15)
w— 00
Furthermore, define
1
~ 12 ~ 12\ p-T
+
o= (L)
||§0w||p+1
then E)(M (w)@,) = 0. Therefore, we have
do < 21 (@) 1G0T (4.16)

p+1-
Thus, by (i) and (4.16), we arrive at
g’o p-lf—l
w—00 w—>00 ||‘Pw||p+1

Moreover, by (4.11), 76()»1 (0)@Pw) = 0 and (i), we have

lim inf I(@,,) = liminf (A1 (@)”~" = 1) [@ul171] = 0,
w— 00 w—>00 P+

which together with (4.15) implies (ii). Finally, from (i) and (ii), we obtain

~ o ~ p+l . ~ 12

do = hm @oll, = lm l@olly )
which shows (iii). g
Proof of Corollary 1.5. Recall that, by Theorem 1.4, if 37E (¢}) [x=1 < O, then
¢ "9, (x) is orbitally unstable. Since

a2 =) (V@ 90)2 + ¥ | 001 O _(=Dp-53)

1
lgullh 2(p+ 1)

RE (¢k) ot <0 =

)

by (4.7), it suffices to prove

_2-a ~ ~ 1~ 2
-0 2 a—a)(Vey,, +w 2 0
- 2= «;ﬁ)lz v [Poa @ _ “17)
w00 A
‘We have

_2—a ~ o~ _1 ~ 2
0<-0 2 aR—)(VPu, Pu)2 + 0 2y |Pu,1(0)]

2—a

_ _1 ~
= (Clo™5 + ™5y ) 1l -

Hence, by Lemma 4.5-(i), (iii), we obtain (4.17). This concludes the proof. O
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4.3. Instability results in ng(r)
We discuss counterparts of Proposition 1.1, Theorem 1.4, Corollary 1.5 for arbitrary
y € R and symmetric V (x), i.e., Vi(x) = ... = Vxn(x), in the space
ng(r) ={veH' T : v&x)=...=vyx), x > 0.
The well-posedness in Helq(F) follows analogously to [17, Lemma 2.6]. We use index

-eq to denote counterparts of the objects for the space Helq(l").
It is known that dg,eq = Sg (¢y) (see page 12 in [18]) for any y € R, where

1\ N
¢ ()C) — < ([7+1)wsech2 (P_l)«/ax + arctanh(L) pl) .
Y { 2 ( 2 Nw >} e=1

Then, for 0 < wpeq < @ (observe that wpeq < wp) one can repeat all the proofs
in Sect. 3 and Subsect. 4.1 and 4.2 with ng(r) instead of H'(I"). Thus, we get the
following results.

Proposition4.6. Let p > 1,y € R, ® > woeq. If V(x) = V(x) is symmetric
and satisfies Assumptions 1-3, then the set of ground states G eq is not empty, in
particular, Gy eq = Mao.eq- If 9o € Gw.eq, then there exist § € R and a positive
function ¢ € Helq(F) such that g, (x) = €' ¢ (x).

Theorem 4.7. Let p > 5, y € R, > wpeq. If V(x) = V(x) is symmetric and
satisfies Assumptions 1-4, 9., (x) € Gy eq, and BfE (gof;) lr=1 < O, then the standing
wave solution €' ¢, (x) of (1.1) is orbitally unstable in Héq(l") and therefore in
HY(I).

Corollary 4.8. Assume that V (x) = ;—f B>00<a<l1l,yeR Let p>5and
$w(x) € Gy,eq- Then, there exists a)zq € (wo,eq, 00) such that for any w € (wzq, o0)
the standing wave solution ei“”(pw (x) of (1.1) is orbitally unstable in HL(D).
Remark 4.9. (i) Observe that when dealing with Héq(l"), no restriction on y appears.
This is due to the fact that the corresponding constrained variational problem is closely
related to the one on R, which in turn admits a minimizer for any y (see [18, Remark
3.1D.
(i) Consider

i0pu(t, x) = —9%u(t, x) — ySu(t, x) + Vo )u(t, x) — |ut, x)|"~ L u, x),

(r,x) € RxR, y € R. Notice that the above results are valid with Héq(F) substituted
by Hrlad(R) ={f e H\(R) : f(x) = f(—x)} and analogous assumptions on V (x).
One only needs to recall that dg rad = Sg(tby) (see [14, Theorem 1]), where

1
¢y (x) = {Wsech2 (Mlxl + arctanh(ﬁ))]"_l.
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Appendix

Below we show some properties of the operator H, v introduced by (1.2).
Lemma 4.10. Lety € Rand V(x) = V(x) € L'(T") + L®(T"). The quadratic form
F, v given by (1.3) is semibounded and closed, and the operator H, y defined by

(H)/,Vv)e = _U;/ + Veve,

N
dom(H, v) = {v e H'(I): —v/ + Vv, € L*(RT), ZU;(O) = —yvl(O)} .

e=1
is the self-adjoint operator associated with Fy y in L*().
Proof. We can write V(x) = Vi(x) + Va(x), with V] € LY(") and V» € L®(I).
Thus, using the Gagliardo—Nirenberg inequality (see formula (2.1) in [10]) and the
Young inequality, we have

2 2
= Vil lvlige + V2l 110112

V V(x) |v(x)|> dx
r

< CIVilly o], Iolla + 1Valloo 1013
<e|vZ+Celvl3, e>o0. (4.18)
Similarly, by the Sobolev embedding, we obtain
[y 1P| = I1vid = CI I lvlla < & o[ + Ce w1

Therefore,

<2¢ ||U/H§ + Ce |vl3, forevery € > 0.

‘V|U1(0)|2+/FV(X)|v(x)|2dx

(4.19)

Then, by the KLMN theorem [26, Theorem X.17], we infer that the quadratic form
F, v is associated with a semibounded self-adjoint operator 7), y defined by (observe
that A = Hp ¢ in [26, Theorem X.17],i.e., V. =0,y =0)

dom(T.y) = {u e H'(I): 3y e LA(D)s.t.Yv € H'(T), Fyy(u,v) = (3, v)z},

Ty vu=y.
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Itis easily seen that dom(H,, y) € dom(T, v)and T, yu = H, yu, u € dom(H, y).

Hence, it is sufficient to prove that dom(7),,v) € dom(H,, y).
Letu € dom(7),y) and v € H'(I"), then there exists y € L?(I") such that

F,v(i, 1) = /(a’%r Vit)dx — yii (0)91(0) = (7, 9)a. (4.20)
r

Observe that § — Vii € L]

loc

(I') and set

t= oV, 2 = /0 (Felt) = VuWie(t)) dr.

Suppose now additionally that v has a compact support, then

N
f(y — Vii)ddx = f Zvdx = —51(0)2@(0) —fz?dx. 4.21)
r r P r
From (4.20), we deduce
/(y — Viodx = / #'v'dx — yi1(0)91(0). (4.22)
r r

Combining (4.21) and (4.22), we get

N
/ @ + Z)?dx + 01(0) <—yi¢1(0) + ZZ@(O)) =0. (4.23)

r e=1
Choose © = (3,)_, such that 71 (x) € C°(RT) and 55(x) = ... = Oy (x) = 0. Then

we obtain
0 p—
/ (@} +z1)¥pdx =0,
0

therefore it} + z1 = const = c¢;. We have used that &} + z1 € Ran(A)L, where

Av = v with dom(A) = CPR™) in L*(R"). Analogously i, + z, = const =
Ce, € =2,..., N.Finally, from (4.23) we deduce

N N
v1(0) <—J/111(0) - Z(ﬁ;(o) +z.(0)) + Zze(o)) =0.
e=1 e=1
N
Assuming that v;(0) # 0, we arrive at »_ it,(0) = —yii1(0). Moreover, —ii” +
e=1

Vi =7 +Vi =3 —Vi+ Vi = 3§ e L¥I'). Hence, i € dom(H,, y) and
dom(7,,v) € dom(H, y). O
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Lemma 4.11. Suppose that V(x) = V(x) € LE(F) + L°°(T), i.e., for any ¢ > 0 and
Ve Lg(F) + L°°(T") there exists a representation V. = V| 4+ Vo, V| € LZ(F), V) €
Lo°(I), with | V1|5 < e. Then, we have

N
dom(H, y) = {ve H'(I) : v, € H*R"), Zv;(O) = —yv1(0){ := Dppo.
e=1

(4.24)

Moreover, for m sufficiently large, H, y-norm ||(H, vy +m) - ||2 is equivalent to H?-
normon I.

Proof. Observe that, by V(x) € Lg(l") + L°°(T"), the Sobolev and the Young inequal-
ities we get

Vol < Vi3Il + IValSlivls < ellvllfge, + Cllvlis— (4.25)

and

(", V)| < W20Vl < W20 Vil20vlles + 10" 21 Valleo llv]l2
2 2
< CLV Il2IVill2 vl g2 ey + C2llv" 211112 < ellvllge ) + eVl

+Cellvll3 < 2el0l3pa ) + Cellvll3 (4.26)

It is immediate from (4.25), (4.26) that

I Hyvvll3 = 07113 + 2Re(v”, Vv)a + IVV][3 < Cillv]3, (4.27)

(N

And for m sufficiently large, inequalities (4.25) and (4.26) imply

I Hy voll3 +m?|vl3 = 0113 4+ 2Re@”, Vv)a + [|[V]|3 + m?|v]3

> Callvll3, (4.28)

@ )
Thus, we get (4.24).
The second assertion follows from (4.27),(4.28), and
I(Hy,y +m)vl5 = [|Hy,yvl3 + m*|v]3 + 2m(Hy yv, )2,

2 2
[(Hy,vv,v)2| < [|Hyvvl2llvllz < el Hyvvllz + Cellv]l.
O

Remark 4.12. Observe that there exists potential V (x) satisfying Assumptions 1-4
such that dom(H, v) # Dy2. For example, consider V (x) = —1/x%, 1/2 <a < 1,
and N =y =2,thenv = (e ", e ) € Dy, but

v] 2 D¢ & d.x
H,yvl3 =2 —v/ — —|? > 2¢ — =0
| Hyoll3 =21 = vf = =13 ="
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Lemma 4.13. Let y > 0 and V(x) = V(x) satisfy Assumptions 1-3. Then, the
following assertions hold.
(i) The number —wq defined by (1.5) is negative.

(ii) Let also m > wq, then \/F},,v(v) + m||v||% defines a norm equivalent to the
H'-norm.

(iii) The number —wy is the first eigenvalue of H,, y. Moreover, it is simple, and there
exists the corresponding positive eigenfunction Yo € dom(H, y), i.e, H, vy =
—woYo.

Proof. (i) To show —w( < 0, observe that

—wo = inf o (Hyy) = inf{Fy,V(v) Cve H'(D), |lvl? = 1}. (4.29)

Consider v*(x) = A% v(Ax) with A > 0. Hence,
2
Fyv @) =22 V][5 = 2y o1 ) + (Vo*, ),

For A small enough, we have Fy,v(v)‘) < 0. Finally, —ay is finite since Fy v (v) is
lower semibounded.
(i1) Let ¢ > 0. Firstly, notice that from (4.19) one easily gets

Fyy @) +mlvl3 < (1+2)[[V]15 + (€ + m)[vll3 < Cillvli -

Secondly, for ¢ and § sufficiently small,

1 Y
Fy v () +mlol3 = 8[v'II13+ (1 —8) (uv’n% + (Vo - |v1(0)|2)

1—

+mlvl3 = 8115 = (1 + &)1 = Haollvllz +mivlz = Callvl -
Indeed, the family of sesquilinear forms

14
11—«

1
t(c)[u, vl = (', v")2 + T Vwv2- (u1(0)v1(0))

is holomorphic of type (a) in the sense of Kato in the complex neighborhood of
zero (see [21, Chapter VII, §4] for the definition and [21, Chapter VI, §1, Example
1.7] for the proof of sectoriality). Using inequality (4.7) in [21, Chapter VII] with
Kk = ko =0, k1 = §, we obtain |t(§)[v] — t(0)[v]] < ¢|t(0)[v]|. Hence,

t@®)[v] = tO)[v] — e[t [v]| = Fyy (v) — &|Fyy )| = —(1 + &)axllv]5.

(iii) Step 1. Let {v,} be a minimizing sequence, thatis, F, v (v,) 2 @0 ||v,,||§ =

1 for all n € N. From (ii), we deduce that {v,} is bounded in H'(I"). Then, there exist
a subsequence {vy, } of {v,} and vgp € H 1(I") such that {vy, } converges weakly to v
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in H'(I"). Observe that, by the weak lower semicontinuity of L?-norm and Fyv(),
we get |[vpl|l, < 1 and

F,y(v) < lim Fy y(v,) = —ay < 0.
k— o0

We have ||vg|l, = 1, since, otherwise, there would exist A > 1 such that ||Avg|, = 1
and F, v (Avg) = ksz,V(vo) < —wo, which is a contradiction. Consequently, vy is
a minimizer for (4.29).

Let ¥ = |vol, then ¥9 > 0 on T and [[¥ll3 = [lvgll5 = 1. Notice that ||1p6||§ <

|vg|l3 . therefore Fy v (¥0) < Fy.v(vo). Then, o is a minimizer of (4.29). This
implies the existence of the Lagrange multiplier —u such that

Fjy(o) = —nQ' (o). Q) = |vl5.

Repeating the arguments from the proof of [2, Theorem 4], we get ¥ € dom(H,, y)
and

Hy, yyro = —uio.

Multiplying the above equation by v/ and integrating, we conclude i = wy. Recalling

that V(x) < 0 a.e. on I', and arguing as in the proof of Proposition 1.1, one can show

that ¢ > 0 on I'. Notice that one needs to apply [28, Theorem 1] with B(s) = wps.
Step 2. Suppose that ug is a nonnegative solution of

Hy, yuy = —woug. (4.30)

Let us show that there exists C > 0 such that ug(x) = Cyo(x). Assume that this is
false. Then, there exists C > 0 such that i1 (x) = ug(x) — Co(x) takes both positive
and negative values. We have H,, vty = —wolo; consequently, Vo = uo/||uo 2 is the
minimizer of (4.29). Arguing as in Step I, one can show that || is also a minimizer
and |v9| > 0. Therefore, i1 (x) has a constant sign. This is a contradiction.

Suppose now that i is an arbitrary solution to (4.30) such that ||ug ||% = 1 (that is,
ug is a minimizer of (4.29)). Define wg = |Reug| + i|Imug|, then |wg| = |ug| and
|w6| |u0| consequently, F, v (ug) = Fy v (wo) and ||wo||% = 1. Therefore, wy is
a minimizer of (4.29). This implies that wq satisfies (4.30), and, in particular, |Reuq|
and |Imug| satisfy (4. 30) Thus, |Reug| = C1 Yo and |Imu0| = CyYg, C1,Cr > 0;
consequently, Reuy = Cuﬁo and Imu() = Czwo, C1, C2 € R, since Reug and Imug
do not change the sign. Finally, ugp = c 1Yo + zCzwo =C Yo, Ce C, and therefore,
—awy is simple.

O
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