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Simple Summary: Reproductive performance has direct economic implications on the beef cattle
industry. The majority of Zebu breeds (e.g., Nellore; Bos taurus indicus) have poor reproductive
performance compared to other cattle breeds. In this context, genetic progress can be achieved for
fertility and reproduction through the use of genomic selection for indicator variables that efficiently
assess the biological mechanisms underlying cattle fertility. Therefore, this study aimed to estimate
genetic parameters (heritability and genetic correlations) and identify candidate genes associated
with anti-Müllerian hormone levels (AMH) and antral follicle populations measured after estrous
synchronization (AFP) in Nellore cattle. Our findings indicate that measuring circulating AMH
in Nellore cattle enables the identification of animals with high genetic merit for superovulatory
responses, as well as early selection of the best oocyte donors for in vitro embryo production. Both
traits are heritable and influenced by a large number of important genes. Therefore, AMH and AFP
can be used as indicator traits to genetically improve fertility rates in Nellore cattle and to identify
better oocyte donors.

Abstract: Reproductive efficiency plays a major role in the long-term sustainability of livestock
industries and can be improved through genetic and genomic selection. This study aimed to estimate
genetic parameters (heritability and genetic correlation) and identify genomic regions and candidate
genes associated with anti-Müllerian hormone levels (AMH) and antral follicle populations measured
after estrous synchronization (AFP) in Nellore cattle. The datasets included phenotypic records
for 1099 and 289 Nellore females for AFP and AMH, respectively, high-density single nucleotide
polymorphism (SNP) genotypes for 944 animals, and 4129 individuals in the pedigree. The heritability
estimates for AMH and AFP were 0.28 ± 0.07 and 0.30 ± 0.09, and the traits were highly and positively
genetically correlated (rG = 0.81 ± 0.02). These findings indicated that these traits can be improved
through selective breeding, and substantial indirect genetic gains are expected by selecting for only
one of the two traits. A total of 31 genomic regions were shown to be associated with AMH or AFP,
and two genomic regions located on BTA1 (64.9–65.0 Mb and 109.1–109.2 Mb) overlapped between
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the traits. Various candidate genes were identified to be potentially linked to important biological
processes such as ovulation, tissue remodeling, and the immune system. Our findings support the use
of AMH and AFP as indicator traits to genetically improve fertility rates in Nellore cattle and identify
better oocyte donors.

Keywords: anti-Müllerian; biomarker; fertility rate; indicine; GWAS; heritability; ovarian reserve;
reproduction; Zebu

1. Introduction

Reproductive performance directly impacts the profitability of the beef cattle industry [1,2].
Precocity and fertility rates are lower in Zebu cattle (Bos taurus indicus) compared to Taurine breeds
(Bos taurus taurus) [3]. The majority of beef cattle breeding programs focus on growth and carcass traits,
which are usually easier to measure in comparison with female reproductive traits [4]. Furthermore,
most reproductive traits have low to moderate heritability estimates, therefore, reduced genetic progress
is usually attained per time unit [5,6]. Despite the high environmental influence on reproductive
traits (i.e., low to moderate heritability estimates), there is enough genetic variability to enable genetic
progress through direct selection [7,8]. Therefore, identifying novel phenotypes that better represent
the biological mechanisms underlying reproductive performance could be of great value to beef cattle
breeding programs, especially in Zebu cattle breeds raised in tropical conditions.

Anti-Müllerian hormone (AMH) regulates follicle selection [9], as well as antral follicle population
(AFP) [10]. AMH is strongly associated with the ovarian response and embryo scores [11], and therefore
in vitro fertilization [12]. In vitro fertilization and cattle embryo production are common practices
in beef cattle production systems, especially in Zebu breeds [13–15]. The measurement of AMH
concentration and its association with reproductive and fertility traits were widely studied in livestock,
including cattle [16–21]. These studies indicated that circulating AMH levels are a useful indicator of
fertility and reproductive performance. The role of AMH in different aspects of reproductive physiology
is noteworthy, and it is involved with AFP [16,22], superovulation responses [23], in vitro embryo
production [10,24,25], fertility traits (i.e., age at puberty and postpartum interval) [26], and longevity [27]
in beef cattle. The definition and use of efficient biological indicators of fertility is a promising path to
increase the success of reproductive technologies (e.g., embryo transfer, superovulatory responses),
especially in Nellore cattle raised in tropical conditions.

Genome-wide association studies (GWAS) are frequently used in livestock studies aiming to
detect causal mutations and candidate genes associated with traits of interest [28–31]. In this context,
knowledge regarding the genomic regions, candidate genes, and metabolic pathways related to
reproductive physiology and fertility indicators is paramount to the optimization of genomic selection
to improve female reproductive efficiency [32,33]. In Holstein cattle, genomic regions associated
with AMH levels were previously linked with fertility, superovulatory responses, and embryo
development [20,34]. However, this is currently underexplored in Zebu cattle. The main objectives of
this study were to estimate the genetic parameters for AMH and AFP using genomic information and
to identify genomic regions, candidate genes, and metabolic pathways related to AMH and AFP traits
in Nellore cattle using a high-density single nucleotide polymorphism (SNP) chip panel.

2. Methods

2.1. Ethical Statement

No approval from the local Ethics Committee was required for this study because the datasets
were generated in previous experiments approved by the Bioethics Commission of the School of
Veterinary Medicine and Animal Sciences of the University of Sao Paulo, Sao Paulo, Brazil [35,36].
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2.2. Animals and Phenotypic Data

The datasets used were from three commercial beef cattle farms (Segredo, Engano, and CFM)
located in the state of Mato Grosso do Sul in the midwestern region of Brazil. All animals were raised
under similar environmental conditions and received mineral supplementation on a pasture-based
production system, with ad libitum water. The pedigree dataset included 4129 animals (2601 females and
1528 males), in which 1032 were founders and 2883 individuals had both parents known. The pedigree
spanned up to five generations according to suggestions that the inclusion of at least three generations
is enough to predict accurate breeding values and estimate genetic parameters [37]. Furthermore, as
genomic information was used, the relationships from more distant ancestors were also captured. All
animals were from the same breeding program and were genetically related, as there was exchange of
semen and breeding animals across the three farms. The average pedigree and genomic inbreeding
coefficients were 0.008 and 0.010, respectively.

A total of 1099 females 425 (cows (16 months of age) and 674 heifers (14 months of age)) were
measured for AFP. The total number of visible follicles (≥3 mm in diameter) in both ovaries were
evaluated using ultrasonography equipment (7.5 MHz transrectal linear transducer, Mindray M5Vet;
Mindray, Mahwah, NJ, USA). Animals were recorded at the beginning of the follicular wave (day 4 of
the synchronization protocol after applying a progesterone intravaginal device, plus 2 mg of estradiol
benzoate on day 0) [24]. The synchronization protocol was used to ensure that all the animals were
measured at a similar reproductive stage, thereby reducing environmental influence on trait expression.
Blood samples of 289 Nellore heifers were collected using vacuum tubes containing ethylenediamine
tetraacetic acid—EDTA (Health Co, Canton, MA, USA) via jugular vein puncture to measure AMH
concentrations. These heifers were, on average, 14.10 ± 0.03 months old, and all of them had AFP
records. The AMH assay was conducted at the IgAc Laboratory (Institute Genese of Scientific Analyses,
São Paulo, SP, Brazil) using the Bovine AMH enzyme-linked immunosorbent assay AL-114 kit (Ansh
Labs, Webster, TX, USA), following the protocol described by Batista et al. [35].

2.3. Genotypic Quality Control

A total of 944 females (379 cows and 565 heifers) were genotyped using a high-density SNP chip
panel (Illumina Inc., San Diego, CA, USA) containing 777,962 single nucleotide polymorphisms (SNP).
Quality control was performed using the PREGSF90 program [38]. The following criteria were used for
the exclusion of SNPs: minor allele frequency (MAF), SNP call rate, and animal call rate lower than 0.05,
0.90, and 0.90, respectively, extreme deviation (greater than 0.15) from the Hardy–Weinberg equilibrium,
defined as the difference between the observed and expected frequency of heterozygotes [39], and
markers located on the sex chromosomes or mitochondrial DNA. A total of 467,209 SNPs was found to
be distributed across 29 autosomal chromosomes, and 917 samples remained for further analyses.

2.4. Statistical Analyses

2.4.1. Variance Components, Genetic Parameters, and Breeding Value Prediction

A linear animal model and the Average Information Restricted Maximum Likelihood method
(AI-REML) were used to estimate variance components, heritability, and genetic correlations using
the AIREMLF90 package from the BLUPF90 software [40,41]. Genomic breeding values for both traits
(AMH and AFP) were directly predicted using the single-step Genomic Best Linear Unbiased Predictor
(ssGBLUP) procedure. A bivariate animal model was fitted as follows:

y = Xβ + Zα + e, (1)

where y is the vector of individual observations for AMH and AFP, β is the vector associated with
the fixed effect of contemporary group and the linear effect of age of the animal at the measurement,
α is the vector of direct additive genetic effects, X and Z are the incidence matrices linking records
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to the β and α vectors, respectively, and e is the vector of the residual effects. The contemporary
group was defined by concatenating the effects of the farm (3 levels), management group, birth year
(2013–2017), and season of the year during which the measurement was taken. Additive genetic and
residual effects were assumed to follow a normal distribution. The ssGBLUP is a modified version of
the traditional BLUP, in which the inverse of the pedigree-based relationship matrix (A−1) is replaced
by the H−1 matrix. The H−1 was defined as follows [42,43]:

H−1 = A−1 +

[
0 0
0 τG−1

−ωA−1
22

]
(2)

where A−1 was previously defined, τ and ω are the scaling factors used to combine the genomic
relationship matrix (G) and A22, assumed as τ = 1.0 and ω = 0.7 (defined based on preliminary
analyses) in order to reduce the bias of the estimates [44],ωA−1

22 is the inverse of the pedigree-based
relationship matrix (A) for the genotyped animals, and G−1 is the inverse of the G matrix, which was
calculated as [45]:

G = ZZ′/k (3)

where Z is the matrix containing the centered genotypes accounting for the observed allelic frequencies
and k is a scaling parameter, defined as 2

∑
p(1 − p), in which p is the observed allele frequency of each

marker. The weighting factor can be derived either based on SNP frequencies [45], or by ensuring that
the average diagonal of G is close to that of A22 [46]. In order to minimize issues with matrix inversion,
0.05 of A was added to 0.95 of G.

2.4.2. Genome-Wide Association Analysis

GWAS was carried out for each trait based on the weighted ssGBLUP method (WssGBLUP) [29].
The same statistical models described to estimate the variance components and breeding values were
used to identify the genomic windows associated with the traits, as described by Wang et al. [47], using
the BLUPF90 program [40,41].

The POSTGSF90 program [38] was used to obtain SNP effects by back-solving the genomic
estimated breeding values (GEBVs) for each trait. SNP effects and SNP weights were calculated
following Wang et al. [47] based on three iterations. The GWAS results were reported as the proportion
of the variance explained by a moving genomic window of 10 adjacent SNPs. Genomic windows that
explained more than 1% of the total additive genetic variance were considered to be relevant, i.e.,
associated with AMH or AFP.

2.4.3. Functional Analyses

The candidate gene list from the genomic regions that explained at least 1% of genetic variance
was annotated considering upstream and downstream intervals of 100 kb (threshold defined based on
the level of linkage disequilibrium in the population) via the BioMart tool using the Ensembl Genes
and the Bos taurus taurus ARS-UCD1.2 reference genome [48]. The DAVID v6.8 [49] software was
used to perform the enrichment analysis according to the similarity of the biological processes and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which they are involved in (p ≤
0.05; False Discover Rate ≤ 10), using all candidate genes identified for AMH and AFP. Furthermore,
important SNPs (from the key genomic windows) were further explored using the Animal QTL
Database (AnimalQTLdb) [50].
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3. Results

3.1. Variance Component and Genetic Parameter Estimates

The descriptive statistics and genetic parameter estimates for AMH and AFP are presented in
Table 1. The estimate of the genetic correlation between AMH and AFP was positive and of high
magnitude (rG = 0.81 ± 0.02).

Table 1. Descriptive statistics, additive genetic variance (σ2
a), residual variance (σ2

e), heritability (h2),
and standard error (SE) estimated for anti-Müllerian hormone (AMH) and antral follicle populations
measure after estrous synchronization (AFP) in Nellore cattle.

Trait Mean SD 3 σ2
a ± SE σ2

e ± SE h2
± SE

AMH 1 1.10 0.36 0.16 ± 0.10 0.40 ± 0.10 0.28 ± 0.07
AFP 2 12.49 4.09 3.02 ± 2.02 7.13 ± 1.96 0.30 ± 0.09

1 Concentration in ng/mL; 2 number of antral follicles (n); 3 standard deviation.

3.2. GWAS and Functional Analyses

A total of 13 genomic regions located on BTA1, BTA3, BTA5, BTA7, BTA8, BTA10, BTA11, BTA18,
BTA22, and BTA25 were identified for AMH (Table 2). Additionally, 18 genomic windows located on
BTA1, BTA2, BTA4, BTA6, BTA8, BTA11, BTA14, BTA21, BTA26, BTA28, and BTA29 accounted for at
least 1% of the total genetic variance for AFP (Table 3).

Table 2. Candidate genes located in the genomic windows that accounted for more than 1% of the total
additive genetic variance for anti-Müllerian hormone levels in Nellore cattle.

Chr:Position (bp) 1 Candidate Genes Var (%) 2

5:97,149,440–97,360,900 GPR19, CREBL2, DUSP16, BORCS5 5.22
7:13,239,159–13,465,265 - 3.20

1:143,011,858–143,226,874 PDE9A, WDR4, NDUFV3, PKNOX1, CBS 2.74
5:23,779,410–24,021,506 PLXNC1 2.00
3:26,810,702–27,023,916 ATP1A1 1.84

1:109,052,581–109,300,000 RSRC1 1.80
8:75,771,507–75,987,944 FAM219A, DANI1, ENHO, CNTFR, RPP25L, DCTN3 1.75

22:26,343,690–26,562,220 - 1.54
25:21,973,041–22,186,659 CACNG3 1.49
1:64,865,063–65,123,147 GPR156, LRRC58 1.43

10:10,957,392–11,173,990 MTX3, THBS4, SERINC5 1.30
18:7,065,051–7,298,879 - 1.25
11:6,614,691–6,831,396 MAP4K4, IL1R2 1.15

1 Chromosome; 2 Var (%) = proportion of the total additive genetic variance.
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Table 3. Candidate genes located in the genomic windows that accounted for more than 1% of the total
additive genetic variance for antral follicle populations in Nellore cattle.

Chr:Position (bp) 1 Candidate Genes Var (%) 2

26:45,605,887–45,832,830 ADAM12 7.33
1:109,036,868–109,295,720 RSRC1 6.24
14:68,529,242–68,764,179 - 3.37
1:64,905,320–65,192,584 GPR156, LRRC58, FSTL1 3.19
14:4,866,037–5,110,734 - 3.07
6:13,887,045–14,107,585 - 3.05
8:86,936,023–87,174,520 SYK 2.93
2:16,843,125–17,099,561 ZNF385B 1.98
2:16,761,007–16,999,128 CWC22 1.79

26:39,682,007–39,898,965 TIAL1, BAG3, INPP5F 1.70
28:478,980–713,335 RHOU 1.60

4:77,214,698–77,441,075 POLM, BLVRA, COA1 1.53
6:13,909,732–14,132,804 - 1.49

11:48,459,747–48,702,594 REEP1, MRPL35, IMMT 1.28
1:157,802,376–158,023,994 GPX5 1.07
29:23,486,872–23,711,141 - 1.04
21:62,231,714–62,455,313 - 1.03
4:10,571,640–10,785,338 HEPACAM2, VPS50, CALCR 1.00

1 Chromosome; 2 Var (%) = proportion of the total additive genetic variance.

The chromosomes BTA5 and BTA7 demonstrated the most important genomic regions associated
with AMH. For AFP, the two highest peaks were identified on BTA1 (at 109.1 Mb) and BTA26 (at
45.7 Mb), which accounted for 6.24% and 7.33% of the total additive genetic variance, respectively.
The highest peak for AMH was found on BTA5 (at 97.2 Mb) explaining 5.22% of the total additive
genetic variance. Two overlapping regions located on BTA1 (64.9–65.0 Mb and 109.1–109.2 Mb) were
found for the two traits, as illustrated in Figures 1 and 2.
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Figure 2. Genomic regions for antral follicle populations (AFP) in Nellore cattle. The grey line
represents the threshold (1%) of the proportion of total additive genetic variance accounted for by each
genomic window.

Totals of 26 and 22 positional candidate genes were identified for AMH and AFP, respectively.
For AMH, one (PLXNC1) and four (GRP19, CREBL2, DUSP16, and BORCS5) positional genes were
detected on BTA5, located around 24.0 Mb and between 97.1 and 97.4 Mb, respectively. A group of
genes (ADAM12, TIAL1, BAG3, and INPP5F) were found to be harbored within the genomic region
located on BTA26 for AFP. The overlapping regions described above shared three candidate genes,
namely, RSRC1, GPR156, and LRRC58. Five biological processes and one pathway were enriched
(p ≤ 0.05), including pathways associated with the ovulation process (Table 4).

Table 4. Most significant (p ≤ 0.05) biological processes (BP) and KEGG pathways for anti-Müllerian
hormone levels and antral follicle populations in Nellore cattle.

Type 1 Term Candidate Genes p-Value FDR

BP GO:0048771~tissue remodeling THBS4, CBS, SYK 0.024 3.2

BP GO:0051301~cell division TIAL1, HEPACAM2,
DCTN3, THBS4 0.036 4.4

BP GO:0007005~mitochondrion
organization

MTX3, IMMT, COA1,
RHOU, MRPL35 0.040 4.8

BP GO:0009605~response to external
stimulus

IL1R2, SERINC5,
PLXNC1, BAG3, FSTL1,

THBS4, CBS, SYK
0.045 5.2

BP GO:0051049~regulation of
transport

IL1R2, ATP1A1,
CACNG3, REEP1, RHOU,

CREBL2, SYK
0.048 5.4

KEGG bta04010:MAPK signaling
pathway

MAP4K4, DUSP16,
CACNG3 0.049 3.8

1 BP: Biological process; KEGG: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway; FDR: False Discovery
Rate based on the Benjamini–Hochberg (BH) method [51].

4. Discussion

The circulating concentrations of AMH are highly variable among mammalian species. In
the current study, the AMH mean agreed with Zebu cattle reports, which ranged from 1.20 to 1.60
ng/mL [21,24,48]. These values were higher when compared with those reported for Taurine breeds
(0.78 ng/mL [52]). In this study, high AMH plasma concentration was associated with greater AFP (>25).
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In this context, Morotti et al. [52] reported a strong (rG = 0.88) genetic correlation between AMH and AFP,
which was in agreement with our current findings, highlighting the importance of measuring AMH
concentration to identify precocious cows through follicular and ovulatory responses [53]. AFP was
quantified after an estrous synchronization protocol, thereby indicating the response to a drug-induced
treatment. This was done because estrous synchronization is a common practice in the cattle industry
and also facilitates the measurement of individual animals at the same stage of reproduction, thus
reducing environmental influence that could be difficult to account for in the statistical models.

Recently, Nawaz et al. [34] obtained higher heritability estimates for AMH based on pedigree
(0.43 ± 0.07) or genomic (0.36 ± 0.03) information in Holstein cattle compared to the estimates found
in the present study. Gobikrushanth et al. [20] also reported a high (0.46 ± 0.31) heritability estimate
for AMH in Holstein cows. The high standard error in the last study might be due to the low (n =

198) number of cows with phenotypic records, data structures, and transformation of phenotypic data.
The AMH heritability estimate observed in Nellore heifers (h2 = 0.28 ± 0.07) was lower when compared
to the literature reports, however, a lower standard error was also observed in the current study. This
moderate heritability indicated that substantial genetic progress could be achieved through direct
genetic selection.

Júnior et al. [54] reported higher heritability estimates for AFP (0.49 ± 0.09) in Nellore cattle
compared to our findings. Moderate to high positive genetic correlations between AMH and AFP were
reported to range from 0.56 to 0.68 in Nellore cattle and 0.73 to 0.90 in Holstein animals [52,55]. Since
AMH is already certified as an endocrine marker of ovarian reserve in women [56], this significant
positive correlation indicated that both traits could be incorporated into Nellore cattle breeding
programs. Some authors [12,23,53] indicated a practical advantage in the use of AMH instead of
predicting AFP using an ultrasound approach. The levels of circulating AMH are stable during
the estrous cycle [53], therefore, it can be measured at any time during that period. AMH is expected to
be a useful trait to identify animals that are better oocyte donors in superovulation protocols. Nawaz
et al. [34] reported significant genomic regions on BTA11 (92.8 to 97.1 Mb) and BTA20 (25.0 to 26.3 Mb).
In this present study, genomic regions on BTA11 (around 6 Mb) for AMH and BTA11 (around 48 Mb)
for AFP were observed. Moreover, these authors [34] reported gene members of the TGF-β family
involved in follicular development, cell proliferation, steroidogenesis, and ovulation.

Similar to our findings, three genomic windows located in BTA8 (4.16–7.66 Mb), BTA11
(69.4–73.6 Mb), and BTA22 (11.9–15.9 Mb) were associated with AFP in Nellore heifers [54]. These
regions harbor important candidate genes (ADAM29, CTSB, SOX7, PPP1CB, CLIP4, and CCK) associated
with fertility traits. The significant peak on BTA26 around 46 Mb harbors the gene ADAM12 (Adam
metallopeptidase domain 12), which is associated with several biological activities, such as regulating
remodeling of extracellular matrix, modulation of cell morphological changes, satellite cell activation,
regulation of myogenesis and adipogenesis in beef cattle [57], and regulation of TGF-β1 [58], a gene
involved in follicular development, cell proliferation, steroidogenesis, and ovulation [59]. Evidence
exists regarding the function of the metalloprotease domain (ADAM) gene family in the ovarian follicle,
follicular development, and ovarian organization [60,61]. The three proteases (ADAM9, ADAM10, and
ADAM12) together seem to regulate the breakdown of matrix and differentiation of granulosa cells
prior to ovulation [62]. The BAG3 (BTA26:39.7–39.8 Mb) and TIAL1 (BTA26:39.6–39.7 Mb) genes were
also annotated. TIAL1 acts on post-transcriptional regulation encoding protein members of the RNA
binding family, and has also been associated to the development of primordial germ cells of gametes
(i.e., sperm and oocytes) in rodents [63]. In addition, BAG3 was annotated in proximity to a QTL
affecting daughter pregnancy rate in Nellore beef cattle [3].

The enrichment analysis (Table 4) highlighted five biological processes and one KEGG pathway
related to AMH and AFP. The response to an external stimulus term comprises any mechanism that
regulates or modifies the gene expression or secretion or enzyme production as a result of an external
stimulus (e.g., nutritional, environmental, maternal behavior) or epigenomics [64]. In livestock, various
studies investigated the molecular epigenetic mechanisms that regulate the expression of certain
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genes potentially involved in reproductive traits’ expression, sometimes as a response to an external
stimulus [65–68]. It is important to highlight that multiple external factors can leave epigenetic marks
that could affect further generations and may be related to the activity and levels of AMH and AFP.
The group of genes involved in this biological process (response to external stimulus; IL1R2, SERINC5,
PLXNC1, THBS4, and CBS) are implicated in the ovulation process, tissue remodeling, immune system,
and embryo preimplantation [69,70]. PLXNC1 (Plexin C1) is associated with the immune system [50]
and belongs to a subfamily of plexin genes which function as receptors for semaphorins to influence
neuronal development and function. The immune system regulates physiological interactions to
support internal protection, health, and survival of the embryo. Herein, the interaction between
the immune and reproductive systems are of particular interest [71]. The main interaction between
the systems is related to endocrine and immune response during gestation [72]. Particularly, IL1R2 is
a glycoprotein expressed on monocytes, neutrophils, and T and B lymphocytes. Part of the interleukin
family, the type 2 form of IL-1, was extensively related to ovulation during follicular growth [69].
THBS4 is a calcium-binding protein that modulates cellular phenotype during tissue genesis and
remodeling [73]. In this regard, ovulation was suggested to be a tissue remodeling process, annotated
as a significant biological process term (p = 0.02). The genes CNTFR and ATP1A1 are associated with
productive efficiency (e.g., average daily gain, feed efficiency) [74] and heat tolerance [75–77] indicators.
Selection for fertility along with production traits is, therefore, readily justifiable. ATP1A1 was
reported to be related to heat tolerance [71], in which heat stress response can affect cattle reproductive
performance [76,77]. ATP1A1 may also influence mastitis resistance [78].

The KEGG protein processing in the Mitogen-Activated Protein Kinase (MAPK) signaling pathway
is involved in a conserved module that controls various cellular events and biological processes, such
as embryogenesis, cell differentiation, cell proliferation, cell death, short-term changes required
for homeostasis, and acute hormonal responses [79–81]. Also, this pathway is associated with
preimplantation embryogenesis [82], defined as the time interval from conception to nidation or
attachment of the embryo to the uterus, a crucial stage in successful pregnancies related to embryonic
health, and therefore reproductive efficiency [83].

There are known QTLs located in the genomic regions identified in this study, including associations
with calving performance (e.g., calving ease, calf size) [84]. In agreement with our findings, previous
studies in Angus and Hereford cattle detected the MAPK signaling pathway as having a pleiotropic
effect on birth weight, calving ease (direct and maternal), and calving performance traits [85–88].
Likewise, QTLs linked to gestation length, the interval to first estrus after calving [89], conception
rate [90], and heifer pregnancy [91] overlapped with various genomic regions identified for AMH and
AFP. The anti-Mullerian hormone receptor type 2 (AMHR2) gene was not identified as significant in this
study, but was reported as an important gene related to AMH [9,92,93]. Surprisingly, a genomic window
harboring the AMHR2 gene, located at BTA5:26,591,483–26,597,710, only explained 0.001% of the total
additive genetic variance for AMH. However, a genomic region identified on BTA5 may capture
the effect of this gene through linkage disequilibrium (Figure 1), or prove that the polymorphisms in
other genes involved in the AMH metabolic process are of greater importance. In this context, Pierucci
et al. [94] investigated the association between polymorphisms in the AMH gene and early pregnancy
occurrence and age at first calving in Nellore cattle, but also did not find significant additive effects of
the three SNPs investigated.

Despite the fact that AMH and AFP are highly genetic correlated traits (0.81 ± 0.02), a limited
number of overlapping genomic regions were identified, indicating that the genes with pleiotropic
effects for AMH and AFP might be genes with small effects. Furthermore, based on the heritability
estimates and large number of genomic regions with small effects, AMH and AFP seem to be traits of
complex inheritance regulated by a large number of small-effect genes.

Genetic selection for AMH and AFP in Nellore cattle is expected to improve reproductive
performance, especially superovulatory responses. Furthermore, breeding values for these traits can be
used to select the best oocyte donors for in vitro embryo production. The number of genotyped animals
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with phenotypes for AMH is a limiting factor that needs to be increased in future studies, as this impacts
the identification of important genomic regions with smaller effects. However, the use of a high-density
SNP panel may have minimized this issue, as the average linkage disequilibrium between markers
was greater compared to a lower density SNP panel. Further studies using datasets from independent
populations, as well as larger datasets in this current population, should be performed to validate
the findings of this study. AFP can be measured at a reasonably low cost per individual and, as AMH
and AFP are highly and positively genetic correlated, AFP could be a feasible indicator for inclusion in
breeding schemes.

5. Conclusions

Our findings indicated that anti-Müllerian hormone levels and antral follicle populations
(measured after a synchronization protocol) are heritable traits in Nellore cattle and can be improved
through genetic and genomic selection. Furthermore, breeding values for both traits can be used to
identify females that best respond to superovulation that are better oocyte donors for in vitro embryo
production. Substantial indirect genetic gains are expected by selecting for only one of the two traits, as
a high positive correlation was observed between them. A total of 31 genomic regions were identified
to be associated with AMH or AFP, and two genomic regions located on BTA1 overlapped between
the traits. Various candidate genes were identified to be potentially linked to important biological
processes such as ovulation, tissue remodeling, and the immune system. Anti-Müllerian hormone
levels and antral follicle populations could be used as indicator traits to genetically improve fertility
rates in Nellore cattle and to identify better oocyte donors. Future studies should also investigate
the genomic backgrounds of these traits in the absence of an estrous synchronization protocol.
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