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Abstract

A riser is anchored at the floating system in a quasi-vertical configuration, the angle between the tangent and the vertical line at the top end
being, in general, small. As a consequence, the static tension at the touchdown point is also small and the riser usually becomes dynamically
compressed when excited by a moderate sea state. In this paper, a physical argument, coupled with a simple model for the quasi-steady
buckling of a infinitely long curved beam, allows one to obtain a simple estimative for the critical load, namely, the maximum value of the
compression permitted in a given situation. In this context, the total tension should follow nearly the harmonic result predicted by the
algebraic expression derived in Aranha and Pinto [Dynamic tension in risers and mooring lines: an algebraic approximation for harmonic
excitation (200I), submitted] but saturated, in the compressed part, at this critical load, a conclusion suggested by experimental results due to
Andrade [EPSUP (1993)]. Comparison with numerical results, obtained from nonlinear time domain programs, indicate a fairly good
agreement, in the sense that the numerically determined tensions tend, indeed, to 'saturate' in compression around the estimated critical
load. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this work a cable structure, anchored at the top end of a
floating system and resting on the sea floor at the other end,
is considered. The cable is statically subjected to its own
submerged weight and, possibly, to an horizontal ocean
current; furthermore, it is supposed to be also excited dyna
mically by a harmonic motion imposed on its top end. Let
T(s) be the effective static tension on the cable, with s = 0 at
the touchdown point and s = I at the top, where I is the
suspended length, and TnCs) be the amplitude of the dynamic
tension. The situation where TnCs) > T(s) is not uncommon,
mainly for the almost vertical static configuration used for
risers: in this case, the static tension in the vicinity of the
touchdown point is very small and it can be easily surpassed
by the dynamic tension. Since the dynamic tension changes
cyclically in time, the condition TD(s) > T(s) implies that
the cable becomes compressed into part of the wave cycle
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and the cable is then said to be dynamically compressed.
The intention of this work is to study this problem.

In the strict sense of the word, a cable does not have a
bending stiffness (El = 0) and so it cannot support any
compressive load: in the 'compressed zone' the dynamic
tension adjusts its value in such a way that the total tension
TTOTAL(s,t) remains zero during this part of the wave cycle.
The cable then slackens and folds (infinite curvature) but it
recovers its tightness as soon as the total tension becomes
positive again. This qualitative description has a strong
experimental support. For example, as shown in numerous
experiments done by Andrade [1], the total tension at the
suspended end of a chain can be approximated by
TToTAL(l, t) = (112)[1 + sign(T(!) + To(/) cos(wt))](T(l) +
To(/) cos(wt», with TD(!) being the harmonic amplitude
of the dynamic tension, see Ref. [3]; this expression
indicates not only the saturation when T(/) +
To(/) cos(wt) < 0 but also a strict harmonic behavior
when TToTAd/, t) = T(l) + To (I) cos(wt) > O. Fig. 3.1 b
in Ref. [3], extracted from Ref. [1], is typical: it shows
the adequacy of the proposed expression for TTOTAL(l,t)
while displaying clearly the saturation region where the
tension remains zero.

A riser has a bending stiffness (El =1= 0) and so it can
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v(s)
27T/k

{3cr(X)
Per(X)
Aer(X)

Nomenclature

List of symbols
q submerged weight per unit of length (N m- I

)

m mass per unit of length (kg m -1)
ma added mass per unit of length (kg m -I)
EJ flexural stiffness (N m2

)

EA axial stiffness (N)
To static tension (N)
TD dynamic compression III the saturated

condition (N)
P = To - To total compressive load on the riser (N)
yes) static displacement in the transversal direction

(m)
y" = q/To = X static curvature (m -[)
Yes) = yes) + v(s) total displacement in the trans

versal direction (m)
buckling mode (m)
wavelength of straight beam buckling mode,
see Eq. (2.1b) (m)
root of Eq. (2.6)
buckling load, see Eq. (2.7) (N)
wavelength of the buckled mode, see Eq. (2.7)
(m)

the maximum permissible dynamic tension in a steel riser in
order to avoid the large curvatures (buckling) that may
appear in the saturated region, where TTOTAL(s, t) = -Per'

As discussed in Ref. [3], the analytic estimate of Per has
an even greater importance for a single reason: in general,
numerical results seem to be not very precise in the vicinity
of the critical load, in such a way that relatively large
compressions are sometimes numerically observed in a
cable (EJ = 0) despite the fact that these structural elements
cannot support any compression; see, for example, Fig. 3.2b
in Ref. [3]. By extension, again, one should expect possible
numerical problems around the 'saturation region' of a riser
(EJ r= 0) and a difficulty to interpret the results if a reference
value is not known. In other words: if the critical load Per is
not known a priori it may become awkward to distinguish,
in the numerical output, the real physical response from the
numerical ill behavior.

This work has been organized in the following way: in
Section 2 a mathematical model is proposed and a closed
form expression for the critical load is obtained; in Section 3
the derived expression for Per is compared with some
numerical results, in order to check its adherence to the
observed numerical trend and to qualify, whenever neces
sary, the detected numerical ill behavior. Section 4 presents
the conclusions.

1 .
TToTAL(s, t) = 2 [1 + slgn(T(s) + To(s) cos wt + Per)](T(s)

+ To(s) cos wt) - ~[l - sign(T(s)

support some compression. By analogy with the cable
result, it is expected here the existence of a positive critical
load Per that would play for the riser the same role played by
the load Per = 0 in the cable case. In particular, it is also
expected, by extension of the observed experimental results
for the cable that the total tension in the riser should be
given by an expression of the form

with TD(s) being, again, the harmonic amplitude of the
dynamic tension. The basic result in Ref. [3] was the deriva
tion of an algebraic approximation for this amplitude.

The main objective of the present work is to obtain an
estimative of the critical load Per; in reality, as it will be
seen, this critical value changes along the suspended length,
once it is a function of the local static curvature, and so
Per = Peres). The total tension should saturate at this critical
value (TTOTAL(s, t) 2:: -PerCs», a result that does have
importance in itself: in one hand, since Peres) is the maxi
mum possible compression in a flexible riser, one may
confront this value with the maximum allowable compres
sion, in general specified by the manufacturer, to check
whether or not the riser would be in safe condition while
in operation; on the other hand, this critical value can define

(2.1a)

(2.1b)

The equilibrium equation for a beam with bending stiff
ness EJ, subjected to a compressive load P and to a lateral

2.1. Eigenvalue problem for a curved beam

Obviously, the basic problem is the yet undetermined wave
number k but the following argument can shed some light on
this point: if the beam is dynamically excited at the frequency
w it naturally assumes a waveform with wave number k
determined from the beam dispersion relation, namely

k2 = ~m + ma
EJ w,

where m is the mass per unit oflength and ma is the added mass.
It seems reasonable to assume that the beam will choose this
wave number to buckle and, in this context, the critical load
can be estimated by Eqs. (2.1 a) and (2.1b). However, the riser
is a curved beam and the critical load is influenced by the
curvature. The proper model for this case is derived in the
next item.

2. Mathematical model: estimative of the critical load

Consider an infinitely long straight beam with bending
stiffness EJ and a wave mode vex) = A sin(kx). The classical
Euler buckling load is then given by

Per = EJk2
•

(1.1)+ To(s) cos wt + Per)]Per
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To dues) _
- EA = k dS + xv(s)

(2.5a)

1 (7T)S If1r
- reX) 2 f ="2 0 yes) ds.

(2.5b)

v"(O) = v"( n) = 0,

Eq. (2.4b) is reduced to

d4v 2 d2v
ds4 + {3 dS2 = f,

Before the solution of Eqs. (2.4c), (2.5a) and (2.5b) is
presented it seems worthwhile to establish a relation between
the parameter y(X) and the parameter A, first introduced by
Irvine and Caughey [4] in the dynamic ofcables; see Eq. (2.3c)
in Ref. [3] for the definition of A. In fact, if A = 27Tlk is the
wavelength, the parameter A can be written as

A = qA/2 (EA )112
To To

and then

1 A
'}'(X) = "8 A

f
A,

where Af = (EJITo)112 is the flexural length, see Ref. [2].
The eigenvalue problems (2.4c), (2.5a) and (2.5b) have a

non-trivial solution if and only if {3 = {3cr(X) with {3crCX)
being the smallest root of the characteristic equation

a 3 as {3 ( )
tan a = a + _ - __ cr X 7T (2.6)

3 r(x) , a= -2-'

Observing that tan a = a + a 3/3 + 2as115 when a ~ 1
it is easy to check that tan a > a + a 3/3 - asIy when
0:5 a < 7T/2 (0:5 {3 < 1); the smallest root a of Eq. (2.6)
is then in the interval 7T/2 :5 a < 37T/2 (l :5 {3cr(X) < 3). In
the limit X --+ 0 (y --+ 0; straight beam) the right-hand side
of Eq. (2.6) tends to -00 and so a = 7T/2 or {3crC0) = 1; in
this limit the Euler critical load (2.1a) is recovered, see also
Eq. (2.4a). The root a of Eq. (2.6) increases monotonically
with X, it is equal to 7T ({3cr = 2) when yl7T = 1.517 and
tends to the value 37T/2(l - 0.0055) in the limit when X--+
00 ({3cr(oo) = 2.984). This result is summarized and further
elaborated in the next item.

yeO) = v( 7T) = 0,

-f = EA1_1_ f1r yes) ds
7T k4EJ 0

and introducing the parameter (see Eq. (2.1b»

(
7T)2 ~ (7T)2/EAl

'}'(X)= 2 x~k4Ei = 2 x~~~.

with boundary conditions

u(O) = u( 7T).

(2.4c)

Integrating the geometric compatibility equation (2.4b) in
the interval (0; 7T) one obtains

(2.4a)

(2.4b)

(2.2a)

u(O) = u(7Tlk).

(2.3c)

P = To - To·

Introducing the auxiliary variables

X=.!L.
To

Eqs. (2.3a) and (2.3b) can be written in the form (s = ks)

d4v 2 d2v 1
ds4 + {3 ds2 = ToX k4EJ = f,

v(O) = v(7Tlk) = v"(O) = v"(7Tlk) = 0,

2 P
{3 = k2EJ'

Yes) = yes) + yes),

(2.2c)

In Eq. (2.2c) the force P is the riser total compressive load
in the saturation region and the equilibrium equation (2.2a)
is reduced to (TD > 0 means dynamic compression)

d4 v d2v q
EJ- + P- = To-. (2.3a)

ds4 ds2 To

The inertia term is absent in this model: the dynamic
tension is assumed here to adjust its value in such a way
that the total compression saturates at the critical load; for
example, To = To for a cable (EJ = 0) in order that the
compressive load 'saturates' at the critical load Pcr = O.
The equilibrium equation (2.3a) should be coupled with
the geometric compatibility equation for the axial deforma
tion (see, for instance, Eq. (4.1b) in Ref. [3])

To dues) q-- = -- + -yes). (2.3b)
EA ds To

The functions {v(s); u(s)} should satisfy the boundary
conditions com;istent with the straight beam problem, in
order that Eq. (2.2b) be recovered in the limit q --+ 0, and so

For a straight beam (q = 0) the solution ofEq. (2.2a) can
be expressed in the form

Yes) = Imag{Aeiks
} = A sin(ks) (2.2b)

that placed in Eq. (2.2a) with q = 0 gives the Euler buckling
load (2.1a). The intention here is to obtain a solution of
Eq. (2.2a) that tends to Eq. (2.2b) in the limit q --+ O. For
example, if To is the static tension in the vicinity of the
touchdown point, the local static curvature 1 is given by X =

qlTo and if - TD is the 'dynamic tension', one can write

d2y q
ds2 = - To'

load q is given by

4 d2
EJd V +p~ =q.

ds4 ds2

I The influence of the bending stiffness in the vicinity of the touchdown
point has been ignored here: the thin bending boundary layer should not
affect the buckling load. The numerical results of Section 3 confirm this
assumption.

2.2. Critical load and related parameters

The critical load Pcr(X), the wave number kcr(X) and the
wavelength Acr(X) = 27Tlkcr(X) of the related wavemode are



86 lAP. Aranha et al. / Applied Ocean Research 23 (2001) 83-91

10

0.5

or "w,o/T.

~.:r---
o 4 5

Time!s]

...._ 1.5...

JL·~~~~~~~~~
o 5

Time[s]

(a) (b)

14

·:f
-4il---;-----2~-~3~~~5- --=---=--e~o

Time[s]

~ An8Iltica
0",.11""

-cable

-1 0~---:--~:-------7---:----:5- 6

Time [s}
10

(0) (d)

z
~ z

~
. ~~

___ Anal ca. _ ~QrQaftC!ll( II ......

- Cable i !!...
- ~ i

~\l.
~0t-0

.so ~----'-_·~--_-l-~-~-~910

Time!s]
5

Time[s]
10

~ W
Fig. 1. (a) Total tension at the TOP. Steel riser, (P = 8 s; A = 4 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -) Orcaflex. (b) Total tension at the TOP. Steel
riser, (P = 8 s; A = 4 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -) Orcaflex. (c) Total tension at the TOP. Steel riser, (P = 8 s; A = 6 m). (-0-) Theory
O.l) and (2.7); (-) Cable; (- - -) Orcaflex. (d) Total tension at the TOP. Steel riser, (P = 8 s; A = 6 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -)
Orcaflex. (e) Total tension at the TOP. Steel riser, (P = 8 s; A = 8 m). (-0-) Theory (l.l) and (2.7); (-) Cable; (- - -) Orcaflex. (f) Total tension at the TOP.
Steel riser, (P = 8 s; A = 8 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -) Orcaflex.

then given by (see Eqs. (2.tb) and (2.4a»

(
( + ) 2 )114m maW

kcr(X) = {3er(X) EJ '

27T 27T ( EJ .)1/4
A.cr(X) = ker(X) = {3er(X) (m + ma)cif '

Per(X) = EJk~r(X) = {3~r(X).j(m + ma)EJw,

(2.7)

where X = xeS) is the local static curvature at the riser's
section sand 1 s {3er(X) < 2.984 is the root of the charac
teristic equations (2.5a) and (2.6). The only purpose in being
specific about the touchdown point was to make more direct
the argument, the final result being general.

The local character of the buckling mode can be easily
visualized if it is recalled that a riser is relatively 'curved'
near the touchdown point but it has a 'stretched' configura
tion at the suspended end. Formally, this local character is a



fAP. Aranha et al. / Applied Ocean Research 23 (2001) 83-91 87

consequence of the fact that the wavelength Acr(X) of the
buckling mode is, in general, much smaller than the
suspended length I of the riser, as shown below, and so
the buckling mode can always assume its local wavelength.

Table 1 displays the main buckling parameters of the steel
riser defined in Table 3.2 of Ref. [3]. The water depth is h =
840 m and the static configuration is defined by the angle
Os = 70° with the horizontal; (To; Ts) are the static tension at
the TDP and TOP, respectively.

At the touchdown point (TDP) the curvature is so large
that the limit value f3cr( (0) = 2.984 is almost reached
irrespective of the wave period; in this case the critical
load decreases linearly with the wave frequency. At the
suspended end (TOP) the riser is relatively stretched and
the value of f3cr changes with the wave period; however,
the decrease of f3cr with w is attenuated in the final
expression (2.7) of the critical load, that contains also an
increasing factor with w.

10

[~
wc•

...-.... Orc8Iex
- C8b1e

1-0_ 4

I-

I---_~e~~~~ p ITf- .... •

-'o'-----~----c-~~-~5-6~--::---:'--------:------,':'0-----:'11

lime [51

(b)

-'0:'--c----:---~---:-------:-5 --:-6,------:------:-----:--:'::'0-----:'11
lime [51

(d)

-40:--~~-~~---:-5-6~--:------c-~~'O~11

TIme [5]

(e)

10

P IT
(;1".0 •

5
lime [5]

(f)

9-

I...... AnaIWC"l

8
1
=g:ti~ex I

7

20r A

15Y \
I. I

~·r\\\.... ' ill~" ...,
-5:.-1 -c----:---:-------':--~____:_-~--:--_:_~o 5 10

lime [5]

(e)

Fig. 2. (a) Total tension at the TDP. Steel riser, (P = 10 s; A = 6 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -) Oreaflex. (b) Total tension at the TOP.
Steel riser, (P = 10 s; A = 6 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- - -) Oreaflex. (e) Total tension at the TDP. Steel riser, (P = 10 s; A = 8 m). (-0-)
Theory (1.1) and (2.7); (-) Cable; (- - -) Oreaflex. (d) Total tension at the TOP. Steel riser, (P = 10 s; A = 8 m). (-0-) Theory (1.1) and (2.7); (-) Cable; (- --)
Oreaflex.
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3. Numerical results

Both the steel riser (SR) and the flexible riser (FR)
defined in Table 3.2 of Ref. [3] have been numerically
simulated by the programs CABLE and ORCAFLEX under a
variety of conditions, summing a total of 36 simulations
for each riser. The results to be shown here are typical
although the choice was not arbitrary: the cases where
dynamic compression occurred also at the top end have
been singled out since they display better than the influence
of the local curvature on the critical load. By the same
reason, the results from the steel riser were selected,
since the relation Per,alTo is larger there and can be
more easily seen in the figures. At the end of this section
an example of a flexible riser in random excitation is
discussed.

All results to be shown refer to the same static configura
tion: a steel riser placed in a water depth h = 840 m with an
angle f)s = 70° with the horizontal at the top, see Table 1. A
circular harmonic motion at the suspended end was imposed
to the riser and the following simulations, characterized by
the period P and amplitude A, will be discussed here:
(P = 8 s; A = 4, 6, 8 m), (P = 10 s; A = 6, 8 m) and
(P = 12 s; A = 8 m). For example, the case (P = 12 s;
A = 6 m) was not chosen since the total tension was always
positive at the suspended end and no compression could be

Period (s) TDP TOP

A".all (%) f3;,.o Per.alTo Aer,sll (%) f3;,.s Per.slTs

8 0.54 8.90 1.65 0.96 2.85 0.18
10 0.60 8.90 1.33 0.92 3.87 0.20
12 0.66 8.90 1.10 0,87 5.11 0.22

Table I
Parameters of the buckling mode. Steel riser (EJ = 9241 kN; m + rna =
108.6 kg m-I ; q = 0.307 kN m-1). Static configuration: Os = 70

0

;

h = 840 m; I = 1196 m

P IT
I!r,tI •
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6
Time [5]

(a)

3
t-

W

- I
t- 2 ~
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Or
-1 L --------l ~__~__~__~'__° 2 4 6 8 10

Time [51

(b)

The results of Table 1 can be useful to check some
features of the proposed model: first, given the relatively
large spread of values in the column Per,alTo, it seems
possible to detect, in the numerical simulations, the varia
tion of the 'saturation' load with the wave period; second,
by observing the difference between f3~r,o and f3~r,s' it also
seems possible to observe numerically the influence of the
static curvature on the critical load, These points are
explored in Section 3,

In a steel riser the non-compression condition Tn < To is
usually imposed to avoid excessive curvature; Table 1 indi
cates that the milder condition Tn < 2To can be taken
instead to avoid buckling. For a flexible riser with EJ =

9,84 kN m2
; m + ma = 104 kg m-], see Table 3.2 of Ref.

[3], one has Per::::: 7 kN when the wave period is larger than
8 s, indicating that the maximum possible compression is in
fact very small and independent of the wave amplitude.
Both results disclose the practical importance that Eg. (2.7)
should have in the design of a riser.

Fig. 3. (a) Total tension at the TDP. Steel riser, (P = 12 s; A = 8 m). (-0-)

Theory (1.1) and (2.7); (-) Cable; (- - -) Orcaflex. (b) Total tension at the
TOP. Steel riser, (P = 12 s; A = 8 m). (-0-) Theory (1.1) and (2.7); (-)
Cable; (- - -) Orcaflex.

-30860 862 864 866 866 870 872 874 876 878 880

lime (5)

Fig. 4. Flexible riser under random excitation. Os = 85
0

• (- - -)

EJ = 9.8 kN m2
; (-) EJ = 0 (Orcaflex).
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observed. Figs. 1a-f, 2a-d and 3a,b present the comparison
between the total tension obtained from the programs
CABLE, ORCAFLEX and the analytic solution (1.1), with
TD(s) computed from the algebraic approximation derived
in Ref. [3]; in accordance with the notation introduced in
Table 1, (Per,O; To) represent, respectively, the critical load
and the static tension at the TDP and (Per.S; Ts) the same
values at the TOP.

Fig. 1a,b refers to the case (P = 8 s; A = 4 m) at the TDP
and TOP. At the TDP a relatively fair adherence between
the three results is observed, although the Orcaflex result
seems to be off around the saturation region; however, the
Cable result shows a tendency for saturation at the level
predicted theoretically. The comparison at the TOP shows
a more wild discrepancy between the numerical results, as
already pointed in Ref. [3], although the Cable result is
somewhat closer to the analytic expression (1.1); further
more, the saturation of the total tension in Cable's result, at
the level predicted by Eq. (2.7), is now quite evident, see
also Table 1. In the same figure the line Per.oITs gives
the saturation value at the TDP, showing the difference

caused by the local static curvature of the riser on the
critical load. Apparently Eq. (2.7) is able to predict well
how the critical load is modified along the riser, a result
supported by the other numerical simulations to be
discussed below.

Fig. 1c,d refers to the case (P = 8 s; A = 6 m). Cable's
result shows a clear saturation at the theoretical level but
Orcaflex result displays a 'wavier' tendency around the
saturation value. This behavior is similar to the one
observed for a cable, see Ref. [3], where the tension
oscillates around the critical load Pcr = 0 in spite of
the fact that no compression can be supported then.
At the TOP the saturation of Cable's result is also
clear and the wavy tendency of Orcaflex result can also be
observed; the difference between PeeS and Per,O is again
evident.

Again, Fig. 1e,f refers to the case (P = 8 s; A = 8 m) at
the TDP and TOP. The same general comments made before
also apply here but there is one point that must be stressed: if
the cases (P = 8 s; A = 4 m) and (P = 8 s; A = 8 m) are
compared, the maximum total tension increases, as it should,
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Fig. 5. Spatial variation of the dynamic curvature in the buckled region. (lis = 60
0

, P = lOs; A = 8 m), left; (lis = 70°, P = 12 s; A = 6 m), right. Flexible
riser (upper row), Steel riser (lower row).
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with the amplitude A but the minimum total tension remains
always at the same level, saturated at a value very close to
the theoretically predicted -Per-

Similar comments can be made for the results displayed
in Figs. 2a-d and 3a,b, the only purpose to present them
here being to show that the observed agreement is in fact
general, not restricted to some particular conditions.
However, there is one aspect that it is worth to mentioning:
the critical load changes with the wave frequency wand it
has different values in the case of Fig. la,c,e, where P = 8 s,
and in Fig. 3a, where P = 12 s, being 1.5 times smaller in
this latter situation, as indicated in the column Per,r/To of
Table 1. This result is also supported by the numerical
simulations, as it can be seen in Fig. 3a: in this figure the
analytic solutions (1.1) and (2.7) show the saturation of the
total tension (critical load) at the period P = 12 s and, for
the sake of comparison, the saturation corresponding to the
period P = 8 s was also plotted, being indicated by
the horizontal line with the symbol Per,O(8s/To. Notice
that the numerical results coalesce in the vicinity of
the critical load at the period 12 s and not around the
critical load at 8 s. The dependence of the critical load
on the wave frequency seems to be well predicted by
Eq. (2.7).

So far all the analysis was restricted to a harmonic excita
tion but it can be easily extended to a random input if a
further assumption is made. In fact, when a random sea
interacts with a floating system, the high frequency compo
nents are usually filtered out by the transfer function of the
floating system, resulting in a narrow banded random
excitation at the top of the riser. In this case, the displace
ment U(t) imposed at the suspended end is a quasi-harmonic
input of the form U(t) = Uo(t) cos(wut), with an amplitude
Uo(t) slowly varying in time and a frequency Wu
corresponding to the central frequency of the spectrum
of U(t). In this circumstance one should expect that the
total tension should saturate at a value around the one
defined by Eq. (2.7), but with the frequency Wu in place
of w.

This theoretical result has also some support from the
direct numerical simulation. In Fig. 4 the time series of
the total tension on aflexible riser, computed by ORCAFLEX,

is shown. The riser, the same analyzed in Ref. [3], was
placed in a turret of an actual FPSO anchored in a water
depth h = 1000 m. The static configuration was defined by
the angle Os = 85° with the horizontal at the top and the
riser was exposed to a random sea, resulting in a displace
ment at the tangent direction with narrow bandwidth. Two
cases have been simulated: one, with EJ = 0; the other, with
the actual EJ = 9.8 kN m2

. The case EJ = 0 shows the usual
numerical ill behavior, with the presence of negative
tension, and a clear tendency to saturate at the level
Per = 0; the case EJ = 9.8 N m2 shows an overall simi
lar behavior but now the total tension tends to be satu
rated at the level -4.42 kN, that is exactly the critical
load (2.7) computed with Wu in place of w. The

proposed model seems then to be able to cope with a
narrow banded random excitation.

When the total tension saturates at the critical load the
riser buckles and the curvature increases along the part of
the wave cycle where TTOTAL(s, t) = -Per' The dynamic
behavior of the curvature in the buckled region has a con
siderable importance in the riser design and, although not
being the purpose of the present work, some general
remarks about it can be made here. In particular, by a simple
scale argument one can infer that the total curvature in
the buckled region should be proportional to qlPer
(XTOTAL(S,t) ex: qIPer), undulating in the space with a wave
length near to the critical value Aelx). These inferences are
supported by the numerical results, as shown in Fig. 5:
the variation in space of the curvature in the vicinity of
the touchdown point is displayed in this figure, both for a
flexible riser and for a steel riser. The curvature is normal
ized by the value qlPer and the coordinate s by Aer(X) for
both the flexible and steel risers: in all situations, the
maximum normalized curvature is of order 5 and the
undulation has a normalized wavelength of order 1, in
spite of the huge difference that these parameters have for
these two types of risers, since (qIPer)FIEX/(qIPer)STEEL =
30.6 and (AerhTEEL/(Aer)FIEX = 5.5.

The question of the dynamic curvature in the buckled
region will be addressed in a forthcoming work.

4. Conclusions

A simple expression for the critical load, the maximum
total compression that a riser is able to locally withstand for
an excitation with a given frequency w, was derived in this
work and synthesized in Eq. (2.7). The proposed expression,
when compared with numerical results, seems to cope well
not only with the variation of the critical load with the
frequency but also with the local static curvature of
the riser; in particular, for a steel riser the critical load at
the touchdown point, where the riser is relatively curved,
can be more than three times larger than at the suspended
end, where the riser is locally much more stretched in its
static configuration.

As discussed in this work, the values of the critical para
meters {Per; Aer} have an importance in itself and they also
command the behavior of the total curvature in the part of
the wave cycle where the riser buckles, as shown in Fig. 5.
The important question of the estimative of the maxi
mum possible curvature in the buckled region was not
addressed in the present work but it will be in a forth
coming paper.

Expression (1.1) for the total tension has been suggested
by the experimental results due to Andrade [1]. Although it
has relative support from some numerical results, see
Ref. [3], it is evident that the numerical results themselves
become a bit lost when the imposed amplitude (or
frequency) is very large.
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The interesting aspect of Eq. (1.1), well documented by
the experiments, is the fact that the maximum positive
tension is apparently not very much affected by the strong
non-linearity (saturation of the tension) that may be occur
ring in the compressed part of the wave cycle; furthermore,
this maximum positive tension can be relatively well esti
mated by the algebraic approximation derived in Ref. [3],
assuming a harmonic response. The practical implication of
Eq. (1.1) will be explored in the last paper of this series,
which deals with the probability density function for the
envelope of the dynamic tension when the cable is excited
by a random wave.

References

[1] Andrade BLR. Estudo experimental do comportamento dinamico de
linhas de amarra9ao, Tese de Mestrado, Departamento de Engenharia
Naval e Oceanica, EPUSP, 1993.

[2] Aranha JAP, Martins CA, Pesce CPo Analytical approximation for the
dynamic bending moment at the touchdown point of a catenary riser.
Int J Offshore Polar Engng 1997;7(4);293-300.

[3] Aranha JAP, Pinto MO. Dynamic tension in risers and mooring lines;
an algebraic approximation for harmonic excitation, 2001, submitted
for publication.

[4] Irvine HM, Caughey TK. The linear theory of the free vibration of a
suspended cable. Philos Trans R Soc Lond A 1974;341:299-315.


	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090



