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Abstract 38 

Spatial and seasonal variation in the environment are ubiquitous. Environmental 39 

heterogeneity can affect natural populations and lead to covariation between environment and 40 

allele frequencies. Drosophila melanogaster is known to harbor polymorphisms that change 41 

both with latitude and seasons. Identifying the role of selection in driving these changes is not 42 

trivial, because non-adaptive processes can cause similar patterns. Given the environment 43 

changes in similar ways across seasons and along the latitudinal gradient, one promising 44 

approach may be to look for parallelism between clinal and seasonal change. Here, we test 45 

whether there is a genome-wide correlation between clinal and seasonal change, and whether 46 

the pattern is consistent with selection. Allele frequency estimates were obtained from pooled 47 

samples from seven different locations along the east coast of the US, and across seasons 48 

within Pennsylvania. We show that there is a genome-wide correlation between clinal and 49 

seasonal variation, which cannot be explained by linked selection alone. This pattern is 50 

stronger in genomic regions with higher functional content, consistent with natural selection. 51 

We derive a way to biologically interpret these correlations and show that around 3.7% of the 52 

common, autosomal variants could be under parallel seasonal and spatial selection. Our 53 

results highlight the contribution of natural selection in driving fluctuations in allele 54 

frequencies in natural fly populations and point to a shared genomic basis to climate 55 

adaptation which happens over space and time in D. melanogaster. 56 

  57 
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Introduction 58 

 Species occur in environments that vary both in space and time (Ewing 1979; Cardini 59 

et al. 2007; Dionne et al. 2007; Hancock et al. 2008; Zuther et al. 2012; Campitelli and 60 

Stinchcombe 2013; Kooyers et al. 2015). Populations may adapt to the local conditions of the 61 

environment in which they occur, resulting in covariation between traits and space (Endler 62 

1977; Barton 1983; Barton 1999; Kawecki and Ebert 2004). Similarly, predictable changes in 63 

the environment through time can lead covariation between relevant traits and time (Levene, 64 

1953; Ewing 1979). Although correlations between environment and traits (either in time or 65 

space) are indicative of selection, these patterns can be produced by non-adaptive processes 66 

such as migration, isolation by distance and range expansion (Wright 1943; Vasemägi 2006; 67 

Excoffier et al. 2009; Duchen et al. 2013; Bergland et al. 2016). It is not trivial to identify the 68 

role of selection in diversifying traits, but a promising approach might be to jointly model 69 

changes across space and time. 70 

Drosophila melanogaster is a uniquely suited to study both spatial and temporal 71 

adaptation. These sub-Saharan flies recently invaded most of the world (David and Capy 72 

1988), and adaptations at the phenotypic and genotypic levels evolved in response to the 73 

colonization of new habitats (Mettler et al. 1977; Knibb 1982; Oakeshott et al. 1982; David 74 

and Capy 1988; Schmidt et al. 2000; de Jong and Bochdanovits 2003; Sezgin et al. 2004). 75 

Many traits, polymorphisms and inversions were observed to covary with latitude (also called 76 

clinal) in natural fly populations (Hoffmann et al. 2002; Hoffmann and Weeks 2007; Turner 77 

et al. 2008; Paaby et al. 2010; Yukilevich et al. 2010; Reinhardt et al. 2014; Schrider et al. 78 

2016). For instance, flies from colder environments are darker (David et al. 1985), bigger 79 

(Arthur et al. 2008) and show higher incidence of reproductive diapause than flies from lower 80 

latitudes (Schmidt et al. 2005).  81 
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In higher latitudes, fly populations started to experience dramatic cyclical changes in 82 

the environment through seasons. Given these flies have multiple generations per year, 83 

differential fitness across seasons could theoretically lead to temporal adaptations (Levene 84 

1953; Ewing 1979). Traits that favor rapid reproduction in the summer can be particularly 85 

different to those which favor endurance in the winter (Behrman et al. 2015). Concordant 86 

with this hypothesis, chromosomal inversions in D. pseudoobscura were observed to cycle 87 

with seasons (Dobzhansky 1943). In D. melanogaster, flies collected in the spring are more 88 

tolerant to stress (Behrman et al. 2015), show higher diapause inducibility (Schmidt and 89 

Conde 2006), have increased immune function (Behrman et al. 2018) and have different 90 

cuticular hydrocarbon profiles than those collected in the fall (Rajpurohit et al. 2017). 91 

Genome-wide analyses have identified polymorphisms and inversions that oscillate in 92 

seasonal timescales in several localities in the United States and Europe (Bergland et al. 93 

2014; Kapun et al. 2016; Machado et al. 2021). However, a recent analysis suggested 94 

seasonal fluctuations in allele frequencies seems small and temporal structure independent of 95 

seasons may be more important in this system (Buffalo and Coop 2019).  96 

It is challenging to characterize the role of selection in producing spatial or seasonal 97 

change in allele frequencies. At the spatial scale, the axis of demography and environmental 98 

heterogeneity are confounded in this system (i.e., migration and environment are structured 99 

along the south-north axis) (Caracristi and Schlotterer 2003; Yukilevich and True 2008; 100 

Duchen et al. 2013; Kao et al. 2015). At the seasonal scale, the magnitude of allele frequency 101 

change with seasons is expected to be rather small, and stochastic environmental events not 102 

aligned with seasons complicate inferences even further (Machado et al. 2021). However, we 103 

can gain power by jointly modelling latitudinal and seasonal changes (Cogni et al. 2015). 104 

 Two adaptive mechanisms are expected to induce correlations between clinal and 105 

seasonal fluctuations in allele frequencies. First, the environment changes similarly with 106 
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latitude and through seasons (at least with respect to temperature). Second, the onset of 107 

spring changes with latitude, and so seasonal changes in polymorphisms alone could produce 108 

clinal variation, a mechanism termed seasonal phase clines (Roff 1980; Rhomberg and Singh 109 

1986). The effects of neutral, demographic processes which can confound interpretation are 110 

expected to be much less pronounced because of the short time scale of seasonal processes. 111 

Thus, parallel latitudinal and seasonal variation in a trait is strong evidence in favor of natural 112 

selection (Bergland et al. 2014; Cogni et al. 2015). 113 

Some empirical studies have found parallelism between clinal and seasonal variation 114 

in D. melanogaster (Bergland et al. 2014; Cogni et al. 2015; Kapun et al. 2016; Behrman et 115 

al. 2018; Machado et al. 2021). The prevalence of reproductive diapause, a phenotype tightly 116 

linked to adaptation to cold environments, varies both with latitude and seasons (Schmidt et 117 

al. 2005). Cogni et al. (2014) found that a variant in the couchpotato gene, which encodes 118 

diapause inducibility, also varied predictably with latitude and across seasons: the diapause-119 

inducing allele is positively correlated with latitude and its frequency increases from summer 120 

into winter. Cogni et al. (2015) found an association between clinal and seasonal change in 121 

central metabolic genes, which are likely important drivers of climatic adaptation. Kapun et 122 

al. (2016) found that a few cosmopolitan inversions thought to be involved with climate 123 

adaptation also vary in parallel with latitude and through seasons. 124 

 Here, we test whether parallel clinal and seasonal variation is pervasive across the D. 125 

melanogaster genome. It is essential we further our understanding of the genomic basis to 126 

climate adaptation in D. melanogaster, so that we can identify possible mechanisms which 127 

allow adaptation over such short time scales (Wittmann et al. 2017). A parallel and 128 

independent study also investigated the relationship between clinal and seasonal change in D. 129 

melanogaster (Machado et al. 2021). Nevertheless, our work is fundamentally different from 130 

previous studies because (i) we use seasonal samples collected over six years, as opposed to 131 
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at most three years in other studies; (ii) our samples are all from the same location in 132 

Pennsylvania, where seasonality is strong and phenotypes are known to cycle seasonally, and 133 

where there is little evidence of population substructure or large scale migrations events 134 

(Schmidt and Conde 2006; Behrman et al. 2015; Rajpurohit et al. 2017; Behrman et al. 135 

2018); (iii) we analyze how the correlation between clinal and seasonal variation changes 136 

across genomic regions which differ in density of functional sites, allowing us to better 137 

disentangle demography and selection; and (iv) we dissect the role of linkage disequilibrium 138 

in driving these patterns. 139 

Material and Methods 140 

Population samples 141 

We analyzed 20 samples from seven locations along the United States east coast, collected by 142 

(Bergland et al. 2014) (10 samples), and (Machado et al. 2021) (10 samples) (see Table S1). 143 

The samples were based on pools of wild-caught individuals. We decided to not include 144 

previously collected samples from Maine because they were collected in the fall, whereas all 145 

of our other samples were collected in the spring, and we also did not include the DGRP 146 

sample from North Carolina, as it is hard to ascertain when they were obtained (Fabian et al. 147 

2012; Mackay et al. 2012; Bergland et al. 2014). The Linvilla (Pennsylvania) population was 148 

sampled extensively from 2009 to 2015 (six spring, seven fall samples), and was therefore 149 

used in our analysis of seasonal variation. One of the Pennsylvania samples was exclusively 150 

used for the clinal analysis to minimize dependency between our clinal and seasonal sets. We 151 

also replicated our clinal analysis using data from four Australian samples (Anderson et al. 152 

2005; Kolaczkowski et al. 2011). All the data used in this project are available on the NCBI 153 

Short Read Archive (BioProject accession numbers PRJNA256231, PRJNA308584 and 154 

NCBI Sequence Read Archive SRA012285.16). 155 
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Mapping and processing of sequencing data 156 

Raw, paired-end reads were mapped against the FlyBase D. melanogaster (r6.15) and D. 157 

simulans (r2.02) reference genomes (Gramates et al. 2017) using BBSplit from the BBMap 158 

suite (https://sourceforge.net/projects/bbmap/; version from February 11, 2019). We removed 159 

any reads that preferentially mapped to D. simulans to mitigate effects of contamination (the 160 

proportion of reads preferentially mapping to D. simulans was minimal, never exceeding 161 

3%). Then, reads were remapped to D. melanogaster reference genome using bwa (MEM 162 

algorithm) version 0.7.15 (Li and Durbin 2010). Files were converted from SAM to BAM 163 

format using Picard Tools (http://broadinstitute.github.io/picard). PCR duplicates were 164 

marked and removed using Picard Tools and local realignment around indels was performed 165 

using GATK version 3.7 (McKenna et al. 2010). Single nucleotide polymorphisms (SNPs) 166 

and indels were called using CRISP with default parameters (Bansal et al. 2016). 167 

We applied several filters to ensure that the identified SNPs were not artifacts. SNPs 168 

in repetitive regions, identified using the RepeatMasker library for D. melanogaster (obtained 169 

from http://www.repeatmasker.org), and SNPs within 5bp of polymorphic indels were 170 

removed from our analyses. SNPs with mean minor allele frequency in the clinal and 171 

seasonal samples less than 5%, with minimum per-population coverage less than 10x (or 4x 172 

for the Australian samples) or maximum per-population coverage greater than the 99th 173 

quantile were excluded from our analyses. We only considered bi-allelic, autosomal SNPs in 174 

our downstream analyses. Functional annotations for the identified SNPs obtained using 175 

SNPeff version 4.3o (Cingolani et al. 2012).  176 

Clinal and seasonal changes in allele frequency 177 

The allele frequencies were calculated by diving the number of reads supporting each allele, 178 

divided by the total number of reads. Because pool-seq data contain an additional component 179 

of error due to sampling, we did not weight the allele frequencies by total depth at each site; 180 
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instead we used the effective sample size, or effective number of chromosomes (𝑁!), as the 181 

denominator. This metric can be computed as follows:  182 

𝑁! = #
1
𝐷 	+

1
𝑁"
(
#$

 183 

where 𝑁"  is the number of chromosomes in the pool and 𝐷 is the read depth at that site 184 

(Kolaczkowski et al. 2011; Feder et al. 2012; Bergland et al. 2014). 185 

To assess latitudinal variation, we fitted a binomial linear model of allele frequency 186 

against latitude for each site. Similarly, we regressed allele frequency at each site against a 187 

season dummy variable (June and July were encoded as Spring, and September, October and 188 

November as Fall) and included the year of sampling as a covariate. For either regression, we 189 

required the variant to be polymorphic in at least two samples. Further, we computed 190 

pairwise FST for all our samples using the R package poolfstat (Hivert et al., 2018). 191 

We defined clinal and seasonal SNPs using an outlier approach, because we do not 192 

have an adequate genome-wide null distribution to compare our estimates. We considered 193 

that SNPs were outliers if their regression P-value fell in the bottom 1% (or 5%) of the 194 

distribution. 195 

Correlation between clinal and seasonal variation 196 

Our main goal was to evaluate whether clinal and seasonal change are correlated, pooling 197 

information across the thousands of polymorphisms that segregate in natural populations. To 198 

do so, we regressed the slopes of the clinal regressions and the slope of the seasonal 199 

regressions. The regression line was fit using Huber’s M estimator to improve robustness to 200 

outliers. Before fitting the regression, we z-normalized the clinal and seasonal slopes, so the 201 

slope of the regression of clinal and seasonal change is actually the same as the correlation. 202 

 We also investigated how the correlation between clinal and seasonal change differed 203 

across genomic regions. For that, we used a dummy variable with annotations as a covariate. 204 
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The regions analyzed were exon, intron, 5' UTR, 3' UTR, upstream, downstream intergenic 205 

and splice. There are some chromosomal inversions segregating in the populations we 206 

studied, and they are known to contribute to adaptation (Wright and Dobzhansky 1946; 207 

García-Vázquez and Sánchez-Refusta 1988; Kapun et al. 2014). We annotated SNPs 208 

surrounding (2Mb) common inversion breakpoints and added inversion status as a covariate 209 

in the linear model (Corbett-Detig and Hartl 2012). 210 

To confirm our results are robust to potential model misspecifications, we 211 

implemented a permutation test in which we rerun the regressions for each SNP using 212 

shuffled season and latitude labels 2,000 times. The same procedure was implemented for 213 

most of the statistical tests, except where indicated otherwise.  214 

Enrichment tests 215 

We tested for enrichment of genic classes using our sets of clinal and seasonal SNPs using 216 

Fisher’s exact test for each genic region and statistic. To control for confounders, such as 217 

read depth and allele frequency variation, we shuffled the season and latitude labels and reran 218 

the generalized regressions. Using the P-values obtained from regressions in which season 219 

and latitude labels were shuffled, we defined, for each iteration, lists of top clinal and 220 

seasonal SNPs. Then, we calculated the enrichment of each genic class using Fisher’s exact 221 

test. To obtain a P-value for an enrichment of a given genic class, we compared the observed 222 

odds ratio in the actual dataset to the distribution of odds ratios observed for datasets in 223 

which season and latitude labels were shuffled.  224 

Mitigating the impact of linkage disequilibrium 225 

Selection at one site affects genetic variation at nearby, linked neutral sites (Smith and Haigh 226 

1974). Because we assume that sites are independent in our models, the indirect effects of 227 

selection can inflate the magnitude of the patterns we investigated. To test the effect of 228 

linkage disequilibrium (LD) in our outlier analyses, we plotted P-values against distance to a 229 
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top SNP. We then smoothed the scatterplot using cubic splines as implemented in ggplot2 230 

(Wickham 2016). To test the effect of linkage on the relationship between clinal and seasonal 231 

variation, we implemented a thinning approach. Sampling one SNP per L base pairs one 232 

thousand times, we constructed sets of SNPs with minimized dependency, where L ranged 233 

from 1 to 20kb. For each of these sets for a given L, we computed the correlation between 234 

clinal and seasonal slopes, and compared the distribution of the thinned regression 235 

coefficients to the coefficients we obtained using all SNPs.   236 

All statistical analyses were performed in R 3.5.0 (R Core Team 2018) and can be 237 

found at gitlab.com/mufernando/clinal_sea.git. 238 

Results 239 

We assembled 20 D. melanogaster population samples collected from seven localities across 240 

multiple years in the east coast of the United States. All of these samples are the result of a 241 

collaborative effort of many researchers from a consortium, the DrosRTEC (Bergland et al. 242 

2014; Machado et al. 2021). Seven of our samples span from Florida to Massachusetts and 243 

together comprise our clinal set. The seasonal samples were collected in Pennsylvania in the 244 

spring (6 samples collected in June or July) and in the fall (6 samples collected in September, 245 

October or November). For each sample, a median of 55 individuals (with a range of 33 to 246 

116) was pooled and resequenced to an average 75x coverage (ranging from 17 to 215). We 247 

also used four clinal samples from the Australia (Anderson et al. 2005; Kolaczkowski et al. 248 

2011). More details about the samples can be found on Table S1 (also see Machado et al. 249 

2021; Bergland et al. 2014). After all the filtering steps, we identified 798,176 common 250 

autosomal SNPs, which were used in our downstream analyses. 251 

Allele frequency changes with latitude, seasons and years 252 
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Latitude explains much of allele frequency variation along the surveyed populations, as there 253 

is an excess of low GLM P-value SNPs (Fig. 1A). The mean absolute difference in allele 254 

frequency between the ends of the clines is 9.2%. Seasons, on the other hand, explain less of 255 

the variation in allele frequency. There is only a minor excess of low GLM P-value SNPs 256 

(Fig. 1B) and the mean absolute difference in allele frequency between seasons is 2.6%. We 257 

also found that year of sampling is a good predictor of allele frequency change (in 258 

Pennsylvania), more so than seasons, given there is a huge excess of low GLM P-values (Fig. 259 

1C). 260 

 261 

Figure 1. Distribution of P-values from the generalized linear models of allele frequency and 262 
latitude, and allele frequency and seasons/years.  263 
 264 
 Our generalized linear models do not account for dependency between samples, 265 

which can be a problem when regressing allele frequency on seasons. To investigate whether 266 

this could be an issue, we performed Durbin-Watson tests for autocorrelation in the residuals 267 

of the seasonal regressions using Julian days as the time variable. There is no excess of low 268 

P-values (Fig. S1), and the season P-values are not correlated with Durbin-Watson test P-269 

value (𝑃 = 0.77). This indicates that the assumption of independency is being met for most 270 
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variants, and that autocorrelation is not artificially creating patterns of seasonality in allele 271 

frequency. 272 

Given we do not have enough information to build an appropriate null distribution to 273 

calibrate our P-values, we sought to demonstrate that top significant clinal and seasonal SNPs 274 

are enriched for functional variants, which are more likely to contribute to adaptation. 275 

Latitudinal SNPs are more likely to be in exonic and UTR 3' regions (Fig. 2A), whereas 276 

seasonal SNPs are enriched for exonic, UTR 3’ and UTR 5’ regions (Fig. 2B). Further, top 277 

latitudinal and seasonal SNPs seem to be underrepresented within upstream and downstream 278 

regions. Similar enrichment patterns have been observed for both top clinal and seasonal 279 

(Kolaczowski et al. 2011; Fabian et al. 2012,; Bergland et al. 2014; Machado et al. 2016, 280 

2021). Using a 5% cutoff, our enrichment results are largely replicated (Fig. S2).  281 

 282 

Figure 2. Top SNPs are enriched for functionally relevant classes. Enrichment of top 1% 283 
SNPs in each genic class for A) latitudinal P-value and B) seasonal P-value. The histograms 284 
show the distribution of odds ratios when latitude and season labels were permuted, and the 285 
vertical bars show the observed odds ratios.  286 

Clinal variation is related to seasonal variation 287 

A clinal pattern can arise solely as a result of demographic processes, such as isolation by 288 

distance and admixture (Duchen et al. 2013; Kao et al. 2015; Bergland et al. 2016). Although 289 
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seasonality is less affected by such processes, seasonal change is less pronounced and more 290 

subject to stochastic changes in the environment, making it harder to detect seasonal change 291 

with precision. Here, we integrate both clinal and seasonal change estimates across a large 292 

number of SNPs in the genome. We expect the overall pattern that emerges to be informative 293 

of the relative role of natural selection, because selection is a plausible process to produce a 294 

pattern of clinal variation mirroring seasonal variation (Cogni et al. 2015).  295 

We found a significant negative correlation between clinal and seasonal regression 296 

coefficients (Fig. 3A, Table S2). The correlation is strongest for SNPs within exons, and the 297 

weakest for unclassified SNPs and those within intergenic regions (Fig. 3A; Table S3). 298 

Nonetheless, the correlation is different than zero for all classes (except for the unclassified), 299 

what would be consistent either with pervasive linked selection or widespread distribution of 300 

variants that are important for adaptation, even within non-coding regions. Qualitatively 301 

similar results were replicated using a different minor allele frequency cutoff and using 302 

samples from Maine, which were obtained the summer – in contrast to all the other clinal 303 

populations that were sampled in the fall (Fig. S3B-C). 304 
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 305 

Figure 3. Clinal change parallels seasonal change. Correlation between clinal change and 306 
seasonal change for each genic class (A) and by inversion breakpoint (B). (C) Association 307 
between top latitudinal and seasonal variants for different P-value cutoffs. Gray histograms 308 
are the null distribution of the correlation (after permuting the latitude and season labels) and 309 
vertical bars represent the observed correlation. 310 
 311 

Given that previous studies have demonstrated the importance of cosmopolitan 312 

inversions in climatic adaptation (e.g., Kapun et al. 2016), we looked at the correlation 313 

between clinal and seasonal change near common cosmopolitan inversions breakpoints. We 314 

found that the correlation between clinal and seasonal change is strongest near the 315 

breakpoints of inversions In(2R)NS, In(3R)P and In(3L)P (Fig. 3B, Table S4). Nevertheless, 316 

the pattern is still strong outside these regions, indicating our main results are not purely 317 

driven by frequency changes of inversions. 318 

Another way of testing for parallelism between clinal and seasonal change is by 319 

testing if clinal SNPs are more likely to be seasonal (and vice-versa). We observed that clinal 320 
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SNPs are enriched for seasonal SNPs (Fig. 3C). The enrichment increases with more 321 

stringent lower P-value quantile cut-offs, as we would expect if even strictly non-significant 322 

variants were informative of the role of selection. 323 

We also confirmed our main finding, that clinal and seasonal change are correlated 324 

using clinal samples from Australia. To measure clinal change in Australia, we only used 325 

four low coverage samples in Australia, two for each of low and high latitude locations. 326 

There is a negative correlation between clinal variation in Australia and seasonal variation in 327 

Pennsylvania that, although minor, is significant (Fig. S3C).  328 

The effects of linkage disequilibrium on clinal and seasonal variation 329 

Variation at one site is linked to variation at other sites, and selection will increase this 330 

dependency (Smith and Haigh 1974). First, we assessed if latitudinal and seasonal P-values, 331 

were dependent on how distant a SNP was from our top 1% SNPs. We show that both 332 

statistics are dependent on distance from the outlier SNPs (Fig. 4A, B), but the effect 333 

virtually disappears after 5kb.  334 

We assessed the impact of linkage on the correlation between clinal and seasonal 335 

change by implementing a thinning approach. First, we tested how the genome-wide 336 

regression estimate varied with changing window sizes. The effect of non-independency of 337 

variants on the correlation is rather small (Fig. 4C) and the genome-wide correlation remains 338 

significantly different from zero (P= 0.001; Fig. 4D). The thinning did not significantly 339 

reduce the signal for many regions, but the strength of the signal within splicing, UTR 5’, 340 

upstream, downstream and intergenic regions decreased and did not remain significantly 341 

different from zero (Fig. 4D). It seems that most of the signal coming from those regions are 342 

due to the linked effects of selection.  343 
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 344 

Figure 4. Effects of linkage disequilibrium. The mean (A) latitudinal P-value and (B) 345 
seasonal P-value depend on distance to the respective top 1% outliers. The correlation 346 
between clinal and seasonal variation is affected by dependency among SNPs. C) the 347 
correlation between clinal and seasonal variation changes with the size of the thinning 348 
window. D) comparison among original estimates (arrows) and values obtained after thinning 349 
using a window size of 5kb (histogram). Histograms show the distributions across sampled 350 
thinned datasets, and the black arrows point to the original estimates. 351 

Biological interpretation of the correlation between clinal and seasonal change 352 

Although the negative correlation between clinal and seasonal change indicates a role for 353 

selection, it is unclear how strongly parallel selection would need to be to generate this 354 

correlation. Intuitively, we expect the correlation to be rather small, as the majority of the 355 

variants are likely not under parallel selection. Below, we derive how to get a rough estimate 356 

of the number of SNPs under parallel selection from the observed correlation. 357 

 Suppose that for a proportion 𝑝 of the SNPs the clinal and seasonal regression 358 

coefficients are correlated due to parallel selection, whereas for the remainder of the SNPs 359 

they are independent. What genome-wide correlation would we expect? To find this, we can 360 
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write (𝑍$, 𝑍%) for the two z-normalized regression coefficients of a randomly chosen SNP. 361 

SNPs can be either under parallel selection or not, so we define (𝑋$, 𝑋%) and (𝑌$, 𝑌%) as 362 

random draws from the z-normalized regression coefficients for SNPs under parallel 363 

selection and not, respectively. Then, (𝑍$, 𝑍%) = (𝑋$, 𝑋%) with probability 𝑝, and (𝑍$, 𝑍%) =364 

(𝑌$, 𝑌%) otherwise. To find the cor(𝑍$, 𝑍%), note that since 𝑍$ and 𝑍% have mean 0 and 365 

standard deviation 1, cor(𝑍$, 𝑍%) = 𝐸[𝑍$𝑍%] (and similarly for 𝑋  and 𝑌 ). So, 366 

cor(𝑍$, 𝑍%) = 𝑝	cor(𝑋$, 𝑋%) + (1 − 𝑝)	cor(𝑌$, 𝑌%) using the law of total expectation.  367 

For the subset of SNPs under parallel selection, we suppose cor(𝑋$, 𝑋%) = 𝜌 and for 368 

the remainder of the SNPs we suppose no correlation, or cor(𝑌$, 𝑌%) = 0. Then the genome-369 

wide correlation is cor(𝑍$, 𝑍%) = 𝑝	𝜌. Here, 𝑝 is the proportion of SNPs under parallel 370 

selection and it can be estimated as	𝑝 = cor(𝑍$, 𝑍%) ÷ 𝜌. We do not know what the 371 

correlation	𝜌 between clinal and seasonal change should be for the variants under selection, 372 

but since it is expected to be −1 < 𝜌 < 0, estimating 𝑝 as −cor(𝑍$, 𝑍%) is conservative (also 373 

see Fig. S4). Recall we assume 𝜌 is negative because the climate becomes colder in higher 374 

latitudes, but it gets warmer from spring to fall. 375 

Note our model has a few assumptions: (i) our measures of clinal and seasonal change 376 

have mean zero and variance one, which is met given we are dealing with the z-normalized 377 

regression coefficients and (ii) all polymorphisms are independent from one another. 378 

Accounting for linkage disequilibrium is notoriously complicated in genomic analyses, 379 

especially because we cannot accurately measure LD from pooled sequencing (Feder et al. 380 

2012). However, in the previous section we showed that we are able to mitigate the effects of 381 

LD on the correlation between clinal and seasonal change using a thinning approach. 382 

We can now readily interpret our observed correlations as proportion of SNPs under 383 

parallel selection (ignoring the negative sign). Using our thinned estimates, the patterns 384 

uncovered here are consistent with 3.78% of the common, autosomal variants being under 385 
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parallel selection. It is curious our estimated proportion is close to previous estimates for the 386 

proportion of clinal (3.7% in Machado et al. 2015) and seasonal SNPs (~4% in Machado et 387 

al. 2021), both of which were obtained using different signals (using regression analyses P-388 

values, as opposed to correlations between clinal and seasonal change). 389 

Discussion 390 

Clinal patterns have been observed in both phenotypic and genotypic traits in many different 391 

species (Hancock et al. 2008; Baxter et al. 2010; Adrion et al. 2015). Especially in systems in 392 

which there is collinearity between the axis of gene flow and environmental heterogeneity, 393 

disentangling the contribution of selection and demography in producing clines is not trivial.  394 

Detecting seasonal cycling in allele frequencies is also challenging, mostly because the effect 395 

size is likely to be small and the environment may change unpredictably within seasons. The 396 

environment changes similarly with latitude and through seasons, so by jointly modelling 397 

spatial and temporal changes in allele frequency it may be possible to disentangle the role of 398 

adaptive and non-adaptive processes. Here, we showed that clinal and seasonal changes are 399 

correlated across the D. melanogaster genome, suggesting natural selection plays an 400 

important role in structuring allele frequencies over latitude and seasons. 401 

Demographic processes are expected to impact the genome as a whole, but the effects 402 

of selection are stronger in regions with higher densities of functional sites (Andolfatto 403 

2005). Consistent with this expectation, we found that correlation between clinal and 404 

seasonal change varies across genomic regions, being stronger in coding regions (Fig. 2A,C). 405 

We derived a way to biologically interpret our statistic of interest, the correlation between 406 

clinal and seasonal change. We found that allele frequency changes in roughly 3.7% of 407 

common, autosomal SNPs could be driven by natural selection. 408 

Because we expect selection to intensify linkage disequilibrium, the correlation 409 

between clinal and seasonal variation could be mostly driven by a few large effect loci. 410 
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Segregating inversions are known to underlie much of climatic adaptation in D. melanogaster 411 

(Fabian et al. 2012, Kapun et al. 2014, 2016), therefore we investigated how much of our 412 

signal depended on inversion status. We found the correlation between clinal and seasonal 413 

change to be stronger surrounding common inversions, highlighting the role of selection in 414 

driving frequency changes in common, cosmopolitan inversions in D. melanogaster. The 415 

correlation between clinal and seasonal change is particularly high for SNPs near 416 

In(3R)Payne breakpoints, an inversion known to be associated to phenotypes relevant to 417 

adaptation to cooler climates (reviewed in Kapun et al. 2019). Nevertheless, clinal and 418 

seasonal change are significantly correlated for SNPs far from inversion breakpoints, 419 

suggesting loci involved in adaptation at the spatial and seasonal scales are not restricted to 420 

inversions. We also controlled for autocorrelation along chromosomes and found that the 421 

effects of linkage disequilibrium are rather strong, but they decay rapidly and seem to return 422 

to background levels after 5kb (Fig. 3A-C). Indeed, the correlation between clinal and 423 

seasonal change remains rather strong even after accounting for LD, suggesting parallel 424 

selection acts pervasively across the genome.  425 

Population substructure and migration could be causing seasonal variation in allele 426 

frequency in D. melanogaster. For example, rural populations of D. melanogaster in 427 

temperate regions could collapse during the winter and recover from spring to fall. However, 428 

reproductive diapause cycles in orchards and reaches high frequencies early in the spring, 429 

whereas its frequency in urban fruit markets in Philadelphia is much lower (Schmidt and 430 

Conde 2006). Another possibility is that seasonal variation is produced by migration of flies 431 

from the south in the summer, and from the north in the winter. There is little evidence of 432 

long-range migration in D. melanogaster, though this process seems important in D. simulans 433 

(Bergland et al. 2014; Machado et al. 2016). D. melanogaster have been shown to survive 434 

and reproduce during winter season in temperate regions, so flies can withstand a harsh 435 
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winter season and be subject to selection (Mitrovski and Hoffmann 2001; Hoffmann et al. 436 

2003, Rudman et al. 2019). These seasonal patterns have been replicated in many populations 437 

across North America and Europe (Machado et al. 2021), bolstering the argument for 438 

seasonal adaptation. Given the patterns we uncovered here are the result of subtle, but 439 

repeatable changes across multiple seasons, it is hard to imagine that selection is not the main 440 

causing force, even if it is acting to maintain cryptic population structure within each 441 

location. 442 

Differential admixture from Europe and Africa to the ends of the clines cannot 443 

plausibly explain the parallel clinal and repeatably seasonal changes in allele frequencies 444 

(Duchen et al. 2013; Kao et al. 2015; Bergland et al. 2016), because variation over seasonal 445 

time scales is less affected by broader scale migration patterns. Further, the evidence for 446 

secondary contact in Australia is quite weak (see Bergland et al. 2016), but we show that 447 

clinal variation in Australia is correlated with seasonal variation in Pennsylvania (Fig. S3). 448 

Secondary contact may have contributed ancestral variation, which has since been selectively 449 

sorted along the cline (Flatt 2016). Consistent with this interpretation that selection mediates 450 

admixture in D. melanogaster,  it has been found that the proportion of African ancestry is 451 

lower in low recombination regions (Pool 2015). 452 

An important mechanism that can cause clinal patterns has been neglected from 453 

recent discussions of clinal variation in Drosophila. The latitudinal variation on the onset of 454 

seasons can produce clines, a phenomenon termed “seasonal phase clines” (Roff 1980; 455 

Rhomberg and Singh 1986). Under this model, a correlation between clinal and seasonal 456 

change is expected. Our latitudinal samples were all collected within one month of difference 457 

(during the spring), and so our observations could be partially explained by differences in the 458 

seasonal phase. Our data does not allow for proper disentangling of seasonal phase clines 459 

from parallel environmental change but change on the onset of seasons alone cannot explain 460 
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our results. We found that latitude is usually a much better predictor of allele frequency 461 

differences (Fig. 1A-B), and the magnitude of change along the cline is much greater than 462 

what we found within a population across seasons (9.2% vs. 2.64%). We show that including 463 

Maine samples (which were obtained in the fall, in contrast to all other samples that were 464 

sampled in the spring) in our analyses does not meaningfully change our main results (Fig. 465 

S3). However, the rate of change (per degree of latitude) in allele frequency from Florida to 466 

Maine is smaller than the rate from Florida to Massachusetts. This could be due to 467 

differences in sampling year, but we also found the rate of change in frequency between 468 

Virginia and Maine to be smaller than the rate between Virginia and Massachusetts  (FL and 469 

ME were sampled in 2009, whereas VA and MA were sampled in 2012; Fig. S5).  We 470 

believe these differences are due to the shift in seasonal phase, as the samples from Maine 471 

were collected in the fall, but all other samples were collected in the spring. 472 

A recent study suggested the temporal changes in allele frequency reported in 473 

Bergland et al. (2014) is only weakly consistent with seasonal selection (Buffalo et al. 2019). 474 

Consecutive spring-fall pairs showed some signal of adaptation, but the effect was small and 475 

disappeared at larger timescales (same season but across different years). Similarly, Machado 476 

et al. 2021 found that when they flipped the season labels of some samples the seasonal 477 

model fit was greatly improved. Consistent with these observations, we found there is strong 478 

temporal structure across years (Fig. 1C) and the matrix of pairwise FST shows some strong 479 

and seemingly haphazard temporal events (e.g., consider the entries for PA_07_2010 and 480 

PA_07_2015 in Fig. S5). Here with an expanded seasonal set of samples, we show that the 481 

distribution of seasonal P-values is only slightly enriched for low P-values (Fig. 1B), but top 482 

seasonal SNPs are enriched for functional genic classes, when compared to datasets in which 483 

the season labels were permuted (Fig. 2B). These results highlight how difficult it is to find 484 

truly seasonal SNPs with current datasets. Once more comprehensive time series data is 485 
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available, environmental heterogeneity could be explored without the need for an imperfect 486 

proxy (such as seasons). 487 

Many species occur along spatially structured environments and show clinal variation 488 

in traits, so a question that remains open is: what is the role of selection in producing and 489 

maintaining these patterns? Seasonal variation is also ubiquitous, especially in temperate 490 

environments, so seasonal change could be an important feature of organisms that have 491 

multiple generations each year (Behrman et al. 2015). Here, we demonstrate that by 492 

integrating clinal and seasonal variation, we can discern the contributions of selection in 493 

driving allele frequency changes with the environment. Our empirical work suggests a 494 

considerable fraction of variants distributed across the genome underlie adaptation to 495 

environmental changes over space and time in D. melanogaster. Importantly, our findings, 496 

together with previous studies on seasonal adaptation in flies, are bound to challenge new 497 

theoretical developments on the mechanisms that are compatible with rapid and polygenic 498 

responses to changes in the environment (e.g., Wittmann et al. 2017). 499 

  500 
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Supplementary information 732 

 733 

Figure S1. Distribution of Durbin-Watson P-values. We tested whether there is 734 
autocorrelation in the residuals of the seasonal generalized linear models. 735 
 736 

 737 

Figure S2. Enrichment of top 5% SNPs in each genic class for A) latitudinal P-value, B) 738 
seasonal P-value. Histograms show the distribution of odds ratios when season labels were 739 
permuted, and the vertical bars indicated the observed odds ratio. 740 
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 741 

Figure S3. Correlation between clinal and seasonal change using A) 5% allele frequency 742 
cutoff (main results), B) latitudinal samples from Maine, which were collected in the summer 743 
and C) samples from Australia to calculate latitudinal change. 744 

 745 

Figure S4. Relationship between proportion of points linearly related (in comparison to 746 
points that are not related) and the correlation between two z-normalized variables. Each 747 
color represents a different assumed degree of linear relatedness (ranging from -1 to -0.1). 748 
Note how for a given estimated relationship between two variables, the slope we assume (-1) 749 
results in the smallest possible proportion of points linearly related, demonstrating that our 750 
test is conservative. 751 

Al
l

G
en

om
ic

 re
gi

on
In

ve
rs

io
n

Season slope

Season slope:Exon

Season slope:Intron

Season slope:Splice

Season slope:UTR_3

Season slope:UTR_5

Season slope:Downstream

Season slope:Upstream

Season slope:Intergenic

Season slope:Other

Season slope:In(2L)t

Season slope:In(2R)NS

Season slope:In(3L)P

Season slope:In(3R)P

Season slope:Outside

−0.15 −0.10 −0.05 0.00
Correlation between predictors and clinal change

1.00

1.05

1.10

1.15

1.20

0.1 0.2 0.3 0.4 0.5
P−value quantile cutoff

En
ric

hm
en

t o
f t

op
 c

lin
al

 a
nd

 s
ea

so
na

l S
N

Ps
 (O

R
)

A. US cline, 5% MAF

Al
l

G
en

om
ic

 re
gi

on
In

ve
rs

io
n

Season slope

Season slope:Exon

Season slope:Intron

Season slope:Splice

Season slope:UTR_3

Season slope:UTR_5

Season slope:Downstream

Season slope:Upstream

Season slope:Intergenic

Season slope:Other

Season slope:In(2L)t

Season slope:In(2R)NS

Season slope:In(3L)P

Season slope:In(3R)P

Season slope:Outside

−0.20 −0.15 −0.10 −0.05 0.00
Correlation between predictors and clinal change

1.00

1.05

1.10

1.15

1.20

0.1 0.2 0.3 0.4 0.5
P−value quantile cutoff

En
ric

hm
en

t o
f t

op
 c

lin
al

 a
nd

 s
ea

so
na

l S
N

Ps
 (O

R
)

A. US cline with ME, 5% MAF

Al
l

G
en

om
ic

 re
gi

on
In

ve
rs

io
n

Season slope

Season slope:Exon

Season slope:Intron

Season slope:Splice

Season slope:UTR_3

Season slope:UTR_5

Season slope:Downstream

Season slope:Upstream

Season slope:Intergenic

Season slope:Other

Season slope:In(2L)t

Season slope:In(2R)NS

Season slope:In(3L)P

Season slope:In(3R)P

Season slope:Outside

−0.02 −0.01 0.00
Correlation between predictors and clinal change

1.00

1.05

1.10

1.15

0.1 0.2 0.3 0.4 0.5
P−value quantile cutoff

En
ric

hm
en

t o
f t

op
 c

lin
al

 a
nd

 s
ea

so
na

l S
N

Ps
 (O

R
)

B. AU cline, 5% MAF

−0.20

−0.15

−0.10

−0.05

0.00

0.00 0.05 0.10 0.15 0.20
Proportion of points linearly related

Es
tim

at
ed

 re
la

tio
ns

hi
p 

be
tw

ee
n 

tw
o 

va
ria

bl
es

Slope
−1

−0.85

−0.7

−0.55

−0.4

−0.25

−0.1

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 8, 2021. ; https://doi.org/10.1101/2020.03.19.999011doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.19.999011
http://creativecommons.org/licenses/by-nc/4.0/


 

 

 752 

 753 

Figure S5. Rate of allele frequency differences between two populations (normalized by 754 
difference in latitude). Note the rates are smaller for comparisons involving the samples from 755 
Maine. FL: Florida (July 2008 and 2010), ME: Maine (October 2009), MA: Massachusetts 756 
(July 2012), VA: Virginia (July 2012). 757 
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 758 

Figure S6. Mean pairwise FST values for all US samples included in our main analyses. Refer 759 
to Table S1 for more information on each population. 760 
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Table S1. Information of the samples used in this study. 762 

Access
ion # 

Sample 
name 

Location Latit
ude 

Collect
ion 
date 

# 
Fli
es 

Medi
an 
depth 

Mo
nth 

Seas
on 

Seas
onal 
set 

Clin
al 
set 

SRR11
77951 

AU_LO1 Queensland, 
Australia 

16.90 2004 17 10     

SRR11
77952 

AU_LO2 Queensland, 
Australia 

16.90 2004 17 12     

SRR11
77953 

AU_HI1 Tasmania, 
Australia 

42.77 2004 15 10     

SRR11
77955 

AU_HI2 Tasmania, 
Australia 

42.77 2004 15 14     

SRR15
25685 

FL1 Homestead, 
FL 

25.47 Jul-08 39 59 7 Spri
ng 

0 1 

SRR15
25694 

FL2 Homestead, 
FL 

25.47 Jul-10 48 37 7 Spri
ng 

0 1 

SRR15
25698 

ME1 Bowdoinha
m, ME 

44.02 Oct-09 75 86 9 Fall 0 0 

SRR20
06283 

ME2 Bowdoinha
m, ME 

44.02 Oct-09 75 22 9 Fall 0 0 

SRR15
25695 

GA Hahira, GA 30.99 Jul-10 51 101 7 Spri
ng 

0 1 

SRR15
25696 

SC Euatwville, 
SC 

33.40 Jul-10 48 83 7 Spri
ng 

0 1 

SRR35
90551 

VA_07_2
012 

Charlotttesv
ille, VA 

38.03 Jul-12 69 70 7 Spri
ng 

0 1 

SRR39
39095 

PA_06_2
013 

Linvilla, PA 39.88 Jun-13 54 37 6 Spri
ng 

0 1 

SRR35
90557 

MA_07_
2012 

Lancaster, 
MA 

42.46 Jul-12 90 51 7 Spri
ng 

0 1 

SRR15
25768 

PA_07_2
009 

Linvilla, PA 39.53 Jul-09 55 186 7 Spri
ng 

1 0 

SRR15
25769 

PA_11_2
009 

Linvilla, PA 39.53 Nov-09 74 66 11 Fall 1 0 

SRR15
25770 

PA_07_2
010 

Linvilla, PA 39.53 Jul-10 11
6 

17 7 Spri
ng 

1 0 

SRR15
25771 

PA_11_2
010 

Linvilla, PA 39.53 Nov-10 33 76 11 Fall 1 0 

SRR15
25772 

PA_07_2
011 

Linvilla, PA 39.53 Jul-11 75 53 7 Spri
ng 

1 0 

SRR15
25773 

PA_10_2
011 

Linvilla, PA 39.53 Oct-10 47 74 10 Fall 1 0 

SRR35
90560 

PA_10_2
012 

Linvilla, PA 39.53 Oct-12 10
0 

25 10 Fall 1 0 

SRR35
90561 

PA_07_2
012 

Linvilla, PA 39.53 Jul-12 11
5 

59 7 Spri
ng 

1 0 

SRR35
90563 

PA_9_20
12 

Linvilla, PA 39.53 Sep-12 50 55 9 Fall 1 0 
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SRR39
39096 

PA_10_2
014 

Linvilla, PA 39.88 Oct-14 50 103 10 Fall 1 0 

SRR39
39097 

PA_06_2
014 

Linvilla, PA 39.88 Jun-14 92 68 6 Spri
ng 

1 0 

SRR39
39098 

PA_10_2
015 

Linvilla, PA 39.88 Oct-15 52 97 10 Fall 1 0 

SRR39
39099 

PA_07_2
015 

Linvilla, PA 39.88 Jul-15 74 215 7 Spri
ng 

1 0 

 763 

Table S2. Summary of a regression of z-normalized latitude regression coefficients against z-764 

normalized season regression coefficients genome-wide. CI stands for 95% confidence 765 

interval. 766 

  Latitudinal slope 

Predictors Estimates CI p 

Intercept 0.014 0.012 – 0.016 <0.001 

Seasonal slope -0.039 -0.042 – -0.037 <0.001 

Observations 798196 
 767 

Table S3. Summary of a regression of z-normalized latitude regression coefficients against z-768 

normalized season regression coefficients for each genic class. CI stands for 95% confidence 769 

interval. 770 

  Latitudinal slope 
Predictors Estimates CI p 

Intercept 0.014 0.011 – 0.016 <0.001 

Seasonal slope:Intergenic -0.029 -0.038 – -0.021 <0.001 

Seasonal slope:Exon -0.051 -0.058 – -0.044 <0.001 

Seasonal slope:Intron -0.046 -0.051 – -0.042 <0.001 

Seasonal slope:Downstream -0.037 -0.043 – -0.031 <0.001 

Seasonal slope:Upstream -0.036 -0.040 – -0.033 <0.001 

Seasonal slope:UTR_3 -0.046 -0.056 – -0.036 <0.001 

Seasonal slope:UTR_5 -0.045 -0.058 – -0.032 <0.001 
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Seasonal slope:Splice -0.049 -0.071 – -0.026 <0.001 

Seasonal slope:Other -0.004 -0.016 – 0.009 0.584 

Observations 798196 
 771 

Table S4. Summary of a regression of z-normalized latitude regression coefficients against z-772 

normalized season regression coefficients for each SNPs surrounding inversion breakpoints. 773 

CI stands for 95% confidence interval. 774 

  Latitudinal slope 
Predictors Estimates CI p 

Intercept 0.014 0.012 – 0.016 <0.001 

Seasonal slope:In(2L)t 0.004 -0.003 – 0.010 0.235 

Seasonal slope:In(2R)NS -0.020 -0.026 – -0.013 <0.001 

Seasonal slope:In(3L)P -0.069 -0.076 – -0.063 <0.001 

Seasonal slope:In(3R)P -0.173 -0.181 – -0.166 <0.001 

Seasonal slope:Outside -0.031 -0.033 – -0.028 <0.001 

Observations 798196 
 775 
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