
On the Execution Time of Programs in Stochastic Scheduling

Matheus Henrique Junqueira Saldanha1, Adriano Kamimura Suzuki1

1Institute of Mathematics and Computer Sciences
University of São Paulo – São Carlos, SP – Brazil

mhjsaldanha@gmail.com, suzuki@icmc.usp.br

Abstract. Scheduling appears frequently in distributed, cloud and high-perfor-
mance computing, as well as in embedded systems. Here, the execution time of
subtasks is the major factor influencing decision-making, and despite being ran-
dom variables they are majorly treated in the literature as being deterministic.
Our project intends to shed more light on the underlying distribution of execu-
tion times, attempting to verify: 1) if the usual assumption of normal distribution
is reasonable; 2) if there exist more suitable distribution families; and 3) if any-
thing can be inferred a priori by analyzing general aspects of the program. We
have modeled the problem and experimentally assessed distributions, showing
that they are often not normal. We suggest alternative distributions, which we
released as R packages, and propose estimators that ease parameter inference.
With this we hope to promote usage of stochastic scheduling by making it easier
for users to define distributions when requested.

1. Introduction

The execution time of programs is a key element in scheduling problems, which often ap-
pear in the context of cloud computing, distributed and parallel programming, as well as in
operating systems (especially real-time systems) [Tanenbaum and Bos 2015; Bittencourt
et al. 2012]. As will be discussed, despite being random variables, the randomness in
execution times appears to be neglected in the literature as most studies consider only the
average time to perform the scheduling [Bittencourt et al. 2012; Wilhelm et al. 2008] .
Some works also make use of variance information [Xavier and Annadurai 2019] , and
the few works that consider an underlying probability distribution either assume it as be-
ing normal or uniform, or require the user to provide such distribution by themselves
[Cai et al. 2017; Shestak et al. 2008] , which is a hard task. On top of that, the com-

plexity of computer architectures has been growing continuously, incorporating deeper
pipelines, larger cache hierarchies, more involved speculation and prediction techniques,
more levels of parallelism, and so forth [Hennessy and Patterson 2011]. Many of such
techniques contribute to increase the unpredictability of computer programs’ execution
times [Wilhelm et al. 2008], which poses a problem to scheduling and making programs
that can meet deadlines.

So far there has not been, to the best of our knowledge, a structured study on
whether these distribution assumptions are reasonable, or if using only mean and variance
incur loss of valuable information. This Scientific Initiation project aims mainly to fill
this lack of knowledge on execution time distributions. We attempt primarily to verify:

1. if the usual assumption of normal distribution of the execution times is reasonable;

2. if there exist distribution families that can better model execution times, and what
inference methods are most effective for them; and

3. if anything can be said a priori about the underlying distribution, by analyzing
general aspects of the program such as its control flow graph or whether it uses
mostly CPU, memory or disk.

By answering these questions, we mainly expect to contribute to the field of cloud com-
puting by establishing realistic assumptions for the distribution of execution times. These
could then be used by future studies for experimental purposes, instead of the usual choice
of normal or uniform distribution, consequently allowing more efficient scheduling algo-
rithms to be devised. We argue later, however, that our results may also be useful for
high-performance computing and real-time embedded systems. Finally, we also hope to
promote usage of probabilistic scheduling algorithms by providing guidelines for users to
define distributions to subroutines when requested.

We have thus far defined a model for the random variable T representing execution
times, and then performed experiments to collect samples of 1000 execution times of
three small programs in various machines. To assess the observed distribution, many
distribution families were fit to these experimental data by means of maximum likelihood
estimation (MLE), the results of which are presented in Section 3. During the process six
submodels were devised and (so far) four were tested to overcome difficulties with the
the MLE process (see Section 4); most of these submodels are not problem-specific and
might have relevance in many other problems of Statistics. Some distributions used were
not readily available in the R language, so we implemented them and released as three
official packages (see Section 5). The project was initially motivated by the student’s
(computer science undergraduate) desire to achieve a better understanding of Statistics,
but we hope to demonstrate in this paper that our results reached practical scientific value.
All steps of the project (conceptualization, literature review, execution of experiments,
software implementation, formal analysis etc) were carried out by the student with weekly
feedback and suggestions from the advisor.

2. Background and Related Work
Originally, cloud computing was the main target field to which this project would con-
tribute; it is defined as the use of outsourced computational resources on-demand in a
pay-per-use basis, and marks the latest evolution of IT infrastructure, which began with
centralized mainframes. It has been made feasible thanks to advances in distributed com-
puting, networking and techniques for virtualization [Vouk 2008; Tanenbaum and Bos
2015]. With the cloud, instead of buying powerful machines that might become idle most
of the time, businesses can leverage the necessary computational power from the cloud
solely for the time needed. It has also enabled wonderful things in the academia. For
example, the problem of protein structure prediction (PSP) is very computationally inten-
sive, but now online servers offered by universities and associated entities (e.g., [Drozdet-
skiy et al. 2015; Yang et al. 2015]1) can be used by biology and pharmacy researchers
around the world – even in countries where good computers are scarce – to get predic-
tions regarding the proteins they are researching. It is not surprising that this market is
growing, with a revenue of $150 billion dollars in the first half of 2019 [Synergy 2019].

1See also their websites http://www.compbio.dundee.ac.uk/jpred/ and https://zhanglab.ccmb.med.
umich.edu/I-TASSER/ (Access: Mar 14th 2020).

http://www.compbio.dundee.ac.uk/jpred/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/

The PSP situation above also serves as an example of problems that arise in cloud
computing. Assume multiple users request a prediction at the same time; the underlying
machine has multiple resources (CPU, memory, disk etc), and performing a prediction
uses all of them2, but not all at the same time. Ideally, we would like multiple predictions
to be run concurrently so as to maximize usage of all resources. Scheduling comes to
enable this. Formally, the problem is characterized by multiple directed acyclic graphs
(DAGs, called workflows in cloud computing) representing each program as a set of tasks
T1, . . . , Tn with edges representing data dependencies. The aim is to determine the opti-
mal way to execute them in the available processors in order to finish all programs in the
lowest possible time. This is known to be an NP-complete problem in many of its forms
[Ullman 1975], so it is often formulated as an optimization problem solved with heuristic
algorithms; usually, the tasks are seen as having an expected execution time [Panda and
Jana 2015; Zuo et al. 2015] possibly with an expected variance [Xavier and Annadurai
2019], or seen as having a computational cost in FLOPS [Shishido et al. 2018] that will
later be transformed into a deterministic expected time based on machine specifications.

The area of stochastic scheduling is responsible for using more statistical infor-
mation to perform the scheduling, and there has been some work in such subject. Li
and Antonio [1997] provide a general statistical framework for stochastic scheduling,
and served as a basis for subsequent works; for experimental purposes, they assumed
tasks have a normal distribution. Heuristic optimization methods whose objective func-
tion involve execution time probability distributions are presented in [Dogan and Ozguner
2004]. Shestak et al. [2008] proposes the use of confidence intervals, and Cai et al. [2017]
presents a method for simulating stochastic scheduling algorithms; both of these studies
require the user to provide the underlying probability distributions. A method for estimat-
ing an empirical probability density function for execution times is given in [Dong et al.
2010], which involves estimating histograms and, therefore, require a decent number of
available samples. Finally, Zheng and Sakellariou [2013] use Monte Carlo simulation
to overcome the mathematical difficulty of stochastic scheduling, but it also expects the
underlying probability distributions to be given, and for experimentation purposes they
assumed normal or uniform distributions.

Although the main focus was initially in scheduling for the cloud, it is worth com-
menting on two related problems that can benefit from the results presented here. One
is the area of real-time systems, in which programs whose response time is critical are
studied. In the specific case of hard real-time systems [Tanenbaum and Bos 2015] it is
crucial that deadlines be met, and failing to do so may result in casualties or other catas-
trophes (e.g., embedded systems within modern cars). To ensure that deadlines are met,
one has to determine the worst-case execution time (WCET) of the software in question;
this has been widely studied [e.g., David and Puaut 2004; Braams 2016; Ferdinand and
Heckmann 2004; Wilhelm et al. 2010; Li et al. 2007] and a survey on the topic is given by
Wilhelm et al. [2008]. Despite the abundance of existing work, none of them attempt to
reason about the general behavior of all programs (as this project is attempting to do), and
most assume distributions as being given by the user or determined through experiments
for a particular software. The second related area is that of high performance comput-

2One phase of structure prediction compares the given protein to a database of known protein folds, so
many prediction methods indeed make intensive use of disk.

ing in general, not only because parallel programs can often be described as a DAG of
tasks that should be scheduled, but also because this area involves comparing execution
times between the proposed accelerated approach and existing approaches. If execution
times are seen as random, these comparisons must be followed by a hypothesis test (as
done in [Kadioglu et al. 2011; Jindal and Bedi 2017; Saldanha and Souza 2019]), and the
underlying distribution defines the strength of the test; the usual t-test assumes normality
of the mean, and our results indicate that such approximation is reasonable.

3. Problem Modelling and Analysis

We assume the scenario of a program running on a time-sharing operating system (OS).
Therefore, the program P under study may be running concurrently with other programs
and daemons, and it may be interrupted occasionally by the OS. On a cloud computing
machine, it is safe to assume no daemons will be present. What remains is the effect of
other programs: if another program P ′ is running on a different CPU than P , then they
affect each other by competing for I/O resources such as disk; if P and P ′ are on different
cores of a CPU, they compete for access to memory and higher-level caches; if they are
on the same core (hyperthreading), they compete for low-level caches and pipeline slots
[Hennessy and Patterson 2011]. In any of these cases, the existence of other processes
may cause P to be preempted periodically, which also affects its execution time. On the
basis of such considerations, we model the time T of a program as being T = TP +N(n),
where TP is the time of the program on an idle machine, and N(n) is the noise caused by
n other programs running concurrently.

A priori determination of the underlying distributions of TP orN seems extremely
hard at first glance. We can expect the distribution of TP to depend a lot on the hardware
and on whether it is CPU-, memory- or I/O-intensive, and N to depend on the number
of concurrent processes and their types too. In order to assess the behavior of TP , we
implemented 3 programs, each exercising a particular portion of the hardware: 1) man-
delbrot set calculation, which exercises the CPU; 2) dijkstra’s algorithm, exercising
memory; and 3) and a database program that creates a table and then performs a number
of random insertions on it, ending with an all-rows retrieval. They were then executed
with at least 3 different input sizes and in 3 different machines3, yielding 1000 execution
time samples for each pair program-input-machine (a total of 37 sets). The machines in-
clude one AMD and two Intel processors, different brands of memory chips, as well as
two HD disks and two SSDs4. Finally, different probability distribution models were fit to
each of these 1000 sample sets through maximum likelihood estimation (MLE); the mod-
els used were Weibull (2p, i.e., 2 parameters), gamma (2p), generalized gamma (3p),
exponentiated Weibull (3p), normal (2p), truncated normal (2p), lognormal (2p), Ku-
maraswamy complementary Weibull geometric (Kw-CWG, 5p) [Afify et al. 2017] and
the odd log-logistic generalized gamma (OLL-GG, 4p) [Prataviera et al. 2017]. Op-
timization was done using the L-BFGS method and a grid of initial parameter values
(defined for each probability model). For illustration, Figure 1 shows an example of the
shape of each model after they are fit to one of the sample sets.

3One machine had both an HD and an SSD, so the database program was run twice on it.
4Details are at mjsaldanha.com/articles/2-exec-time, where all histograms generated during the experi-

ments are also presented. Experiment code is at github.com/matheushjs/ElfProbTET under codes-R/.

https://mjsaldanha.com/articles/2-exec-time
https://github.com/matheushjs/ElfProbTET

Figure 1. Example of MLE results. The histogram (equal on both sides) shows
1000 samples obtained by executing the database program (1500 insertions).

Initially, MLE performed poorly on the raw time samples, because their varying
(often large) distance from zero would require very different initial values for the opti-
mization to converge to a reasonable likelihood maximum. Our experience showed that
modelling the time as TP = c+T ′P , where c is the smallest time the machine might spend
executing the program, made MLE much more effective. However, the population mini-
mum c is not known, and must thus be estimated. This actually led to a whole new line of
investigation, which we discuss in Section 4. In this section we present results relative to
the most computationally cost-effective estimator we considered (ĉ = [1−(CV/logkn)]cs
as explained in Section 4). To assess goodness-of-fit, we used common metrics from the
Statistics field: Akaike (AIC), consistent Akaike (CAIC), Hannan-Quinn (HQIC) and
Bayesian (BIC) information criteria [Afify et al. 2017], each of which try to penalize
models with too many parameters to prevent overfitting; the maximized likelihood l̂ was
also used in the usual form5 −2l̂. Finally, we also 5-fold cross validated the −2l̂ metric,
by fitting the models in subsamples of size 800 and then calculating the metric in the
remaining 200. For all metrics, the lower its value the better the model fits the data.

Figure 2. Number of times each distribution model achieved the best fit (left) and
second-best fit (right). Darker cells mean higher values.

For each of the 37 sets of 1000 execution time samples, we counted how many
times each distribution model achieved the best and second-best fits under each metric,
which is presented in Figure 2. The figure shows that in general the OLL-GG model

5This form is merely so that it is directly comparable to the information criteria values.

performs very well, followed by Kw-CWG and lognormal. The exponentiated Weibull
rises a lot when considering the second-best scenario, making it a possible good candidate
too. Let us visualize this another way: for each of the 37 sample sets, consider how far
from OLL-GG each model’s cross validated metric was; that is, take Mmodel −MOLLGG

where Mmodel is the metric of the model in question6. For each model, this will generate
37 paired differences shown in Figure 3, with which we can compare the models among
themselves, and allows to answer one of the initial research questions: is it reasonable
to assume execution times as being normal? It does not seem so, as it had the worst
median and high variability. Even though it has one extra parameter, the Kw-CWG model
performed no better than OLL-GG; the extra parameter makes MLE more difficult and
lengthy, so we believe Kw-CWG should not be considered for execution times. Although
the exponentiated Weibull performed worse, it displayed small variability and not many
outliers; since it has one less parameter than OLL-GG, we believe it should be considered
for modelling execution times.

Figure 3. Paired differences of each model’s cross validated −2l̂ with the value
obtained by OLL-GG. Boxes are vertically sorted by their medians.

A few notes are pertinent here. First, the conclusions above do not change a lot
when considering any of the other collected metrics (e.g., AIC), nor when considering
only samples of one specific machine or one specific algorithm. Second, when consid-
ering one of the information criteria, the very negative outliers of Figure 3 do not occur;
this likely means that in two cases the OLL-GG model overfitted the data during the cross
validation, so it achieved a very poor performance on the unseen fold. Finally, gamma
was the best performing 2-parameter distribution family.

4. Devising Estimators for the Population Minimum
The biggest problem with modelling execution times as TP = c + T ′P is deciding the
value of c, which ideally would be the population minimum. Since the population is
not known, what value should be used as c? Our first attempt was to take the estimator
ĉ = min{x1, . . . , xn}, where xi form the sample. However, after subtracting ĉ one of
the samples becomes 0, which is a problem because some models (such as gamma and
Weibull) assign P (X = 0) = 0 to that single sample for a large range of their parameter
spaces. This makes the likelihood become constant at 0, thus making optimization impos-
sible. Arbitrarily taking r · cs with r < 1 failed to be useful simultaneously to all sets of
execution times, so we had to devise better estimators. The nearest field to this problem
is quantile estimation [Valk and Cai 2018; Takeuchi et al. 2006], but these estimators

6Taking the difference of log-likelihoods finds theoretical ground on Wilks’ theorem.

have limited usage for increasing likelihood values and minimizing computational cost;
the estimators presented below are intended to pursue these objectives.

It seems feasible to consider: 1) the populational minimum c is lower than the
sample’s cs; 2) we can expect the difference cs − c to be higher as the sample variance
increases; and 3) we can expect it to be lower as the sample size n increases. This led to
the estimator ĉ = [1− (CV/ logk n)]cs where CV is the coefficient of variation, a number
commonly in [0, 1] that measures variability in the samples, and k is an arbitrary basis for
the logarithm (k = 10 served well for our purposes). So we are multiplying the sample
minimum by a factor that will move it towards 0. The term (1 − CV) goes to 0 as the
variability increases; for example, if the variability is 78% our estimator would be 0.22cs
(ignoring the log for now). The logarithm serves to take the sample size into consider-
ation. Consider k = 10 and n = 20, then the estimator in the same example would be
0.40cs, and if n = 200 it would be 0.66cs. Although this estimator is consistent (tends to
the populational minimum as n→∞), we could not find a statistically-motivated way to
choose k. An alternative to this estimator is to add to each distribution an extra parameter
p representing the minimum, by defining g(x|θ, p) = f(x − p|θ), for x > c and 0 oth-
erwise7. We effectively end up with a novel distribution with an extra parameter that can
be estimated by maximum likelihood estimation (MLE). In 21 out of the 37 sample sets,
this solution led to better values for the likelihood, but made the estimation process more
difficult and lengthy due to the addition of one extra parameter. To illustrate, MLE for the
OLL-GG model takes an average of 43.5 seconds, and 33.0 without the extra parameter.

So far we have only performed experiments with the methods above; the estima-
tors described in the following will still be experimented with. The next estimator lever-
ages what is known about the empirical cumulative distribution function (cdf) Fn(x). The
Glivenko-Cantelli theorem proves its convergence to the real cdf F (x), and its rate of
convergence is given by (see [Massart 1990] for a proof):

P (sup
x
|Fn(x)− F (x)| > ε) ≤ 2 exp(−2nε2), (1)

which gives the probability of error on approximating F (x) by Fn(x). Suppose we toler-
ate ν chance of error, then we have:

2 exp(−2nε2) = ν =⇒ ε =

√
− ln(ν)

2n
,

and thus the following holds with probability of at least 1− ν:

sup
x
|Fn(x)− F (x)| ≤

√
− ln(ν/2)

2n
= β(ν, n),

and in particular, the probability of sampling an execution time lower than the sample
minimum cs is P (X < cs) = F (cs − ε) ≤ β(ν, n) since Fn(cs − ε) = 0 (with any
ε > 0). β(ν, n) therefore measures (it is an upper bound) how likely it is to sample a new
execution time that is lower than all the previous ones; if it is a low value, we expect cs to
be very near c. Consequently, we can substitute the previous arbitrary logarithm and use
the estimator ĉ = (1− β(ν, n))(1− CV)cs or just ĉ = (1− β(ν, n))cs.

7g can be proved to be a density function by integrating it over the real line, but we omit the proof here.

The last alternative comes from order statistics. If X1, . . . , Xn is an iid sample
from a known cdf F (x), then the minimum follows [DeGroot and Schervish 2012]:

P (min{X1, . . . , Xn} < x) = Fm(x) = 1− [1− F (x)]n (2)

where the main problem is that the real F (x) underlying execution times is unknown.
However, we can use Eq. (2) conditioned on the underlying distribution having a given
form, which is precisely what we do when using maximum likelihood estimation. If we
do this, F (x|ρ) is known given parameters ρ, and consequently so is Fm(x|ρ). Inverting
Fm(x|ρ) in Eq. (2) yields the quantile function F−1m (q|ρ) = F−1(1 − (1 − q)1/n|ρ), and
F−1m (0.5|ρ) gives the median of the sample minimum, which is a safe assumption for the
actual minimum obtained through sampling; following this reasoning, the sample should
be subtracted so that the obtained sample minimum cs coincides with c+F−1m (0.5|ρ). We
thus have our estimator:

ĉ = cs − F−1m (0.5|ρ),

which depends on the parameters ρ, so this should be incorporated in the MLE optimiza-
tion process itself; recall that our model is T = c + T ′, so at every iteration the new ĉ
must be calculated and subtracted from the samples (so what remains is T ′) and then the
likelihood is calculated again. The estimator for the first iteration can be chosen with any
of the other estimators presented.

5. Conclusions and Future Work
So far in this project, we have investigated the suitability of probability models for the
execution time of programs. The problem was analyzed, and then influencing factors and
possible problems were identified, and finally a model T = TP + N(n) was proposed
(see Section 3). Thus far only the TP component has been studied: experiments with
sample programs were performed in multiple machines, and the resulting execution times
were extensively studied. Some of our initial research questions have been answered to
some extent: 1) according to the experiments, assuming execution times as being normal
does not seem reasonable; and 2) experiments indicate that the OLL-GG and the expo-
nentiated Weibull (and possibly gamma) distributions work well for modelling execution
times, and we are currently studying how to best cope with the problem of estimating the
populational minimum (for the general problem, not just to our case), with the estimators
described in Section 4. We recognize that the answer to the first question is limited in that
we do not yet answer “how much” loss is incurred by assuming a normal distribution in-
stead of one of the proposed ones; we hope to soon simulate scheduling algorithms using
each of these distributions, and assess the practical differences in performance. During
the project we also published three packages in the official R public repository (CRAN):
ggamma, ollggamma and elfDistr, each of which contains density, cumulative density
and quantile functions, as well as a random number generator for distributions we needed
but were not available or were not efficiently implemented.

The third research question remains to be answered. We noticed that the distribu-
tion of execution times might be tightly related to its underlying control flow graph (CFG)
as long as the nodes in the graph are sufficiently coarse so that their execution times are
independent from each other. Our hypothesis is that if the time variance of each node is

https://CRAN.R-project.org/package=ggamma
https://CRAN.R-project.org/package=ollggamma
https://CRAN.R-project.org/package=elfDistr

limited, and if the nodes are executed a fair number of times (e.g., > 30), then the overall
time can be modelled as a normal distribution. This is because the loop would represent
a long sum of random variables, which by the Central Limit Theorem would converge to
a normal. Note that the programs we implemented were small (not enough CFG nodes
were executed), so their distributions were not always normal. We intend to investigate
how we can use these ideas to draw a priori conclusions about whether a program will
result in normal execution times or not.

This project has shown itself to be an outstanding experience for the student, who
learned more about Statistics and how it is applied in practice. Despite initially having this
purpose, we hope to have convinced that scientifically significant results were achieved,
about which we plan to write an article and have it peer-reviewed in the near future.

Acknowledgement. We thank prof. Ricardo Marcacini for valuable suggestions, as well
as the LaSDPC and BioCom laboratories for the computational and other resources.

References

Afify, A. Z., Cordeiro, G. M., Butt, N. S., et al. (2017). A new lifetime model with
variable shapes for the hazard rate. Braz J Probab Stat, 31(3):516–541.

Bittencourt, L. F., Madeira, E. R., and Da Fonseca, N. L. (2012). Scheduling in hybrid
clouds. IEEE Communications Magazine, 50(9):42–47.

Braams, B. (2016). Deriving an execution time distribution by exhaustive evaluation.
Bachelor’s thesis, University of Amsterdam.

Cai, Z., Li, Q., and Li, X. (2017). Elasticsim: A toolkit for simulating workflows with
cloud resource runtime auto-scaling. J Grid Comput, 15(2):257–272.

David, L. and Puaut, I. (2004). Static determination of probabilistic execution times. In
16th ECRTS, pages 223–230. IEEE.

DeGroot, M. H. and Schervish, M. J. (2012). Probability and statistics. Pearson.

Dogan, A. and Ozguner, F. (2004). Genetic algorithm based scheduling of meta-tasks with
stochastic execution times in heterogeneous systems. Cluster Computing, 7(2):177–190.

Dong, F., Luo, J., Song, A., and Jin, J. (2010). Resource load based stochastic dags
scheduling mechanism for grid environment. In 12th HPCC, pages 197–204. IEEE.

Drozdetskiy, A., Cole, C., Procter, J., and Barton, G. J. (2015). Jpred4: a protein sec-
ondary structure prediction server. Nucleic acids research, 43(W1):W389–W394.

Ferdinand, C. and Heckmann, R. (2004). ait: Worst-case execution time prediction by
static program analysis. In Building the Information Society, pages 377–383. Springer.

Hennessy, J. L. and Patterson, D. A. (2011). Computer architecture: a quantitative ap-
proach. Elsevier.

Jindal, V. and Bedi, P. (2017). Reducing waiting time with parallel preemptive algorithm
in vanets. Vehicular Communications, 7:58–65.

Kadioglu, S., Malitsky, Y., Sabharwal, A., et al. (2011). Algorithm selection and schedul-
ing. In 17th CP, pages 454–469. Springer.

Li, X., Liang, Y., Mitra, T., and Roychoudhury, A. (2007). Chronos: A timing analyzer
for embedded software. Science of Computer Programming, 69(1-3):56–67.

Li, Y. A. and Antonio, J. K. (1997). Estimating the execution time distribution for a task
graph in a heterogeneous computing system. In HCW’97, pages 172–184. IEEE.

Massart, P. (1990). The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The
annals of Probability, pages 1269–1283.

Panda, S. K. and Jana, P. K. (2015). Efficient task scheduling algorithms for heteroge-
neous multi-cloud environment. J supercomput, 71(4):1505–1533.

Prataviera, F., Cordeiro, G., Suzuki, A., et al. (2017). The odd log-logistic generalized
gamma model. Biom Biostat Int J, 6(4):174.

Saldanha, M. and Souza, P. (2019). High performance algorithms for counting collisions
and pairwise interactions. In 19th ICCS, pages 182–196. Springer.

Shestak, V., Smith, J., Maciejewski, A. A., and Siegel, H. J. (2008). Stochastic robustness
metric and its use for static resource allocations. J Parallel Dist Com, 68(8):1157–1173.

Shishido, H., Estrella, J., Toledo, C., et al. (2018). Genetic algorithms applied to workflow
scheduling with security and deadline constraints in clouds. Comput Electr Eng, 69.

Synergy, R. G. (2019). Half-yearly review shows $150 billion spent on cloud
services and infrastructure. https://www.srgresearch.com/articles/half-yearly-review-
shows-150-billion-spent-cloud-services-and-infrastructure. Last access: 31-Mar-2020.

Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. (2006). Nonparametric quantile
estimation. Journal of machine learning research, 7:1231–1264.

Tanenbaum, A. S. and Bos, H. (2015). Modern operating systems. Pearson.

Ullman, J. (1975). Np-complete scheduling problems. J Comput Syst Sci, 10(3).

Valk, C. and Cai, J. (2018). A high quantile estimator based on the log-generalized weibull
tail limit. Econometrics and statistics, 6:107–128.

Vouk, M. A. (2008). Cloud computing: issues, research and implementations. J comput
inf tech, 16(4):235–246.

Wilhelm, R., Altmeyer, S., Burguière, C., et al. (2010). Static timing analysis for hard
real-time systems. In Proceedings of VMCAI Workshops, pages 3–22. Springer.

Wilhelm, R., Engblom, J., Ermedahl, A., et al. (2008). The worst-case execution-time
problem – overview of methods and survey of tools. ACM TECS, 7(3).

Xavier, V. A. and Annadurai, S. (2019). Chaotic social spider algorithm for load balance
aware task scheduling in cloud computing. Cluster Computing, 22(1):287–297.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015). The i-tasser suite:
protein structure and function prediction. Nature methods, 12(1):7.

Zheng, W. and Sakellariou, R. (2013). Stochastic dag scheduling using a monte carlo
approach. J parallel distr com, 73(12):1673–1689.

Zuo, L., Shu, L., Dong, S., et al. (2015). A multi-objective optimization scheduling
method based on the ant colony algorithm in cloud computing. Ieee Access, 3.

https://www.srgresearch.com/articles/half-yearly-review-shows-150-billion-spent-cloud-services-and-infrastructure
https://www.srgresearch.com/articles/half-yearly-review-shows-150-billion-spent-cloud-services-and-infrastructure

	Introduction
	Background and Related Work
	Problem Modelling and Analysis
	Devising Estimators for the Population Minimum
	Conclusions and Future Work

