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Abstract

The McLerran-Venugopalan (MV) model is a Gaussian effective theory of color charge fluctuations at 
small-x in the limit of large valence charge density, i.e., a large nucleus made of uncorrelated color charges. 
In this work, we explore the effects of the first non-trivial (even C-parity) non-Gaussian correction on 
the color charge density to the MV model (“quartic” term) in SU(2) and SU(3) color group in the non-
perturbative regime. We compare our (numerical) non-perturbative results to (analytical) perturbative ones 
in the limit of small or large non-Gaussian fluctuations. The couplings in the non-Gaussian action, μ̄ for 
the quadratic and κ4 for the quartic term, need to be renormalized in order to match the two-point function 
in the Gaussian theory. We investigate three different choices for the renormalization of these couplings: i) 
κ4 is proportional to a power of μ̄; ii) κ4 is kept constant and iii) μ̄ is kept constant. We find that the first 
two choices lead to a scenario where the small-x action evolves towards a theory dominated by large non-
Gaussian fluctuations, regardless of the system size, while the last one allows for controlling the deviations 
from the MV model.
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1. Introduction

As dynamic emission of soft gluons (over-)populates the phase space at high energies, hadrons 
may be described as a classical system. Such description is provided by the Color Glass Con-
densate (CGC) effective field theory [1,2], where calculations rely on a scale separation: large-x
(“valence”) partons act as a randomly distributed static color sources ρ that generate the dynam-
ical, short-lived, small-x gluons. Due to the stochastic nature of the color charges, the resulting 
small-x field, obtained by solving Classical Yang-Mills equations for a particular source configu-
ration, must be averaged over a given ensemble WY [ρ] of color charges. Therefore, any quantity 
of interest is obtained as the following expectation value,

〈O[ρ]〉Y =
∫ [dρ]WY [ρ]O[ρ]∫ [dρ]WY [ρ] , (1)

where Y = log(x0/x), with x0 ∼ 0.01, denotes the rapidity variable.
Quantum corrections for 〈O[ρ]〉Y due to the evolution in rapidity/energy are taken into ac-

count via the Wilsonian renormalization group equation for WY [ρ] known as JIMWLK equa-
tion [3–12]. Solving such an evolution equation is an initial value problem; it requires an initial 
distribution of color charges as input. For an infinitely large nucleus made of uncorrelated color 
charges, it is possible to show that W0[ρ] is a Gaussian, which is known as the McLerran-
Venugopalan (MV) model [13], and it is widely employed in CGC calculations.

In reality, however, the number of color charges is finite and their distribution should deviate 
from a Normal one. Such deviation should occur even in the absence of quantum corrections and 
also for large nuclei [14], as the finiteness of color charges by itself introduce correlations. There-
fore, the initial condition for the evolution equation is not necessarily a Gaussian. It is known that 
a Gaussian distribution is not a solution of the JIMWLK evolution equation [5], and the small-x
evolution generates non-quadratic terms (in the color charge ρ) even if one starts with a Gaus-
sian distribution of color charges. Non-Gaussian contributions were indirectly studied within 
JIMWLK evolution. Starting with a Gaussian initial condition (MV model), it was found that 
the small-x evolution appears to preserve the Gaussianity of the initial color charge distribution 
for two specific configurations (“line” and “square” configurations) of the correlator of four Wil-
son lines in [15]. At the same time, the product of the correlator of two and four Wilson lines, 
which is present in the cross-section for di-hadron production in proton-nucleus collisions [16], 
has shown deviations from analytical expressions obtained in the Gaussian approximation [17]
in the saturation region. It is still unknown what happens if one starts the evolution with a non-
Gaussian initial condition instead of considering the MV model. It was pointed out in [18] that 
the small-x evolution may introduce non-Gaussian contributions in some observables such as the 
azimuthal anisotropies, vn.

Corrections to the MV model for SU(3) color group have already been calculated in the lit-
erature [19,20] up to the fourth-order in the color charges. The resulting non-Gaussian weight 
function has then been used to perform perturbative calculations in the dilute regime [20–22], 
where the corrections to the MV model are assumed to be small. The impact of a non-Gaussian 
weight function on observables has not been investigated in details yet, but it is expected that it 
could lead to a better representation of the initial conditions for proton-proton and proton-nucleus 
collisions. Moreover, such higher-order terms may contribute to experimental observables in dif-
ferent physical processes, such as multi-particle correlations in nuclear collisions [20,23], di-jets 
produced in proton-proton and proton-nucleus [16,17] and inclusive Deep Inelastic Scattering 
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structure functions, FL and F2, which can be related to the forward scattering amplitude of a 
quark-antiquark pair [24].

In this work, we present a first study of the effects of non-Gaussian corrections to the MV 
model on multi-point correlations of color charges in the fully non-perturbative regime. Specifi-
cally, we investigate three different renormalization schemes for determining the couplings of the 
non-Gaussian small-x action. Our calculations will be done in lattice regularization and carried 
out for Y = 0; therefore, they may be used as initial conditions for the renormalization group 
equations to go beyond the Gaussian approximation in the CGC effective theory. We shall show 
below that one of these renormalization schemes allows us to control the deviations from the MV 
model as one approaches the continuum while the other two lead to a small-x action that evolves 
towards a theory dominated by strong non-Gaussian fluctuations regardless of the system size.

In the next section, we briefly present the Gaussian and non-Gaussian effective weight func-
tions which are used to take an average over the color sources in the CGC approach. We then 
present perturbative results in the limit of small as well as large non-Gaussian fluctuations, and 
compare them to non-perturbative calculations, which includes all orders of 1/κ4 (see Eq. (3) for 
the definition of κ4).

2. Weight functions for color charge average

The central limit theorem applies in the high density limit for color charge density and the 
absence of correlations between color charges at different coordinates [14]. Then, W [ρ] is given 
by the MV model [13]

WMV [ρx⊥] = exp

{
−

∫
d2x⊥

δab ρa
x⊥ρb

x⊥
2μ2

}
, (2)

where μ2 represents the average color charge squared per unit area per color degree of freedom, 
and ρi

x⊥ ≡ ρi(x⊥) is the color charge density at a given transverse coordinate x⊥. In this case, 
the two-point function of color charge density is the only non-trivial correlator: any higher-order 
n-point function (n = 4, 6, 8 . . .) can be factorized into a product of n/2 two-point functions.

We shall consider deviations from a Gaussian weight due to finite number of color sources. 
Non-Gaussian corrections to Eq. (2) for SU(Nc) color group, where Nc � 3, have been calculated 
in the literature [19,20] up to the forth-order in the color charges:

W [ρx⊥] � exp

{
−

∫
d2x⊥

[
δab ρa

x⊥ρb
x⊥

2μ̄2 − dabc ρa
x⊥ρb

x⊥ρc
x⊥

κ3

+ δabδcd + δacδbd + δadδbc

κ4
ρa

x⊥ρb
x⊥ρc

x⊥ρd
x⊥

]}

= exp

{
−

∫
d2x⊥

[
ρa

x⊥ρa
x⊥

2μ̄2 − dabc ρa
x⊥ρb

x⊥ρc
x⊥

κ3
+ 3

κ4
ρa

x⊥ρa
x⊥ρb

x⊥ρb
x⊥

]}
, (3)

where δij is the Kronecker’s delta, dabc is the symmetric tensor in the SU(3) Lie algebra [19]
and μ̄2 is the average color charge squared, κ3 and κ4 represent the couplings from the first odd 
C-parity (“cubic” term) and even C-parity (“quartic” term) corrections to the MV model. When 
non-Gaussian corrections to the MV model are small, the couplings in Eq. (3) can be written 
as [20]:
3
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μ̄2 ≡ g2A

2πR2 , κ3 ≡ 3
g3A2

(πR2)2 = 12μ̄4

g
, κ4 ≡ 18

g4A3

(πR2)3 = 144μ̄6

g2 , (4)

where A represents the mass number and R the radius of the system of interest. For SU(2), κ4 is 
given by

κ4 ≡ 6
g4A3

(πR2)3 = 48μ̄6

g2 . (5)

The factor in Eq. (5) can be verified in two different ways: by following the calculation in [19]
but including higher-order contributions in the Taylor expansion of Gk:s in their Eq. (19) and by 
writing the quartic Casimir in Eq. (12) of [20] for SU(2). We note that the small-x action for 
SU(2) symmetry group does not have cubic (“odderon”) term as the symbol dabc is zero.

In what follows, we only consider the quartic term in the SU(3) case, leaving the study of the 
cubic term in the future. While corrections (at perturbative level) due to the inclusion of the cubic 
term are expected at order 1/κ2

3 for SU(3) [20], our results for SU(2) are exact up to all orders in 
1/κ4.

The coupling in the quadratic and the quartic term in Eq. (3), μ̄ and κ4, are not chosen freely. It 
is required that the inclusion of non-Gaussian corrections does not impact any quantity depending 
solely on the correlator of two-color charges, 〈ρa

x⊥ρb
y⊥〉, since this is a quantity determined by 

the quadratic part of the small-x action. Thus, one needs to renormalize the couplings in the non-
Gaussian action to match the two-point function of color charges from the Gaussian theory. In 
this way, the two couplings are related to each other and one more condition is needed to uniquely 
fix them. We consider three possible ways to fix these couplings. One option is to keep κ4/μ̄

6 ≡ λ

constant. In principle, λ can be fixed to any (positive) value. Motivated by the expression for μ̄2

in Eq. (4), we take λ = γ /g2, where γ = 48 (144) for SU(2) (SU(3)). A second option is to 
keep κ4 constant. The parametric dependence shown in Eq. (4) and Eq. (5) is no longer valid in 
this renormalization scheme. The third option is to control the deviation from the MV model by 
fixing the parameter Z defined by

Z = μ2

μ̄2 . (6)

We shall show that the first two renormalization schemes lead to a theory dominated by non-
Gaussian fluctuations independent of the system size.

3. (Semi-)analytical results for color average in the transverse lattice

This section presents the expressions for the correlators of two- and four-color charges for 
different approximations. The first approximation is to assume that the quartic term in Eq. (3) is 
small [20]. The second considers a limit of large non-Gaussian corrections, in which the quar-
tic term is large. Otherwise stated, all expressions will be presented in lattice regularization by 
approximating the two-dimensional transverse space by N2

s lattice sites with lattice spacing a.
For a weight function which only involves the product of square power of color charges, as 

in the case for SU(2) and SU(3) without the cubic term, one can calculate the color average 
in Eq. (1) on a lattice by evaluating

〈O〉 =
∫
(
∏

x

∏
a dρa

x )O e
−∑

y Wy∫ ∏ ∏
a −∑

y Wy
=

∫
(
∏

a dρa
x )Ox e−Wx∫

(
∏

dρa) e−Wx
=

∫
dr rN2

c −2 Or e−Wr∫
dr rN2

c −2 e−Wr

, (7)

( x a dρx ) e a x

4
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where Wr is defined as

Wr = a2r2

2μ̄2 + 3a2r4

κ4
. (8)

The second equality in Eq. (7) is obtained by assuming that O is a local operator. As discussed 
below, the correlators of two- and four-color charges will be affected by non-Gaussian corrections 
when calculated locally. In such configuration, the functional integral becomes an integral over 
the color charges at a single site. The rightmost result is then obtained after using spherical 
coordinates in N2

c − 1 dimensions, which factor out any angular dependencies.
The requirement that any quantity depending only on the two-point function of color charges 

remains unchanged introduces the following constraint1

〈ρa
xρb

y 〉non-Gaussian = 〈ρa
xρb

y 〉MV model = δabδxy

a2 μ2 , (9)

where a2 represents the area of a lattice cell, x and y are discrete points in the transverse lattice, 
and δxy/a

2 is the lattice counterpart of the Dirac’s delta, δ(x − y); from here on, we use the 
shorthand notation “NG” to denote results obtained using the non-Gaussian weight function. 
Thus, one of the couplings in the non-Gaussian weight function is chosen in order to satisfy 
Eq. (9).

As noted above, local operators do not present a spatial dependence over a two-dimensional 
lattice and the integral is only over the color space. Then the correlator of two-color charges 
(Ox = ρa

xρb
y ) is given by

〈ρa
xρb

y 〉NG =δabδxy

μ2
√

X

Z a2

U
( 1

4

(
N2

c + 1
)
, 1

2 ,X
)

U
( 1

4

(
N2

c − 1
)
, 1

2 ,X
)

=δabδxy

√
κ4

4
√

3a

U
( 1

4

(
N2

c + 1
)
, 1

2 ,X
)

U
( 1

4

(
N2

c − 1
)
, 1

2 ,X
) (10)

where X = a2 κ4/48μ̄4 and

U(α,β,ω) = 1

�(α)

∞∫
0

e−ωt tα−1 (1 + t)β−α−1 dt (11)

denotes the Tricomi’s confluent hypergeometric function; �(α) is the Gamma function. The con-
dition Eq. (9) for SU(Nc) is given by

μ̄2
√

X

a2

U
( 1

4

(
N2

c + 1
)
, 1

2 ,X
)

U
( 1

4

(
N2

c − 1
)
, 1

2 ,X
) = μ2

a2 . (12)

The four-point function of color charges can also be expressed in terms of the Tricomi’s confluent 
hypergeometric function:

〈ρa
xρa

x ρc
xρ

c
x〉NG =

(
N4

c − 1
) μ̄4

a4

XU
( 1

4

(
N2

c + 3
)
, 1

2 ,X
)

U
( 1

4

(
N2

c − 1
)
, 1

2 ,X
) . (13)

1 To avoid cluttered notation, from now on, x denotes a point in the transverse lattice, not the fraction of momentum 
carried by produced gluons; moreover, we omit the ⊥ notation in the transverse coordinates.
5
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We finish this section by summarizing the four-point function of color charges, 〈ρa
xρb

yρc
uρ

d
v 〉

in the MV model. Calculating the color average in Eq. (7) with the Gaussian ensemble results in

〈ρa
xρb

yρc
uρ

d
v 〉MV =μ4

[
δabδcdδ(x − y)δ(u − v) + δacδbdδ(x − u)δ(y − v)

+δadδbcδ(x − v)δ(y − u)
]

. (14)

We point out that the color factor multiplying μ4 is dependent on the configuration. We have a 
factorizable configuration in the lattice configuration that each pair of color charges sit at different 
sites (i.e. x = y, u = v but x �= u). Each one of the two-point function contributes with a factor 
of N2

c − 1 after contracting color indexes. The coefficient of the correlator of four-color charges 
then evaluates to

〈ρa
xρa

x ρc
uρ

c
u〉MV = 〈ρa

xρa
x 〉〈ρc

uρ
c
u〉 = (N2

c − 1)2 μ4

a4 . (15)

On the other hand, in the lattice configuration where x = y = u = v, the coefficient of the 
correlator is given by

〈ρa
xρa

x ρc
xρ

c
x〉MV =

[
(N2

c − 1)2 + 2(N2
c − 1)

] μ4

a4 = (N4
c − 1)

μ4

a4 , (16)

having a different color factor from the factorizable case.
In the next section, we shall consider the Taylor expansion of the hypergeometric functions 

in two different regimes in order to study the limit of small as well as large non-Gaussian fluctu-
ations. The results from these asymptotic cases will be compared to non-perturbative numerical 
calculations.

3.1. The dilute regime: quartic term as small perturbation

In the κ4 → ∞ limit the quartic term is a small perturbation. Expanding Eq. (12) at X → ∞
up to the order of 1/X:

μ̄2
(

1 − N2
c + 1

4X

)
= μ2 . (17)

Writing it in terms of κ4 gives:

μ2 = μ̄2
(

1 − 12
μ̄4

κ4

(N2
c + 1)

a2

)
= μ̄2 Z , (18)

which is the same2 result obtained after a perturbative expansion of the quartic term in the small-x
action as done in Ref. [20].

According to [20], a contribution of order 1/κ2
4 renormalizes the μ̄8 factor appearing in the 

correction to the four-point function of color charges at order 1/κ4. Expanding Eq. (13) at X →
∞ up to the term 1/X2 yields

2 The factor 12 in Eq. (18) is different from the factor 4 present in Eq. (20) of Ref. [20], because the authors of Ref. [20]
changed the definition of the coefficient of the quartic term by a factor 1/3 (3/κ4 → 1/κ4) from Eq. (3).
6
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〈ρa
xρa

x ρc
xρ

c
x〉NG

� (N4
c − 1)

μ̄4

a4

[
1 − N2

c + 2

2X
+ 31 + 24N2

c + 5N4
c

16X2

]
(19)

= (N4
c − 1)

μ̄4

a4

[
1 − N2

c + 1

2X
− 1

2X

(
1 − N2

c + 1

X

)
+ 23 + 16N2

c + 5N4
c

16X2

]
. (20)

We renormalize μ̄4 and μ̄8 by using Eq. (17):

μ4 � μ̄4
(

1 − N2
c + 1

2X

)
, μ8 � μ̄8

(
1 − N2

c + 1

X

)
, (21)

valid at order 1/κ4. The remaining terms of order 1/κ2
4 in Eq. (20) are discarded, as in [20]. 

Then, we obtain the correlator of four-color charges in the dilute limit up to the order of κ4 [20]:

〈ρa
xρa

y ρc
uρ

c
v〉NG =(N4

c − 1)μ4
[
δxy

a2

δuv

a2

(
1 − 24

μ4

κ4

δxu

a2

)

+ δxu

a2

δyv

a2

(
1 − 24

μ4

κ4

δxy

a2

)
+ δxv

a2

δyu

a2

(
1 − 24

μ4

κ4

δxy

a2

)]
. (22)

All other components are similar to this one, with the only difference being the permutation of 
the indexes of Kronecker’s deltas. In the continuum notation, it reads

〈ρa
xρb

yρc
uρ

d
v 〉NG = μ4

[
δabδcdδ(x − y)δ(u − v)

(
1 − 24

μ4

κ4
δ(x − u)

)

+ δacδbdδ(x − u)δ(y − v)

(
1 − 24

μ4

κ4
δ(x − y)

)

+ δadδbcδ(x − v)δ(y − u)

(
1 − 24

μ4

κ4
δ(x − y)

)]
. (23)

The combination of (Dirac’s) delta functions is such that the non-Gaussian correction modifies 
the result from the MV model only if the four-point function of color charges is a local quantity, 
that is, x = y = u = v. On the other hand, in the configuration that each pair of color charges sit 
at different sites (i.e. x = y, u = v but x �= u), the four-point function factorizes into the product 
of two two-point functions, and the result is identical to the one in the MV model.

Since we are interested in the effect of the non-Gaussian correction to the MV model, we 
set x = y = u = v in the lattice expression; in other words, we calculate Eq. (22) at the delta 
functions. The ratio of the correlator of four-color charges in the non-Gaussian to the Gaussian 
theory results in:

〈ρa
xρa

xρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= 1 − 24
μ4

κ4 a2 , (24)

for the dilute limit.

3.2. Large non-Gaussian fluctuations

We now consider the limit of large non-Gaussian fluctuations, Z → 0, where sizable devia-
tions from the MV model are expected.
7
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Taylor expanding the left-hand side of Eq. (12) around X → 0 up to the order O[X] yields:

μ2

Z a2

[
�

( 1
4

(
N2

c + 1
))

�
( 1

4

(
N2

c + 3
))√

X +
(

2�
( 1

4

(
N2

c + 1
))2

�
( 1

4

(
N2

c − 1
))

�
( 1

4

(
N2

c + 3
)) − 2

)
X

]
= μ2

a2

Thus, the expression up to the order of Z is given by

�
( 1

4

(
N2

c + 1
))

4
√

3�
( 1

4

(
N2

c + 3
)) √

κ4

a
+

(
�

( 1
4

(
N2

c + 1
))2

�
( 1

4

(
N2

c − 1
))

�
( 1

4

(
N2

c + 3
)) − 1

)
Z κ4

24μ2 = μ2

a2 . (25)

We will work out the solution of Eq. (25) for the three renormalization schemes in the next 
sections.

We now present an analytical expression for the local configuration 〈ρa
xρb

xρc
xρ

d
x 〉 in the regime 

of large non-Gaussian fluctuations. We begin by setting x = y = u = v, so that we calculate 
Eq. (7) for this particular configuration. For the color space, we have the following color con-
tractions δabδcd + δacδbd + δadδbc . It is sufficient to consider the case a = b and c = d , as each 
term yields the same contribution. For the large non-Gaussian fluctuation limit, Taylor expanding 
Eq. (13) around X → 0 up to the order O[Z2] yields:

〈ρa
xρa

x ρc
xρ

c
x〉NG = (N4

c − 1)

[
κ4

12a2
(
N2

c + 1
) −

√
π 2(7−N2

c )/2 �
( 1

2

(
N2

c + 1
))

3
√

3
(
N2

c + 1
)

�
( 1

4

(
N2

c + 3
))2

Z κ
3/2
4

a μ2

+
(

4�
( 1

4

(
N2

c + 3
))2 − (

N2
c − 1

)
�

( 1
4

(
N2

c + 1
))2

)
1152

(
N2

c + 1
)

�
( 1

4

(
N2

c + 3
))2

Z2 κ2
4

μ4

]
. (26)

Let us now compute the four-point function of color charges in the lowest order. From 
Eq. (25), one obtains

κ4 = 48
�

( 1
4

(
N2

c + 3
))2

�
( 1

4

(
N2

c + 1
))2

μ4

a2 . (27)

We see that κ4 does not depend on μ̄. For the four-point function of color charges in the leading 
order term in Eq. (26) results in

〈ρa
xρa

x ρc
xρ

c
x〉NG = (N4

c − 1) κ4

12a2
(
N2

c + 1
) = 4

(
N2

c − 1
)

�
( 1

4

(
(N2

c + 3
))2

�
( 1

4

(
(N2

c + 1
))2

μ4

a4

=
(
N4

c − 1
)

�
( 1

4

(
N2

c + 3
))2

�
( 1

4

(
N2

c + 1
))

�
( 1

4

(
N2

c + 5
)) μ4

a4 , (28)

where we used �((N2
c + 1)/4) = 4 �((N2

c + 5)/4) / (N2
c + 1).

The correlator of four-color charges in the non-Gaussian theory follows the same structure 
as Eq. (23) in continuum notation:

〈ρa
xρb

yρc
uρ

d
v 〉NG = μ4

{
δabδcdδ(x − y)δ(u − v)

[
1 − CNG

μ4

κ4
δ(x − u)

]

+ δacδbdδ(x − u)δ(y − v)

[
1 − CNG

μ4

δ(x − y)

]

κ4

8
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+ δadδbcδ(x − v)δ(y − u)

[
1 − CNG

μ4

κ4
δ(x − y)

]}
, (29)

where CNG reads

CNG = 48
�( 1

4 (N2
c + 3))2

�( 1
4 (N2

c + 1))2

[
1 − �

( 1
4

(
N2

c + 3
))2

�
( 1

4

(
N2

c + 1
))

�
( 1

4

(
N2

c + 5
))]

. (30)

As in the MV model, the color factor multiplying μ4/a4 depends on the spatial configuration 
in which the correlator is calculated:

〈ρa
xρa

y ρc
uρ

c
v〉NG ∝

⎧⎪⎨
⎪⎩

(N2
c − 1)2 , if x = y, u = v (u �= x)

(N4
c − 1)

�
(

1
4

(
N2

c +3
))2

�
(

1
4

(
N2

c +1
))

�
(

1
4

(
N2

c +5
)) , if x = y = u = v .

(31)

We then consider the ratio of the correlator of four-color charges from the non-Gaussian to 
the Gaussian theories for the configurations shown above. When setting x = y, u = v with the 
condition u �= x the non-Gaussian correction is not present, and we have

〈ρa
xρa

xρc
uρ

c
u〉NG

〈ρa
xρa

x ρc
uρ

c
u〉MV

= 〈ρa
xρa

x 〉〈ρc
uρ

c
u〉

〈ρa
xρa

x 〉〈ρc
uρ

c
u〉

= (N2
c − 1)2 μ4/a4

(N2
c − 1)2 μ4/a4 = 1 , (32)

as expected (see Eq. (15)). On the other hand, for the configuration where x = y = u = v, the 
ratio of 〈ρa

xρa
xρc

xρ
c
x〉 from the non-Gaussian theory to the Gaussian theory yields:

〈ρa
xρa

xρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= �
( 1

4

(
N2

c + 3
))2

�
( 1

4

(
N2

c + 1
))

�
( 1

4

(
N2

c + 5
)) , (33)

showing that, in the Z → 0 limit, the ratio of correlators of color charge depends only on the 
number of colors Nc (so it is constant for fixed Nc). For SU(2) and SU(3), Eq. (33) evaluates to

〈ρa
xρa

xρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

{
0.822504 for SU(2) (a)
0.905415 for SU(3) (b) ,

(34)

so the correlator of four-color charges calculated at the delta functions in a lattice setup should 
decrease by ∼ 18% (∼ 10%) in the non-Gaussian theory compared to the Gaussian theory for 
SU(2) (SU(3)) in the limit of very large non-Gaussian fluctuations.

Finally, we note that there exist two different conditions where one may factorize four-point 
functions (and other higher-order correlators) of color charges into products of two-point func-
tions [25]: when using a Gaussian weight function for color average, as the MV model, and the 
large-Nc limit. For the large-Nc limit in our case, the ratio Eq. (33) evaluates to one:

lim
Nc→∞

〈ρa
xρa

x ρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= lim
Nc→∞

�
( 1

4

(
N2

c + 3
))2

�
( 1

4

(
N2

c + 1
))

�
( 1

4

(
N2

c + 5
)) = 1 . (35)

4. Renormalization schemes

In this section, we consider two opposite perturbative regimes, small and large non-Gaussian 
fluctuations, in three different renormalization schemes. These results are then compared to a 
full non-perturbative calculation, where Eq. (12) is solved numerically for SU(2) and SU(3) 
color symmetry groups. We assume a constant average color charge within the nuclear system 
9
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and invoke the infinite nucleus approximation. Note that the infinite nucleus approximation does 
not imply an infinite number of color charges in lattice calculations. Therefore, one can still study 
deviations from a Gaussian ensemble even in this simplified scenario.

4.1. Multi-point correlators of color charges and the renormalization equation in SU(Nc) for 
the first renormalization scheme

The first renormalization scheme is defined by the condition:
κ4

μ̄6
≡ λ = γ

g2 , (36)

where γ = 48 (144) for SU(2) (SU(3)), motivated by Eq. (4) and Eq. (5).
In the limit of small non-Gaussian fluctuations, using Eq. (36) in Eq. (18) and rewriting it in 

terms of Z(a) = μ2/μ̄2(a),

Z(a) = μ2a2

12(N2
c + 1) g2/γ + μ2 a2 , (37)

shows that the renormalization factor decreases with the lattice spacing and the perturbative 
calculation will break down at some point for small a. The condition for small non-Gaussian 
fluctuations, Z ≈ 1, requires μ2a2 � 12(N2

c + 1) g2/γ . We also note that 0 < Z ≤ 1.
Using Eq. (36) and Eq. (37) in Eq. (24), one can write the ratio of the four-point function of 

color charge in the non-Gaussian theory to that in the MV model as

〈ρa
xρa

xρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= 1 − 24 (g2/γ )μ4 a4[
μ2 a2 + 12 (N2

c + 1) g2/γ
]3 . (38)

In this renormalization scheme, non-Gaussian fluctuations increase with the lattice spacing 
since Z → 0 as a → 0. Thus, one cannot discuss the continuum limit within the perturbative 
calculation in the limit of small non-Gaussian fluctuations in this renormalization scheme.3

In the limit of large non-Gaussian fluctuations, using Eq. (36) in Eq. (25) yields

�
( 1

4

(
N2

c + 1
))

4
√

3�
( 1

4

(
N2

c + 3
)) √

γ μ3

g a Z3/2 +
(

�
( 1

4

(
N2

c + 1
))2

�
( 1

4

(
N2

c − 1
))

�
( 1

4

(
N2

c + 3
)) − 1

)
γ μ4

24g2 Z2 = μ2

a2 .

(39)

Eq. (39) can be written as a quartic equation for Z, thus it can be solved. At the leading order, 
Z3 is proportional to the square of the lattice spacing:

�
( 1

4

(
N2

c + 1
))

4
√

3�
( 1

4

(
N2

c + 3
)) √

γ μ3

g a Z3/2 = μ2

a2 → Z3 = γ �
( 1

4

(
N2

c + 1
))2

48g2 �
( 1

4

(
N2

c + 3
))2 a2 μ2 . (40)

Therefore, any system is substantially affected by non-Gaussian corrections in the continuum 
limit.

3 One could consider the a → a0 (a0 > 0) limit, thus attributing a physical meaning to the lattice spacing: the definition 
of the ultraviolet cutoff in (transverse) momentum space, pmax⊥ = π/a0. This case implies that theories with different 
cutoffs will produce different results for the correlators sensitive to the non-Gaussian correction to the MV model [26]. 
In this work we only consider the a → 0 limit.
10
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Fig. 1. (Left) Lattice spacing dependence of the renormalization factor Z from a non-perturbative calculation for SU(3) 
for (filled points) L = 11.5 fm and μ = 3 GeV and (open points) L ≈ 1.77 fm and μ = 0.35 GeV showing scaling 
invariance. (Right) Comparison of analytical results with the non-perturbative calculation. Solid lines are the result from 
Eq. (37), valid for Z ∼ 1; dashed lines represent the solution of Eq. (39), valid for Z ∼ 0, with the leading and next-to-
leading order terms in lattice spacing. For asymptotically small values of μL the dashed curves reduce to Eq. (40).

Next we consider the lattice spacing dependence of the renormalization factor Z. Follow-
ing [27], we write μL = μ a. The filled points in left panel of Fig. 1 were obtained for a lattice 
of size L = 11.5 fm, which corresponds to the radius R = 6.5 fm of a gold nucleus by the rela-
tion L2 = πR2, and using μ = 3 GeV in the MV model. As μ is kept fixed, the μL dependence 
is obtained by solving Eq. (9) for decreasing values of the lattice spacing, which are obtained 
by successively increasing the number of sites of the lattice by a factor of two while keeping 
its volume fixed (L2 = N2

s a2 = constant) at each step. For instance, the rightmost point is the 
result for a lattice with Ns = 2, the next one is the result for a lattice with Ns = 22 and so on, 
with the last point shown in the figure corresponding to a lattice with Ns = 222. As the infinite 
nucleus approximation throws away any detailed information about the geometry of all physical 
systems, one should expect exact scale invariance. This means that the only difference between 
a hadron and a heavy nucleus should be the size of the lattice in physical units, so both are re-
lated by a simple scaling factor. Consequently, once the coupling g is fixed, results for different 
systems should all fall under the same curve, with all physics being controlled by the dimension-
less quantity μL. To show that this is the case, the left panel of Fig. 1 also includes the results 
(open symbols) for a system with L = 1 fm

√
π ≈ 1.77 fm, with μ = 0.35 GeV (which loosely 

corresponds to a proton). One clearly sees that the results for both systems fall under the same 
curve, showing the scaling invariance, as expected. Therefore, it is only needed to specify the 
details of a given system (here completely determined by the lattice size in physical units and 
color charge μ) when discussing results at fixed lattice size.

In the right panel of Fig. 1, we compare the resulting lattice spacing dependence of the renor-
malization factor Z(a) from the asymptotic cases considered above with the result from a full 
non-perturbative calculation for different couplings. We see that Z → 0 as a → 0 for all values 
of the coupling in the full non-perturbative calculation, indicating that Eq. (3) “flows” towards 
a theory dominated by large non-Gaussian fluctuations. In this renormalization scheme, even 
though μ̄(a) has been determined by requiring the matching of the two-point function of color 
charges in the non-Gaussian theory and the MV model for each lattice size, the matching is 
achieved by decreasing the renormalization factor, that is, by moving further away from the MV 
model regardless of the system size. On purely theoretical grounds, nothing is prohibiting such 
weight functions to exist, however, such a scenario seems unlikely to be realized.
11
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Fig. 2. The ratio of the correlator of four-color charges in the non-Gaussian to the Gaussian ensemble as a function of 
μL for (left) SU(2) and (right) SU(3) color symmetry group. The solid lines represent the perturbative results for Z ∼ 1, 
Eq. (38), while the dashed ones are the result of solving Eq. (39) with all terms presented. For asymptotically small values 
μL, which corresponds to the Z → 0 limit, the dashed curves reduce to the values in Eq. (34a) for SU(2) and Eq. (34b) 
for SU(3), respectively. The inset plots extend our results up to μL ∼ 10−8, showing that indeed the results converged 
to the continuum limit. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 2 shows the lattice spacing dependence of the ratio of the correlator of four-color charges 
in the non-Gaussian ensemble to the Gaussian ensemble for different values of the coupling. As 
μ̄ �= μ, results from the Gaussian and non-Gaussian ensembles would fall in different bins in 
the horizontal axis, and a comparison between them would only be possible after extrapolating 
the results to the continuum limit. This is circumvented by using the correlator of two-color 
charges to form dimensionless quantities: a4〈ρ2〉 = a2μ2 = μ2

L. This is equivalent to assuming 
the average color charge from the MV model as a momentum scale in the horizontal axis. Our 
results show that i) for μL � g there is no deviation from the Gaussian theory, and the ratio is 
one; ii) for μL � g there is a smooth transition from a Gaussian dominated distribution (where the 
perturbative calculation from [20] applies) to a distribution which is more and more dominated 
by the quartic term. The resulting effect is the gradual reduction of the higher-order correlator of 
color charges, in accordance with increasing deviations from the MV model presented Fig. 1; iii) 
such transition shows a hierarchy with the coupling constant, the agreement with the perturbative 
result breaks first for larger values of g at fixed μL; iv) once the distribution of color charges is 
dominated by the non-Gaussian term (Z → 0), the ratio converges to the continuum limit value 
shown in Eq. (34a) for SU(2) and Eq. (34b) for SU(3) for all values of the coupling and μL.

Let us look at how far away the non-Gaussian distribution is from a Gaussian distribution. 
Fig. 3 shows the weight function from the MV model (full line) and the respective non-Gaussian 
ensemble (dashed line) for (top panels) a Gold-like system (L = 11.5 fm) with μ = 3 GeV 
and (bottom panels) a proton-like system (L = 1 fm

√
π ≈ 1.77 fm) with μ = 0.35 GeV for 

different values of g for SU(3) as a function of r2 ≡ ∑N2
c −1

a=1 (ρa
x )2. These weight functions were 

obtained in a lattice with Ns = 128, corresponding to μL ∼ 1.37 (μL ∼ 0.025) for a Gold-
like (proton-like) system. The dashed-dotted line represents a Gaussian distribution with the 
standard deviation μ̄L. We note that the distributions for SU(2) have the same features. The 
color charge distribution in the large system with small g is described well as Gaussian. For 
g = 2, the quartic term starts to dominate, and the resulting distribution gradually deviates from 
a Gaussian distribution. On the other hand, small systems already present strong deviations from 
the perturbative regime for all values of g considered.
12
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Fig. 3. Weight function from a Gaussian (solid line) and non-Gaussian (dashed line) ensembles for a system with (top 
panels) L = 11.5 fm and μ = 3.0 GeV and (bottom panels) L ≈ 1.77 fm and μ = 0.35 GeV and different values of 
the coupling in SU(3) in a lattice with Ns = 128. The dashed-dotted line is a Gaussian distribution with the standard 
deviation equal to the renormalized average color charge μ̄.

4.2. Renormalization equation in SU(Nc) for the second renormalization scheme

In this section, we consider the second renormalization scheme, in which κ4 is kept fixed to 
a given constant value. This renormalization presents an important difference from the previous 
one: κ4 and Z are treated as independent parameters.

In the regime where the quartic term is a small perturbation, Z is determined by κ4 through 
Eq. (18):

Z(a, κ4) = 1 − 12 (N2
c + 1) μ̄4

κ4 a2 . (41)

As we keep the calculation at order O[1/κ4], we replace4 μ̄4/κ4 by μ4/κ4, and Z is given by:

Z(a, κ4) = 1 − 12 (N2
c + 1)μ4

κ4 a2 . (42)

On the other hand, in the limit of large non-Gaussian fluctuations, solving Eq. (25) for Z
yields:

Z(a, κ4) = 2μ2 �
( 1

4

(
N2

c − 1
)) [√

3κ4 a �
( 1

4

(
N2

c + 1
)) − 12μ2 �

( 1
4

(
N2

c + 3
))]

[
�

( 1
4

(
N2

c − 1
))

�
( 1

4

(
N2

c + 3
)) − �

( 1
4

(
N2

c + 1
))2

]
a2 κ4

. (43)

Eq. (43) fixes Z(a, κ4) so that the non-Gaussian action reproduces the two-point function of 
color charges from the Gaussian theory. We note that Z(a, κ4) will change the sign at some 

4 At the level of perturbation theory, the contribution 32 · 9 (N2
c + 1)2 μ̄8

κ2
4 a4 , which involves a term of order 1/κ2

4 , 

induces the shift μ̄4/κ4 → μ4/κ4.
13
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Fig. 4. Renormalization factor Z(a, κ4) in the second renormalization scheme in SU(3) from full non-perturbative cal-

culation (points) for (left) κ1/6
4 = 10 GeV and (right) κ1/6

4 = 100 GeV. The solid curve is the result from Eq. (42). The 
dashed curve is the result from Eq. (43).

point in this second renormalization scheme. The sign of Z(a, κ4) is determined by the factor √
3κ4 a � 

( 1
4

(
N2

c + 1
)) − 12 μ2 � 

( 1
4

(
N2

c + 3
))

. In particular, Z will become zero when

a = 4
√

3�
( 1

4

(
N2

c + 3
))

�
( 1

4

(
N2

c + 1
)) μ2

√
κ4

, (44)

and the renormalization factor becomes negative for the lattice spacing smaller than the value 
given by Eq. (44). In fact, as a → 0, Eq. (43) becomes

Z(a, κ4) = − 24μ4(
1 − �

(
1
4

(
N2

c +1
))2

�
(

1
4

(
N2

c −1
))

�
(

1
4

(
N2

c +3
))

)
a2κ4

= − μ4

a2 κ4
×

{
88.718, for SU(2)

206.138, for SU(3) ,

(45)

thus, one cannot take the continuum limit in this renormalization scheme.
Fig. 4 shows the lattice spacing dependence of the renormalization factor in this renormal-

ization scheme. The points represent the result from a numerical calculation in SU(3) for a 
proton-like system (μ = 0.35 GeV and L ≈ 1.77 fm) for κ1/6

4 = 10 GeV and κ1/6
4 = 100 GeV. 

We expect similar behavior for other parameters. The solid curve in each panel represents the re-
sult from Eq. (42) valid for Z ∼ 1. The dashed curve is the result from Eq. (43) valid for Z ∼ 0. 
Eq. (42) is in accordance with the non-perturbative calculation for Z ∼ 1, while Eq. (43) is able 
to match the non-perturbative calculation for Z → 0.

As in the previous renormalization scheme, the renormalization factor Z(a, κ4) is close to 
one at large a, indicating no deviation from the Gaussian theory. However, its dependence with 
the lattice spacing changes quite drastically as a → 0, with Z(a, κ4) now presenting a sharper 
decrease. Eq. (43) matches the full numerical calculation in the Z → 0 limit. We verified via a 
numerical calculation that once Z = 0, there is no solution for the renormalization equation as 
we only have the quartic term, whose coupling κ4 is kept fixed in this renormalization scheme.

4.3. Multi-point correlators of color charges and the renormalization equation in SU(Nc) for 
the third renormalization scheme

In the third renormalization scheme, the renormalization factor Z is kept fixed. Thus, this 
renormalization scheme provides a way to control deviations from the MV model even in the 
limit of large non-Gaussian fluctuations.
14
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In the regime of small non-Gaussian fluctuations, from Eq. (42), κ4 is given by

κ4(a,Z) = 12
μ4

1 − Z

(N2
c + 1)

a2 . (46)

The Z → 1 limit leads to κ4 → ∞, thus recovering the MV model. The a → 0 limit with Z < 1
also leads to κ4 → ∞. However, this does not mean it reduces exactly to the MV model as far as 
Z is different from one.

The four-point function of color charges is obtained by substituting κ4 from Eq. (46) into 
Eq. (24),

〈ρa
xρa

xρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= 1 − 2 (1 − Z)

(N2
c + 1)

. (47)

We see that the ratio of four-point functions in the non-Gaussian to the Gaussian theory is inde-
pendent of the lattice spacing. This is a exclusive feature of this renormalization scheme, given 
that Z changes with the lattice spacing in the other two renormalization schemes.

In the limit of large non-Gaussian fluctuations, the renormalization equation (Eq. (25)) is a 
quadratic equation for κ4, and has two solutions:

κ4(a,Z) ≡ κ4(Z)

a2 = 6μ4 [α(Z) ± β(Z)]

a2 Z2 �2
1
4 ,1

(�2
1
4 ,1

− � 1
4 ,−1 � 1

4 ,3)
2

(48)

where �k,m ≡ � 
(
k (N2

c + m)
)

and

α(Z) = 23−N2
c π �2

1
2 ,−1

(
�2

1
4 ,1

((
N2

c − 1
)

Z + 1
)

− 4Z �2
1
4 ,3

)
(49)

β(Z) = �
3/2
1
4 ,−1

�3
1
4 ,1

[
8Z � 1

4 ,3 �2
1
4 ,1

+ � 1
4 ,−1

(
�2

1
4 ,1

− 8Z �2
1
4 ,3

)]1/2

. (50)

We verified that the two solutions above lead to different results in the Z → 0 limit. Setting Nc =
3 in order to have a compact expression and further expanding the solution above proportional 
to α(Z) − β(Z) around Z = 0, then dividing it by the leading order expression for κ4 (Eq. (27)) 
gives

κLO+NLO
4

κLO
4

= 1 + 1.05415Z + 1.38903Z2 . (51)

Repeating the same procedure with the solution proportional to α(Z) + β(Z) yields terms pro-
portional to 1/Z2 and 1/Z, thus not recovering the leading order solution. Because of this, we 
discard such a solution.

Let us turn now to the computation of the four-point function of color charges. Using the so-
lution for κ4 proportional to α(Z) −β(Z) in Eq. (26) provides an expression for the correlator of 
four-color charges at the delta functions for an arbitrary value of Nc. The ratio of the correlator of 
color charges in the non-Gaussian to the Gaussian theory at leading order in the renormalization 
factor can be written as:

〈ρa
xρa

x ρc
xρ

c
x〉NG

〈ρa
xρa

x ρc
xρ

c
x〉MV

= (−d0 + D)2

2 2 2

(
1 + d0

d
(d0 − D)

)
, D =

√
d2

0 + 2d1 Z , (52)

4(Nc + 1) d1 Z 1
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Fig. 5. (Left) Lattice spacing dependence of the ratio of four-point function of color charges in the non-Gaussian to 
the Gaussian theory for different values of the renormalization factor Z for L = 1.77 fm and μ = 0.35 GeV. (Right) 
Dependence of the same ratio with Z. The inset plot shows that Z → 0 recovers the leading order result (Eq. (34b)) 
shown as a dashed line.

where

d0 ≡ 1

4

�((N2
c + 1)/4)

�((N2
c + 3)/4)

, (53)

d1 ≡ d2
0 (N2

c − 1) − 1

4
. (54)

As in Eq. (47), valid in the limit of small non-Gaussian fluctuations, this ratio remains inde-
pendent of the lattice spacing and is constant for fixed Z in the limit of large non-Gaussian 
fluctuations.

The left panel of Fig. 5 shows the lattice spacing dependence of the ratio of the correlators 
of four-color charges at the delta functions in the non-Gaussian and the Gaussian theories for 
different values of Z. Smaller values of Z lead to a larger deviation from the MV model. The 
curves at Z = 0.9999 ∼ 1 and Z = 0.01 are given by Eq. (47) and Eq. (52) respectively, which 
nicely reproduce the results of the non-perturbative calculations. The right panel in Fig. 5 shows 
the Z dependence of the same ratio with points representing the results from the non-perturbative 
calculation together with the perturbative results from Eq. (47) and Eq. (52). We see that for both 
small and large non-Gaussian fluctuations, the analytical results are in good agreement with the 
non-perturbative ones. It is also shown that the ratio converges to the result given by Eq. (34b) in 
the Z → 0 limit.

5. Conclusions

In this work, we studied the non-perturbative effects of the first (even C-parity) non-Gaussian 
correction to the Gaussian theory of the CGC in SU(2) and SU(3) color symmetry groups. De-
viations from the MV model were quantified via the renormalization factor, Z. The couplings 
in the non-Gaussian small-x action need to be renormalized in order to reproduce the two-point 
function of color charges in the Gaussian theory. We considered three different renormalization 
schemes to determine the couplings of the non-Gaussian action. New analytical expressions were 
presented in the regime of large non-Gaussian fluctuations in each renormalization scheme and 
these were compared to numerical results where the renormalization equation, Eq. (12), was 
solved numerically. Our results pointed out that the first two renormalization schemes always 
lead to a theory dominated by non-Gaussian fluctuations independent of the system size. This 
means that even larger systems end up being strongly affected by non-Gaussian corrections. 
16



A.V. Giannini and Y. Nara Nuclear Physics A 1010 (2021) 122178
Such a scenario is unlikely to happen, as one expects the validity of the MV model for larger 
systems. The third renormalization scheme, where Z is fixed, on the other hand, allows one to 
control the deviations from the MV model. The strength of the non-Gaussian correction to the 
MV model in physical observables is still an open question and deserves further investigation. 
The next step is to determine the values of Z by considering experimental data to see to what 
extent a system deviates from the MV model.

The calculations shown here represent the first practical step towards making non-Gaussian 
initial conditions to the JIMWLK evolution equations. In addition, we showed that the initial 
distribution of color charges moves away from a Gaussian once deviations from the MV model 
are considered. The quartic term should affect the multiplicity distribution, especially in small 
collision systems, where non-Gaussian corrections are usually expected. That would change the 
fluctuations of the energy (or gluon) density in the initial condition for hydrodynamic simula-
tions. In particular, fluctuations of the initial energy density are important to determine spatial 
eccentricities [28], which can be related to flow harmonics and angular correlations in hydrody-
namic simulations [29–36]. Such changes also apply to early time fluctuations of axial charge 
density in the glasma phase, which are given in terms of the divergence of the Chern-Simons 
current [37,38].

Furthermore, as shown in [21], the inclusion of a quartic term in the weight function generates 
a correction to the correlator of two Wilson lines, 〈V (x)V †(y)〉, where V (x) denotes a Wilson 
line. For this reason, such initial conditions may be used to study whether there exist differences 
between the JIMWLK evolution with and without assuming the Gaussian approximation, where 
all higher n-point function of Wilson lines can be related to 〈V (x)V †(y)〉 [39].

The calculations in this paper can be extended to study the non-Gaussian effects on the two-
particle correlation function, C2(p, q) in the double inclusive gluon production [40] and the 
dipole operator, D(r) ∝ 〈V (x)V †(y)〉, complementing the results in the dilute regime from [21]. 
In particular, it has been shown [20] that at the perturbative level the quartic term generates an 
additional contribution of the same order in Nc to C2(p, q) on top of the contribution from the 
Gaussian part of the action. Moreover, the non-Gaussian correction becomes of the same order 
in the mass number and is enhanced by a factor of N2

c −1 compared to the Gaussian contribution 
if one considers the saturation scale as a cutoff for integrals over transverse momentum figuring 
in this quantity. A non-perturbative calculation is needed to access how the effects of additional 
contributions from a non-Gaussian statistics change the result from the MV model to all orders 
of 1/κ4 in this case. Works in these directions are ongoing.
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