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1 Escuela de Matemáticas, Universidad Nacional de Colombia, Calle 59A No.
63-20, Medellin, Colombia

2 Institute of Mathematics and Statistics, Federal University of Goias, Campus
Samambaia, CEP 74001-970 Goiânia, GO, Brazil
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Abstract. Populations are often subject to catastrophes that lead to signi-
ficant reductions in the number of individuals. Many stochastic growth models
have been considered to explain such dynamics. Among the reported results,
it has been considered whether dispersion strategies, at times of catastrophes,
increase the survival probability of the population. In this paper, we contrast
dispersion strategies by comparing the mean extinction times of a population
under conditions of near-certain extinction. Specifically, we consider populations
subject to binomial catastrophes, where the population size is reduced according
to a binomial law when a catastrophe occurs. Our findings delineate the optimal
strategy (dispersion or non-dispersion) based on variations in model parameter
values.
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∗Fábio Machado was supported by CNPq (303699/2018-3) and Fapesp (2017/10555-0). Alejandro Roldán was
supported by Fapesp (2022/08948-2) and Universidad de Antioquia.
∗∗Author to whom any correspondence should be addressed.

© 2023 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/23/103501+14$33.00

mailto:fmachado@ime.usp.br
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/acf8bc&domain=pdf&date_stamp=2023-10-20
https://stacks.iop.org/JSTAT/2023/103501
https://doi.org/10.1088/1742-5468/acf8bc


Extinction time in growth models subject to binomial catastrophes

J.S
tat.

M
ech.(2023)

103501

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Models and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Binomial catastrophe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.2. Growth model without dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2.3. Growth models with dispersion and spatial restriction . . . . . . . . . . . . . . . . . . . . . . .4

2.4. Growth model with dispersion but no spatial restrictions . . . . . . . . . . . . . . . . . . . .5

2.5. Connections with branching processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5. Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1. Introduction

Several stochastic growth models have been considered to represent populations sub-
ject to catastrophes. When a catastrophe strikes, a random number of individuals are
removed from the population. Survivors may remain together in the same colony (no
dispersion) or disperse, forming newly independent colonies. These models are of interest
for gaining a deeper understanding of quantities such as population survival probability,
extinction time distribution, mean number of individuals removed and the distribution
of maximum population size. Previous studies [1, 5–7, 14, 17, 18] pertain to popula-
tion models where catastrophe survivors remain united in the same colony, whereas the
models examined in [11, 12, 19, 20, 22] investigate population dynamics with survivors
dispersing to establish new colonies elsewhere. In these papers, different types of cata-
strophes and different dispersion schemes are considered to analyze whether combining
some of these schemes increases population viability. In a biological context, it is known
that dispersion plays a central role in both the dynamics and evolution of spatially
structured populations. While it could save a small population from local extinction,
it also could increase global extinction risk if observed at a very high level; refer to
Ronce [21] for additional details.

The models analyzed in [11, 12, 19, 20, 22] aim to establish the best strategy, i.e. dis-
persion or no dispersion, based on the survival probability of the population. When the
survival probability is zero for both strategies, we need to go one step further and
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consider the expected extinction time. This quantity is of particular importance to
estimate the ‘minimum viable population size’ to guarantee survival for a certain time,
as considered in Brockwell [5]. For single-colony models (no dispersion), one can find
closed-form formulas for the mean extinction times for different types of catastrophes
(see [1, 5, 7]). For models with dispersion, an analogous approach was considered for so-
called geometric catastrophes (see [13]). Geometric catastrophes assume that the batch
of removed individuals, when a catastrophe strikes, follows a geometric law; that is, the
individuals are exposed to the catastrophic effect sequentially and the decline in the
population stops at the first individual who survives or when the whole population in
the colony becomes extinct.

Here, we consider binomial catastrophes in models with dispersion. In binomial
catastrophes, the individuals of a colony are exposed to the catastrophic effect simul-
taneously and every individual survives a catastrophe with the same probability, inde-
pendently of anything else. We are able to present closed-form formulas for the mean
extinction times and make comparisons with models without dispersion. Our analysis
involves comparisons, by numerical and analytical methods, with functions expressed as
infinite products, also known as infinite q-products. They are part of the q-series theory
(see [4]). Further instances and applications of geometric catastrophes are detailed in
[1, 9, 10, 15, 17], while examples and applications of binomial catastrophes can be found
in [1, 5, 6, 14, 16, 18].

In conclusion, we propose to find the optimal strategy under conditions of near-
certain extinction by considering the mean extinction times for populations subject
to binomial catastrophes; that is, when a population is hit by a catastrophe, its size
is reduced according to a binomial distribution. In section 2, we present the non-
dispersion model proposed in Artalejo et al [1] and the models with dispersion proposed
in Junior et al [11]. We also reach new results for these models. In section 3, we discuss
dispersal schemes as strategies for increasing life expectancy. In section 4, we prove the
results presented in sections 2 and 3. Finally, in section 5, a numerical algorithm is
developed allowing us to make calculations and comparisons with the infinite products
that appear in the article.

This type of study provides predictive insights into population dynamics, aiding con-
servation strategies and risk assessment. By quantifying vulnerability, informing policy
decisions and refining models, this line of research contributes to both scientific under-
standing and practical applications.

2. Models and results

2.1. Binomial catastrophe

Populations are frequently exposed to catastrophic events that result in a significant
depletion of their members; for example, habitat destruction, environmental disasters,
epidemics, etc. A catastrophe can instantly wipe out the entire population or just a
part of it. In order to model such events, it is assumed that when a population is hit by
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a catastrophe, its size is reduced according to some law of probability. For catastrophes
that reach individuals simultaneously and independently of everything else, the appro-
priate model assumes a binomial probability law. That is, if at a catastrophe time the
size of the population is i, it is reduced to j with probability

µij =

(
i

j

)
pj (1− p)i−j , 0⩽ j ⩽ i,

where p ∈ (0,1) is the probability that each individual survives the catastrophe. The
form of µij represents what is called a binomial catastrophe.

2.2. Growth model without dispersion

Artalejo et al [1] present a model for a population that sticks together in one colony,
without dispersion. That colony gives birth to new individuals at rate λ> 0, while
binomial catastrophes happen at rate µ.

The population size (number of individuals in the colony) at time t is a continuous-
time Markov process {X(t) : t⩾ 0} that we denote by C(λ,p). With the intention of
making the formulas more straightforward and simplifying the analysis, we take µ=1
and set X(0) = 1.

Artalejo et al [1] uses the word ′extinction ′ to describe the event that X(t) = 0, for
some t > 0, for a process where state 0 is not an absorbing state. In fact, the extinction
time here is the first hitting time to the state 0,

τA := inf{t > 0 :X (t) = 0} .

The probability of extinction of C(λ,p) is denoted by ψA = P[τA <∞]. Its complement,
1−ψA, is called survival probability. Artalejo et al [1] proved that ψA = 1 (extinction
occurs almost surely) for all λ> 0 and 0< p < 1. The next result establishes the mean
time of extinction for C(λ,p).

Theorem 2.1 (Artalejo et al [1]). For the process C(λ,p),

E [τA] =
1

λ

(
∞∏
k=0

(
1+λpk

)
− 1

)
.

Remark 2.2. The infinite product
∏∞

k=0(1+λpk) is convergent for all |p|< 1 and λ ∈ R.
For series representations and other properties of this infinite product, see [4, corollary
2.3] and [8, theorem 10.10].

2.3. Growth models with dispersion and spatial restriction

Let T+
d be an infinite rooted tree whose vertices have degree d +1, except the root

that has degree d. Let us define a process with dispersion on T+
d , starting from a single

colony placed at the root of T+
d , with just one individual. The number of individuals in

a colony grows following a Poisson process of rate λ> 0. We associate an exponential
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time of mean 1 to each colony, which indicates when the binomial catastrophe strikes
the colony. Each individual that survives the catastrophe randomly picks a neighbor
vertex between the d neighboring vertices furthest from the root to create new colonies.
Among the survivors that go to the same vertex to create a new colony there, only
one succeeds; the others die. Therefore, in this case, when a catastrophe occurs in a
colony, that colony is replaced by 0,1, ... or d colonies. Let us denote this process with
by Cd(λ,p).

Cd(λ,p) is a continuous-time Markov process with state space {0,1,2,3, . . .}Td. For
each particular realization of this process, we say that it survives if for any instant of
time there is at least one colony somewhere. Otherwise, we say that it dies out. We
denote by ψd , the probability of extinction of Cd(λ,p). Junior et al [11, theorem 2.8]
showed that ψd < 1 if and only if p > d

d+(d−1)λ , showing that there is a phase transition

with respect to the parameter p.
It is clear that when ψd < 1, the extinction mean time for the process Cd(λ,p) is

infinite. In the next results, we derive the extinction mean time when extinction almost
surely occurs, when d =2 and d =3.

Theorem 2.3. Let τ d be the extinction time of the process Cd(λ,p).

(i) If p < 2
λ+2 , then

E [τ2] =
(λp+1)(λp+2)

λp2 (λ+1)
ln
[

(1− p)(λp+2)

(1− p)(λp+2)−λp2 (λ+1)

]
.

If p= 2
λ+2 , then E[τ2] =∞.

(ii) If p < 3
2λ+3 , then

E [τ3] =
2λp+3

2g (λ,p)
ln
[
3− 3p−λp+ g (λ,p)

3− 3p−λp− g (λ,p)

]
,

where

g (λ,p) =

√
λ2p3 (λ+1)(6+λp− 3p)

(λp+3)(λp+1)
. (2.1)

If p= 3
2λ+3 , then E[τ3] =∞.

2.4. Growth model with dispersion but no spatial restrictions

Consider a population of individuals divided into separate colonies. Each colony begins
with an individual. The number of individuals in each colony increases independently
according to a Poisson process of rate λ> 0. We associate an exponential time of mean
1 to each colony, which indicates when the binomial catastrophe strikes the colony.
Each individual that survived the catastrophe begins a new colony independently of
everything else. We denote this process by C∗(λ,p) and consider it starting from a
single colony with just one individual.
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For each particular realization of C∗(λ,p), we say that it survives if for any instant
of time there is at least one colony somewhere. Otherwise, we say that it dies out. We
denote by ψ∗ the probability of extinction of C∗(λ,p). Junior et al [11, theorem 2.3]

showed that ψ∗ < 1 if and only if p >
1

λ+1
.

It is clear that when ψ∗ < 1, the extinction mean time of C∗(λ,p) is infinite. The
following theorem establishes the mean time of extinction for C∗(λ,p) when ψ∗ = 1.

Theorem 2.4. Let τ∗ the extinction time of the process C∗(λ,p). Then

E [τ∗] =


1− λ+1

λ
ln
[
1− λp

1− p

]
, if p <

1

λ+1
;

∞ , if p=
1

λ+1
.

2.5. Connections with branching processes

Models Cd(λ,p) and C∗(λ,p) are special versions of branching processes. Next, we
present an alternative description of these models.

Let N. be a Poisson process with rate λ and N0 = 1. Let J be an exponential random
variable with rate 1, independent of N.. Consider a population of size NJ that undergoes
a catastrophe; each of its elements survives with probability p, independently of the rest.
After the catastrophe, the surviving population size is then Z =Bin(NJ ,p) (a binomial
random variable). If this number is zero, then set B =0. Otherwise, label each element
of the surviving population with a type 1, . . . ,d, independently of the others, and let B
be the number of distinct resulting types.

Next, consider a continuous-time branching process with rate 1 and offspring distri-
bution B. The resulting model is Cd(λ,p). The limit corresponding to d→∞ (number
of types is the same as the size of the surviving population) is C∗(λ,p) and we refer
to it informally as the d=∞ case. In particular, for C∗(λ,p), the offspring distribution
conditioned on Z is δZ . As for Cd(λ,p), d <∞, the offspring distribution conditioned on
Z =n is equal to k = 0,1, . . . ,d with probability pn,k. In light of the above construction,
p0,· = δ0, and for n⩾ 1, and k = 1, . . . ,d∧n, a combinatorial calculation gives

pn,k =
1

dn

(
d

k

) ∑
r1,...,rk⩾1,r1+···+rk=n

n!

r1! · · ·rk!

(for all other values pn,k = 0). The formula above represents the proportion of ways to
label n items resulting in exactly k distinct labels from the set {1, . . . ,d}. The expression
for pn,k is manageable when d= 2,3 and gets more complicated as d gets larger. Note,
however, that as d→∞, pn,· → δn, which is exactly observed for d=∞.
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3. Discussion

In the presence of binomial catastrophes, dispersion is a good strategy to increase the
probability of survival of the population. When there is no dispersion, the probability
of survival is always zero (see Artalejo et al [1, theorem 3.1]). However, when there is
dispersion, the probability of survival can be positive depending on the parameters λ
and p (see Junior et al [11, theorems 2.3 and 2.8] for details). An interesting question is
to determine whether, when the processes C(λ,p), Cd(λ,p) and C∗(λ,p) almost surely
dies out, dispersion is an advantage or not for extending the population’s life span.
The answer is not trivial. Note that the growth and catastrophe rates are nλ and
n, respectively, whenever there are n colonies in the whole population. Moreover, a
catastrophe is more likely to wipe out a smaller colony than a larger one. On the other
hand, multiple colonies provide multiple chances for survival (because the catastrophe
only affects the colony where it occurs) and this may be a critical advantage of the
processes Cd(λ,p) and C∗(λ,p) over the process C(λ,p). Also note that in the Cd(λ,p)
process, due to space constraints, during dispersion, some individuals may end up at the
same spatial location. In this case, all but one individual dies. As a consequence, there
is a conundrum: on the one hand, dispersion creates independent populations and thus
contributes to survival. On the other hand, dispersion leads to death due to competition
for space.

The next result provides a comparison of the average times until extinction between
processes C(λ,p) and C2(λ,p), under the condition that extinction almost surely hap-
pens in both processes.

Proposition 3.1. Assume p < 2
2+λ . Then E[τA]< E[τ2] if and only if

∞∏
k=0

(
1+λpk

)
< 1+

(λp+1)(λp+2)

p2 (λ+1)
ln
[

(1− p)(λp+2)

(1− p)(λp+2)−λp2 (λ+1)

]
. (3.1)

Moreover, E[τA] = E[τ2] if and only if we have an equality in (3.1).

Proposition 3.1 is a consequence of theorems 2.1 and 2.3(i). In section 5, we develop
a numerical algorithm that allows the computation and comparison of the function
f(p,λ) =

∏∞
k=0(1+λpk). In particular, we can verify whether and where, in terms of

the parametric space, inequality (3.1) holds. From proposition 3.1 we can conclude that
dispersion is a better strategy compared to non-dispersion, when the parameters (λ,p)
fall in the gray region of figure 1. The opposite (non-dispersion is a better strategy than
dispersion) holds in the yellow region. Furthermore, Junior et al [11, theorem 2.8] show
that the extinction probabilities in the white region of figure 1 satisfies ψ2 < 1 = ψA. In
conclusion, still in the white region, dispersion is a better strategy than non-dispersion.

Example 3.2. Both processes, C(1/2,p) and C2(1/2,p), die out if and only if p⩽ 4/5. In
this case, considering (3.1), we obtain pl ≈ 0.38 and pu ≈ 0.75 such that:
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Figure 1. In the gray region, E[τA]< E[τ2]. In the yellow region, E[τA]> E[τ2].

• If p ∈ (pl,pu), then E[τ2]< E[τA]<∞.

• If p= pl or p= pu, then E[τA] = E[τ2]<∞.

• If p ∈ (0,pl)∪ (pu,4/5), then E[τA]< E[τ2]<∞.

• If p⩾ 4/5, then E[τA]< E[τ2] =∞.

The following result establishes a comparison between the mean extinction times
for the processes C(λ,p) and C3(λ,p), when extinction almost surely occurs in both
processes.

Proposition 3.3. Assume p < 3
2λ+3 . Then E[τA]< E[τ3] in and only if

∞∏
k=0

(
1+λpk

)
< 1+

λ(2λp+3)

2g (λ,p)
ln
[
3− 3p−λp+ g (λ,p)

3− 3p−λp− g (λ,p)

]
, (3.2)

where g(λ,p) is given by (2.1). Moreover, E[τA] = E[τ3] if and only if we have an
equality in (3.2).

Proposition 3.3 is a consequence of theorems 2.1 and 2.3(ii). From proposition 3.3,
we can conclude that dispersion is a better strategy compared to non-dispersion, when
the parameters (λ,p) fall in the gray region of figure 2. The opposite (non-dispersion is
a better strategy than independent dispersion) holds in the yellow region. Furthermore,
Junior et al [11, theorem 2.8] show that the extinction probabilities in the white region
of figure 2 satisfies ψ3 < 1 = ψA. Thus, in the white region, dispersion is a better strategy
than non-dispersion.

Example 3.4. Both processes, C(1/5,p) and C3(1/5,p), die out if and only if p⩽ 15/17. In
this case, considering (3.2), we obtain pl ≈ 0.58 and pu ≈ 0.80 such that:

• If p ∈ (pl,pu), then E[τ3]< E[τA]<∞.

• If p= pl or p= pu, then E[τA] = E[τ3]<∞.

https://doi.org/10.1088/1742-5468/acf8bc 8

https://doi.org/10.1088/1742-5468/acf8bc


Extinction time in growth models subject to binomial catastrophes

J.S
tat.

M
ech.(2023)

103501

Figure 2. In the gray region, E[τA]< E[τ3]. In the yellow region, E[τA]> E[τ3].

• If p ∈ (0,pl)∪ (pu,15/17), then E[τA]< E[τ3]<∞.

• If p⩾ 15/17, then E[τA]< E[τ3] =∞.

The following result establishes that the mean extinction time for the process without
dispersion, C(λ,p), is less than for the process with dispersion and no spatial restriction,
C∗(λ,p), when extinction almost surely occurs in both processes.

Proposition 3.5. If p < 1
λ+1 , then E[τA]< E[τ∗].

Proposition 3.5 leads us to the conclusion that, in the absence of spatial constraints
and under binomial catastrophes, dispersion is a more effective strategy than non-
dispersion in extending the population’s lifespan.

4. Proofs

Lemma 4.1 (Lemma 4.1 in Junior et al [12]). Let (Yt)t⩾0 be a continuous time branching
process, where each particle survives an exponential time of rate 1 and right before
death produces a random number of particles with probability generating function

f (s) =
∞∑
k=0

pks
k.

Suppose that Y0 = 1 and f ′(1)⩽ 1. Let τ = inf{t > 0 : Yt = 0}, the extinction time of
the process (Yt)t⩾0.

(i) If p2 ̸= 0 and pk = 0 for k ⩾ 3, then

E [τ ] =


1

p2
ln
(

p0
p0− p2

)
, if f ′ (1)< 1,

∞ , if f ′ (1) = 1.
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(ii) If p3 ̸= 0 and pk = 0 for k ⩾ 4, then

E [τ ] =


1√

4p0p3 +(p2 + p3)
2

ln

2p0 − p2 − p3 +
√

4p0p3 +(p2 + p3)
2

2p0 − p2 − p3 −
√

4p0p3 +(p2 + p3)
2

 , if f ′ (1)< 1,

∞ , if f ′ (1) = 1.

(iii) If p0 = β and pn = αcn for n⩾ 1, where α,β and c are positive constants, then

E [τ ] =


1− 1−β

c
ln
[
1− c

β

]
, if f ′ (1)< 1,

∞ , if f ′ (1) = 1.

In order to prove theorems 2.3 and 2.4, observe that the probability distribution of
the number of survivals right after the catastrophe (but before the dispersion) is given
by

P(N = 0) = β, P(N = n) = αcn,n= 1,2, . . . ,

where

β =
1− p

λp+1
, α=

λ+1

λ(λp+1)
and c=

λp

λp+1
. (4.1)

For details see Machado et al [11, equation (4.1)].

Proof of theorem 2.3. Let Zt be the number of colonies at time t in the model Cd(λ,p).
Observe that Zt is a continuous-time branching process with Z0 = 1. Each particle
(colony) in Zt survives an exponential time of rate 1 and right before death produces
k ⩽ d particles (colonies are created right after a catastrophe) with probability pk given
by

pk =



β , if k = 0;

α

(
d

k

) ∞∑
n=k

T (n,k)
(
c
d
)n

, if 1⩽ k < d;

1−
d−1∑
j=0

pj , if k = d;

where T (n,k) denotes the number of surjective functions f :A→B, with |A|= n and
|B|= k.

Moreover, τ id = inf{t > 0 : Zt = 0}.

• For d =2, we have that

p0 = β, p1 =
2αc

2− c
and p2 = 1−β− 2αc

2− c
.
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Furthermore, the condition p < 2
2+λ is equivalent to p1+2p2 < 1. Thus, from

lemma 4.1(i), we have that

E [τ2] =
1

p2
ln
(

p0
p0− p2

)

=
(λp+1)(λp+2)

λp2 (λ+1)
ln
[

(1− p)(λp+2)

(1− p)(λp+2)−λp2 (λ+1)

]
,

where the last line has been obtained using (4.1).
When p= 2

2+λ , we have that p1+2p2 = 1. Thus, from lemma 4.1(i), it follows that
E[τ2] =∞.

• For d =3, we have that

p0 = β,p1 =
3αc

3− c
,p2 =

6αc2

(3− 2c)(3− c)
and p3 = 1−β− 3αc

3− c
− 6αc2

(3− 2c)(3− c)
.

Furthermore, the condition p < 3
2λ+3 is equivalent to p1+2p2+3p3 < 1. Thus, from

lemma 4.1(ii), we have that

E [τ3] =
1√

4p0p3+(p2+ p3)
2

ln

2p0− p2− p3+
√

4p0p3+(p2+ p3)
2

2p0− p2− p3−
√

4p0p3+(p2+ p3)
2


=

2λp+3

2g (λ,p)
ln
[
3− 3p−λp+ g (λ,p)

3− 3p−λp− g (λ,p)

]
,

where the last line has been obtained using (4.1) and g(λ,p) is given by (2.1).
When p= 3

2λ+3 , we have that p1+2p2+3p3 = 1. Thus, from lemma 4.1(ii), it follows
that E[τ3] =∞.

Proof of theorem 2.4. Analogously to the proof of theorem 2.3, in this case, p0 = β, and
pn = αcn,n= 1,2, . . . .

Proof of proposition 3.5. Assume that p < 1
λ+1 (or equivalently λp < 1− p). From theor-

ems 2.1 and 2.4 we have that E[τA]< E[τ∗] if and only if

∞∏
k=1

(
1+λpk

)
< 1− ln

(
1− λp

1− p

)
. (4.2)

To show that inequality (4.2) holds, note that the series

∞∑
n=1

∞∑
k=1

(−1)n+1

n
λnpkn =

∞∑
n=1

(−1)n+1

n

λnpn

1− pn
,
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converges absolutely if λp < 1− p (use the root test). Thus, by using the Taylor expan-
sion (see [3, chapter 9]) of the function ln(1+x) and Fubini’s theorem (see [2, chapter
10]), we have

ln
[

∞∏
k=1

(
1+λpk

)]
=

∞∑
k=1

ln
(
1+λpk

)
=

∞∑
k=1

∞∑
n=1

(−1)n+1

n
λnpkn

=
∞∑
n=1

∞∑
k=1

(−1)n+1

n
λnpkn

=
∞∑
n=1

(−1)n+1

n

λnpn

1− pn
.

Let an =
(−1)n+1

n
λnpn

1−pn . Observe that for λp < 1− p,

a2n+ a2n+1 = − λ2np2n

2n(1− p2n)
+

λ2n+1p2n+1

(2n+1)(1− p2n+1)

= − λ2np2n

2n(2n+1)

[
2n+1

1− p2n
− 2nλp

1− p2n+1

]
< − λ2np2n

2n(2n+1)

[
2n+1

1− p2n
− 2n(1− p)

1− p2n+1

]
= − λ2np2n

2n(2n+1)

[
2n
[
p2n (1− p)+ p

(
1− p2n

)]
(1− p2n)(1− p2n+1)

+
1

1− p2n

]
< 0.

Thus,

ln
[

∞∏
k=1

(
1+λpk

)]
= a1+

∞∑
n=1

(a2n+ a2n+1)< a1 =
λp

1− p
.

Therefore, using the Taylor expansions of the functions ex and ln(1−x), we have that

∞∏
k=1

(
1+λpk

)
⩽ exp

(
λp

1− p

)

= 1+
∞∑
n=1

1

n!

(
λp

1− p

)n
< 1+

∞∑
n=1

1

n

(
λp

1− p

)n
= 1− ln

(
1− λp

1− p

)
.
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5. Numerical analysis

This section presents the development of a numerical method to identify the regions
within the parametric space of p×λ where inequalities (3.1) and (3.2) hold, as well as
the regions where they do not.

Let

f (p,λ) =
∞∏
k=0

(
1+λpk

)
.

Let g1, g2, h1 and h2, functions of p and λ such that inequalities (3.1) and (3.2) cor-
respond to f < g1 and f < g2, restricted to h1 > 0 and h2 > 0, respectively. Note that

h1 (p,λ) = 2− p(λ+2)

h2 (p,λ) = 3− p(2λ+3) .

In order to calculate and compare the function f, we use the lower and upper bounds
given by the following lemma.

Lemma 5.1. If p < a
bλ+a . Then, for all M ∈ N,

M∏
k=0

(
1+λpk

)
⩽ f (p,λ)⩽ exp

(a
b
pM
) M∏
k=0

(
1+λpk

)
.

Proof. The first inequality holds since 1+λpk ⩾ 1 for all k ⩾ 1. In order to prove the
second inequality, we observe that as p < a

a+bλ , then

λ <
a

b

(1− p)

p
.

Thus, using (1+x)⩽ ex for all x ∈ R,
we have that

∞∏
k=0

(
1+λpk

)
⩽

[
M∏
k=0

(
1+λpk

)]
exp

(
∞∑

k=M+1

λpk

)

=

[
M∏
k=0

(
1+λpk

)]
exp

(
λpM+1

1− p

)

<

[
M∏
k=0

(
1+λpk

)]
exp

(a
b
pM
)
.
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We now consider the following task. Given particular values of p and λ, determine if
f is lower than or greater than g. We do this by recursion on M : if the upper bound of
f is below g then f is lower than g, if the lower bound of f is above g then f is greater
than g, in other case we try again with a bigger value of M. Notice that the upper and
lower bounds of f tend to f when M tends to infinity.
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