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The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the

properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of

plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a

localized pulse in baryon density could propagate throughout the QGP for long distances preserving its

shape and without loosing localization, this could have interesting consequences for relativistic heavy ion

physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain

conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The

solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation

depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS

does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both

perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for

analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.
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I. INTRODUCTION

Korteweg-de Vries (KdV) solitons are very interesting
nonlinear waves, which may exist in many types of fluids
from ordinary water to astrophysical plasmas [1]. In recent
years we have started to produce a new kind of fluid in
laboratory: the quark-gluon plasma (QGP). This is a state
where quarks and gluons, usually confined in the interior of
baryons (such as the proton) and mesons, are free to travel
longer distances. With the beginning of the LHC era, we
have means to study larger and longer living samples of
QGP and even the propagation of perturbations in this new
medium. In this context a natural question is can we have
KdV solitons in the QCD plasma? In this work answer this
question.

Before the QGP there were other fluids made of strongly
interacting hadronic matter and the existence of KdV sol-
itons in these fluids had already been investigated. The first
works on the subject were published in [2], where the
authors considered the propagation of baryon density
pulses in proton-nucleus collisions at intermediate energies.
In this scenario the incoming proton would be absorbed by
the nuclear fluid generating a KdV soliton, which, travers-
ing the whole nucleus without distortion, would escape
from the target as a proton and would simulate an unex-
pected transparency. In [2] the existence of the KdV soliton
relied solely on the equation of state (EOS), which had
without substantive justification. In [3] we reconsidered the
problem, introducing an equation of state derived from
relativistic mean field models of nuclear matter. We con-
cluded that the homogeneous meson field approximation
was too strong and would exclude the existence of KdV
solitons. We could also trace back the derivative terms in
the energy density to derivative couplings between the

nucleon and the vector meson. In [4] we extended our
analysis to relativistic hydrodynamics and in [5] to spheri-
cal and cylindrical geometries. In [6] we considered had-
ronic matter at finite temperature and studied the effects of
temperature on the KdV soliton. In [7] we started the study
of perturbations in the QGP at zero and finite temperature.
The conclusion found in that work was that the existence of
KdV solitons in a QGP depends on details of the EOS and
with a simple MIT bag model EOS there is no KdV soliton!
A further study of the equation of state, carried out in [8],
showed that if nonperturbative effects are included in the
EOS through gluon condensates, then new terms appear in
the expression of the energy density and pressure. In [8] we
focused on the simpler case of a cold (T ¼ 0) plasma. The
obtained EOS, because of nonperturbative effects and be-
cause of the inclusion of hard gluons, is able to generate
more pressure and thus can explain the puzzling massive
neutron stars recently observed [9].
In the present work we show how the new derivative

terms lead to a KdVequation, after the proper treatment of
the hydrodynamical equations. This new EOS can be ap-
plied to the study of the propagation of perturbations in the
core of dense stars.
In the next section we briefly review the equations of

one-dimensional relativistic fluid dynamics. In section III
we introduce the equation of state, in Sec. IV we derive the
KdVequation and in Sec. V we present a numerical analy-
sis of the obtained equation.

II. RELATIVISTIC FLUID DYNAMICS

Relativistic hydrodynamics is well presented in the text-
books [10,11]. The relativistic version of the Euler equa-
tion [7,10,11] is given by
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�
~rpþ ~v
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@t

�
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where ~v, ", p, and � are the velocity, energy density,
pressure, and the Lorentz factor, respectively. We employ
the natural units c ¼ 1 and ℏ ¼ 1. Space and time coor-
dinates will be in fmð1 fm ¼ 10�15mÞ. The relativistic
version of the continuity equation for the baryon density
is [10]

@�jB
� ¼ 0 (2)

Since jB
� ¼ u��B the above equation can be rewritten as

[7]

@�B

@t
þ �2v�B

�
@v

@t
þ ~v � ~rv

�
þ ~r � ð�B ~vÞ ¼ 0; (3)

where �B is the baryon density.
Equations (1) and (3) may be studied in the two-

dimensional case which is relevant for heavy ion collisions,
but in this work we treat only the one-dimensional case for
simplicity and also because it may be realistic in the case of
radial, spherically symmetric perturbations (relevant for
stars). The present work is in Cartesian coordinates and
as mentioned before, we have already developed this for-
malism for the case of a spherical geometry [5].

In the one-dimensional Cartesian relativistic fluid
dynamics the velocity field is written as ~v ¼ vðx; tÞx̂where
x̂ is the unit vector in the x direction. Equations (1) and (3)
can be rewritten in the simple form:
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ð"þ pÞ
�
@p
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�
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and
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@x

�
þ ð1� v2Þ

�
@�B

@t
þ�B

@v

@x
þ v

@�B

@x

�
¼ 0:

(5)

III. THE QGP EQUATION OF STATE

In what follows we present the mean field treatment of
QCD developed in [8] (for previous works on the subject
see [12,13]) and go beyond the homogeneous field approxi-
mation, including the terms with gradients.

The Lagrangian density of QCD is given by

LQCD ¼ � 1

4
Fa
��F

a�� þ XNf

q¼1

�c q
i ½i��ð�ij@� � igTa

ijG
a
�Þ

� �ijmq�c q
j ; (6)

where

Fa�� ¼ @�Ga� � @�Ga� þ gfabcGb�Gc�: (7)

The summation on q runs over all quark flavors, mq is the

mass of the quark of flavor q, i and j are the color indices of
the quarks, Ta are the SU(3) generators and fabc are the

SU(3) antisymmetric structure constants. For simplicity
we will consider massless quarks, i.e. mq ¼ 0. Moreover,

we will drop the summation and consider only one flavor.
At the end of our calculation the number of flavors will
be recovered. Following [12,13], we shall write the gluon
field as

Ga� ¼ Aa� þ �a�; (8)

where Aa� and �a� are the low (‘‘soft’’) and high (‘‘hard’’)
momentum components of the gluon field, respectively.
We will assume that Aa� represents the soft modes which
populate the vacuum and the terms containing Aa� will be
replaced by their expectation values hAa�i, hAa�Aa

�i, etc. in
the plasma. �a� represents the modes for which the run-
ning coupling constant is small.
In a cold quark-gluon plasma the density is much larger

than the ordinary nuclear matter density. These high den-
sities imply a very large number of sources of the gluon
field. Assuming that the coupling constant is not very
small, the existence of intense sources implies that the
bosonic fields tend to have large occupation numbers at
all energy levels, and therefore they can be treated as
classical fields. This is the famous approximation for
bosonic fields used in relativistic mean field models of
nuclear matter [14]. It has been applied to QCD in the
past and amounts to assume that the hard gluon field,�a

�, is

simply a function of the coordinates:

�a
�ð ~x; tÞ ¼ ��0�

a
0ð ~x; tÞ (9)

with @��
a
� � 0. This space and time dependence goes

beyond the standard mean field approximation [14],
where �a

� is constant in space and time and consequently

@��
a
� ¼ 0. We keep assuming, as in [8], that the soft gluon

field Aa� is independent of position and time and thus
@�Aa� ¼ 0. Following the same steps introduced in [8]
we obtain the following effective Lagrangian:

L0 ¼ � 1

2
�a
0ð ~r2

�a
0Þ þ

mG
2

2
�a
0�

a
0 �BQCD

þ �c iði�ij�
�@� þ g�0Ta

ij�
a
0Þc j; (10)

where mG is the dynamical mass of the hard gluon �
generated by its interaction with the soft gluons Aa�

from the vacuum and it is related to the dimension-two
hA2i gluon condensate. The constantBQCD is related to the

dimension four gluon condensate hF2i (see [8] for details).
The effective Lagrangian (10) is quite similar to the one

obtained in [8] and the only difference is the first term,
which is new and comes from the gradients. The equations
of motion [6] are given by

@L
@�i

� @�
@L

@ð@��iÞ þ @�@�

�
@L

@ð@�@��iÞ
�
¼ 0: (11)

Inserting (10) into (11) with �1 ¼ �a
0ð ~x; tÞ and �2 ¼

�c ð ~x; tÞ we find
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� ~r2
�a
0 þmG

2�a
0 ¼ �g�a (12)

ði��@� þ g�0Ta�a
0Þc ¼ 0; (13)

where �a is the temporal component of the color vector
current given by ja� ¼ �c i�

�Ta
ijc j. In the end of the

calculation the color index a will be averaged and the
energy density and pressure will be color neutral as they
should be. The quark densities will have their color indices
contracted and final quantities appearing in the equation of
state will be number densities (or baryon number
densities).

The energy-momentum tensor reads [6]

T�� ¼ @L
@ð@��iÞ ð@

��iÞ � g��L�
�
@�

@L
@ð@�@��iÞ

�
ð@��iÞ

þ @L
@ð@�@��iÞ ð@�@

��iÞ: (14)

From the above expression we can obtain the energy
density (" ¼ <T00 > ) which turns out to be [8]

" ¼ 1

2
�a
0ð ~r2

�a
0Þ �

mG
2

2
�a
0�

a
0 þBQCD � g�a�a

0

þ 3
�Q

2	2

Z kF

0
dkk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
; (15)

where �Q is the quark degeneracy factor �Q ¼ 2ðspinÞ �
3ðflavorÞ. The sum over all the color states was already
performed and resulted in the prefactor 3 in the expression
above. kF is the Fermi momentum defined by the quark
number density �:

� ¼ hNjc y
i c ijNi ¼ 3

V

X
~k;


hNjNi ¼ 3
�Q

ð2	Þ3
Z

d3k

¼ 3
�Q

2	2

Z kF

0
dkk2 ¼ �Q

2	2
kF

3: (16)

In the above expression jNi denotes a state with N quarks.
In a first approximation the field �a

0 may be estimated

from (12). Neglecting the derivative term ~r2
�a
0 of (12)

we have [6]:

�a
0 ffi � g

mG
2
�a: (17)

Inserting (17) in the first term of (12) and then solving it for
�a
0 we find

�a
0 ¼ � g

mG
2
�a � g

mG
4
~r2
�a: (18)

We can write the color charge density �a in terms of the
quark number density � through

�a�a ¼ 3�2: (19)

Analogously we have

�a ~r2
�a ¼ 3� ~r2

�; �a ~r2ð ~r2
�aÞ ¼ 3� ~r2ð ~r2

�Þ: (20)

Inserting (18)–(20) into (15), performing the momentum
integral and using the baryon density, which is �B ¼ 1

3�,

we arrive at the final expression for the energy density in
one spatial dimension:

" ¼
�
27g2

2mG
2

�
�B

2 þ
�
27g2

2mG
4

�
�B

@2�B

@x2
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�
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6
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8

�
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@x2
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þBQCD þ 3

�Q

2	2

kF
4

4
: (21)

The pressure is given by p ¼ 1
3 < Tii > . Repeating the

same steps mentioned before we arrive at

p ¼
�
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�
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�
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4

�
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8

�
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@4�B

@x4
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2mG
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@x3

�
�
9g2
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@�B
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@x3
�BQCD þ �Q

2	2
; (22)

where now kF defined by (16) is given by �B ¼ kF
3=	2.

IV. THE KDV EQUATION

We now combine Eqs. (4) and (5) to obtain the KdV
equation which governs the space-time evolution of the
perturbation in the baryon density. We first write (4) and
(5) in terms of the dimensionless variables:

�̂ ¼ �B

�0

; v̂ ¼ v

cs
; (23)

where �0 is an equilibrium (or reference) density, upon
which perturbations may be generated, and cs is the speed
of sound. Next, we introduce the � and � ‘‘stretched’’
coordinates [2,15]:

� ¼ 1=2 ðx� cstÞ
R

; � ¼ 3=2 cst

R
; (24)

where  is a small expansion parameter, R is a typical size
scale of the problem. After this change of variables we
expand (23) as

�̂ ¼ 1þ �1 þ 2�2 þ . . . (25)

v̂ ¼ v1 þ 2v2 þ . . . : (26)

Having rewritten (4) and (5) in the �� � space and having
expanded them in powers of  up to 2 we organize the
two equations as series in powers of. After these steps (4)
and (5) become
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and



�
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@v1
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respectively. In the last two equations each bracket must
vanish independently and so f. . .g ¼ 0. From the first term
of (28) we obtain �1 ¼ v1. Using this identity in the first
term of (27) we obtain an equation, which solved for cs
yields

cs
2 ¼
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27g2�0

2

m
G
2

	
þ 	2=3�0

4=3�
27g2�

0
2

mG
2

	
þ 3	2=3�0

4=3
: (29)

Inserting these results into the terms proportional to 2, we
find, after some algebra the KdV equation:
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where
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Returning to the x� t space we obtain
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where
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and

� ¼
�
9g2�0

2cs
mG

4A

�
; (34)

which is the KdVequation at zero temperature for the small
perturbation in the baryon density �̂1 � �1. If we neglect
the space and time derivatives in (21) and (22) and repeat
the derivation sketched above we arrive at

@�̂1

@t
þ cs

@�̂1

@x
þ �cs�̂1

@�̂1

@x
¼ 0; (35)

which is a breaking wave (BW) equation for �̂1. We close
this section emphasizing that Eq. (32) is the main result of
this work. It shows that for suitable choices of the parame-
ters � and � we can have KdV solitons in a quark-gluon
plasma.

V. NUMERICAL ANALYSIS

The KdVequation (32) has an analytical soliton solution
given by [1]

�̂ 1ðx; tÞ ¼ 3ðu� csÞ
�cs

sech2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðu� csÞ
4�

s
ðx� utÞ

�
; (36)

where u is an arbitrary supersonic velocity. A soliton is a
localized pulse which propagates without change in shape
and in this case it has the width 
 defined by


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�

ðu� csÞ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36g2�0

2cs
ðu� csÞmG

4A

s
: (37)

For the numerical estimates we shall use the following
values of the parameters: BQCD ¼ 0:0006 GeV4, g ¼
0:35, mG ¼ 290 MeV and �0 ¼ 2 fm�3 which, when
substituted in (29) yield cs

2 ¼ 0:5 (cs ¼ 0:7). We choose
u ¼ 0:8. With the help of (37) we find 
 ¼ 1:7 fm for the
soliton width and 0.6 for its amplitude. Even though this
work is essentially qualitative the chosen numbers are well
appropriate to study a realistic situation of a perturbation
traversing the QGP.
In Fig. 1 we show the numerical solution of (32) with

initial condition �̂1ðx; t ¼ 0Þ and �̂1ðx; tÞ given by (36). We
can observe the time evolution of the initial Gaussian-like
pulse as a well-defined soliton, keeping its shape and form.
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This solution shows the behavior expected from the ana-
lytic solution. We see that using the correct input for the
amplitude and width we obtain a pulse which propagates
without distortion. This initial condition is a very special

case of little practical interest. A real perturbation pro-
duced in the QGP will most likely have the ‘‘wrong’’
amplitude and wrong width. For arbitrary amplitudes the
solution must be numerically calculated.
In Fig. 2 we show again the numerical solution of (32)

with the initial condition given by (36) multiplied by a
factor 10. Now we observe that the initial pulse starts to
develop secondary peaks, which are called ‘‘radiation’’ in
the literature. Further time evolution will increase the
strength of these peaks until the complete loss of
localization.
In Fig. 3 we show the numerical solution of (35) with the

initial condition given by (36). We observe the gradual
formation of a ‘‘wall’’ followed by the dispersion of the
initial pulse. In Fig. 4 the amplitude of the initial pulse (36)
is multiplied by a factor 10 and used as initial condition for
(35). As expected the dispersion takes place much earlier
than in Fig. 3.

VI. SUMMARY

The main conclusion of this work is that it is indeed
possible to have KdV solitons in QCD, provided that two
conditions are satisfied. The first condition is that the gluon
field have a dynamical mass. In this case the equation of
motion (12) can be solved in the weak inhomogeneity
approximation yielding (18). The existence of a dynamical
gluon mass has been intensely discussed in the literature
during the last years and seems to be well established (for
details see the references given in [8]). For a massless
gluon field we can only have a breaking wave equation,
as it was found in our previous work [7]. The second
condition is the existence of second order derivative terms
in the energy density and pressure. These terms appear
naturally from the formalism, as we can see in (15).
However it is necessary to keep these derivative terms.
The use of uniform field approximations prevents us
from finding KdV solitons. If we neglect the derivatives
we arrive at the breaking wave Eq. (35). The practical

FIG. 1. Numerical solution of (32) with (36) as initial condi-
tion calculated at different times.

FIG. 2. The same as Fig. 1 with an initial amplitude 10 times
larger.

FIG. 3. Numerical solution of (35) with (36) as initial condi-
tion.

FIG. 4. The same as Fig. 3 with an initial amplitude 10 times
larger.
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difference between perturbations governed by the KdVand
BW equations is that the former propagate much longer
keeping its localization whereas the latter loose localiza-
tion and may generate unstable ‘‘walls’’. The numerical
analysis of some cases confirms the anticipated qualitative
expectation. The application of the formalism developed in

this work to problems in the theory of compact stars is in
progress.
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