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Abstract

When a random sea is filtered by the transfer function of a floating system a narrow banded excitation at the suspended end of risers and
mooring lines is, in general, obtained. Using then this gaussian narrow banded signal as input and the algebraic expression for the dynamic
tension derived in Aranha and Pinto [Dynamic tension in risers and mooring lines: an algebraic approximation for harmonic excitation
(2001), submitted], the probability density function (pdf) for the envelope of the dynamic tension in the risers and mooring lines can be
analytically approximated. The obtained expression differs, in general, from the Rayleigh distribution and it is compared, in the present work,
with numerical results in the time domain, the agreement being fair even in the cases where the risers become dynamically compressed. From
a more practical point of view, given then the transfer function of the floating body and the wave energy spectrum, the statistics of the
dynamic tension can be estimated directly from some few integral parameters of the static configuration introduced in Aranha and Pinto
[Dynamic tension in risers and mooring lines: an algebraic approximation for harmonic excitation (2001), submitted], avoiding the simula-

tion in time of the riser’s dynamics. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Risers and mooring lines, anchored in a floating system, are
dynamically excited by random sea waves, in general modeled
as being a gaussian process, see Refs. [1,2]. However, the
relation between the basic input, the sea wave, and the
dynamic tension in the cable is non-linear, mainly due to
the viscous dissipation caused by the cable motion in water.
The non-linearity distorts the gaussian property of the input
and, as a consequence, the envelope of the dynamic tension
does not follow, in general, the usual Rayleigh distribution of
the linear systems excited by a gaussian process. One should
resort to long time domain simulations to obtain statistical
information about the dynamic tension, an effort that besides
to be tedious is not free of uncertainties, mainly because some-
times the numerical codes present difficulties when simulating
a high sea state, as discussed in Ref. [3].

On the other hand, the sea wave is filtered by the floating
body transfer function, resulting in a random displacement
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U(?) in the direction of the cable’s tangent at the suspended
end that, besides to be gaussian, is narrow banded. It turns
out then that U(¢) is a quasi-harmonic random excitation
and, in this context, the envelope of the dynamic tension
can be estimated by the algebraic approximation derived in
Ref. [3]. Once a relation between the envelopes of the
dynamic tension and of the displacement U(¥) is established,
it is a trivial exercise to obtain the probability density func-
tion (pdf) for the envelope of the dynamic tension, since the
envelope of U(r) follows the standard Rayleigh distribution.
This is the objective of the present work. In Section 2, some
basic results about the envelope of a narrow banded random
signal are recovered and the probability density function for
the envelope of the dynamic tension is derived; in Section 3,
the obtained expression is checked against numerically deter-
mined probability density functions using the ORCAFLEX
program and in Section 4 the conclusions are presented.

2. Probability density function for the envelope of the
tension

Suppose a harmonic wave with unit amplitude, frequency
o and incident in a direction 8, and let Hy(w,B) be the
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floating body transfer function, relating this wave to the
tangent displacement U(¢) at the cable suspended end. A
random gaussian sea wave, incident in the direction 8 and
with an energy spectrum S(w), causes a random gaussian
displacement U(¢) with spectrum Sy(w) given by

Sy(w) = [Hy(w, BI*S(w). (2.1a)

Introducing the spectral moments

miy = J o'Sy(w)do,  j=0,1,2,.... (2.1b)
0

the standard deviation oy, the central frequency wy and the
averaged frequency wyz are defined by the expressions:

12 m y _ My
oy = myy, = wzy = . (2.1¢)
my.y my y

Following Ref. [2], the bandwidth of the random signal
U(?) can be gauged by the non-dimensional parameter

vy = ( Wz.u )2—1, 2.2)

wy

where obviously, vy =0 for a harmonic signal, since
wzy= wy. The basic assumption in the present work is
that the floating system transfer function filters the wave
input, rendering the imposed displacement U(f) narrow
banded (vy<<1); this assumption will be verified in the
present work, where the transfer function of an actual
system will be used in the examples.

A realization of the random signal U(¢) with duration Ty
can be expressed in the form of the Fourier series

U@ = Z U, cos(w,t + ¢@,), w, = nAw,

(2.3a)
Aw = 27/Tg.

The random phases {¢,; n=1,2,...} being uniformly
distributed in the interval (0,27) and the random amplitudes
{U,; n=1,2,...} obeying the Rayleigh distribution with
E[U,f] = 2Sy(w,)Aw. Let now V(¢) be the Hilbert transform

Introducing the functions

US(t) = Z Un COS(Qnt + ‘Pn)’

(2.4a)
Vs() => U, sin,t + @), 2,=w,~ oy
one can easily check that
U(t) = cos(wy)Us(t) — sin(wyt)Vs(1),

(2.4b)

V(t) = cos(wyt)Vs(t) + sin(wyt)Us(t)

and so

Up(t) = +/ U(1) + VZ(0). (2.4¢)

If now the phase ¢(7) is defined by the relations
Us(1) Vs(®)

cosg(t) = s ine(t) = s (2.4d)
Uo(1) Uo(1)

then the displacement U(¢) can be written in the form

U(t) = Uy(t) cos(wyt + @(1)). 2.5)

If (-) is the time average operator, it is now an easy task to
check that

o\ 12

(50 menteroy”.
o\ 12

<( d‘ilst(t)) > _ VUwU<V52(t)>1/2

and so, from Eqs. (2.4c) and (2.4d), it follows that the envelope1
Uy(t) and the phase ¢(t) in Eq. (2.5) change slowly in time for a
narrow banded process (v << 1). In this case, the displacement
U(t) is quasi-harmonic and, in this context, the algebraic
approximation derived in Ref. [3] can be used to estimate the
dynamic tension. This point will be elaborated next.

Consider thus the quasi-harmonic input (2.5) and let
a(t) = Uy(t)/oy be the normalized envelope of U(¢); the
envelope Tp(s,f) of the dynamic tension can be approxi-
mated, in this context, by the harmonic results (2.8a) and
(2.8b) obtained in Ref. [3], or

[q(s)(\/bz(n) + @G04 (1) — b)) + 2e5(5)4BHD) + (LY (1) — b)) ] ”
(s, 1) = ,
(2.62)

(44512%
TD(S, t) Oy
= DY T. = EA—Y_
T(S, t) Te ’ e l + ll 4
of U(), given by where (I + 1) is the cable’s effective length and {{y; (2;
1 © U(s) b(£2); c15(s)} are defined in Egs. (2.5), (2.7¢) and (2.8¢c)
Vo= 77710‘/4[ f—s ds = Z U, sin(w,t + ¢,) (2.3b) of Ref. [3]; however, in these expressions the central

frequency wy, see Eq. (2.1c), is used in the place of w in

and Uy(7) be defined as these expressions. The dynamic tension TD(s, ) is then

Uy(t) = \JU*(@) + V2(@). (2.3¢)

' An enlightened discussion about ‘wave envelope’ is given in Ref. [14].
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given by
Tp(s, 1) = Tp(s, 1) cos(wyt + ¢(s, 1)) (2.6b)

with Tp(s,f) defined in Eq. (2.6a) and ¢(s,f) being the
random phase. Observing that both Tp(s,f) and ¢(s,t) vary
slowly in time, from Eq. (2.6b) it follows that

rmsf"D(s, 1) :
T,

(0]

t+ 27wy
_ E[ Yu J ’ 72(s, 1) cos*(wy € + (s, 1)) df]

2’7T t

1
= SEIT(s,0)]
and so

msTp(s, 1) = Too(s), al(s) = %E[#(s,r)]. (2.6¢)

The variable a(f), being the normalized envelope of the
gaussian variable U(f), follows the normalized Rayleigh
distribution pr(a) = aexp(—a2/2) and it is now a simple
exercise to obtain, from Egs. (2.6a)—(2.6¢), the probability
density function p.(7;s) of the dynamic tension envelope
7(s,f). In fact, introducing the functions

@)= \BAQ) + BL3102"a? — b(2D),

0

=5

[c,(s)f2 + 202(s)f]1/2

and using the relations

da\ _ 2+
Pl PTG

d
df) =G L@,

pe(f) = (

It is easy to check that

piris) = —— 7" i
T al® T e (F + By e ()17
X F(7) e~V Fo020@)
_0°b(0)
2%
2 2
F(r) = (CZ(S)) + b2 D )2 2O Ly,
c1(s) e (s) ci(s)

(2.7a)

From Eq. (2.7a) it follows that the normalized standard
deviation o .(s) of the dynamic tension fD(S, 1), introduced

in Eq. (2.6¢), is given by

1
o.(s) = c}lz(s){[l — f(m ifg; - l)]

1 o) 12
2(8) 2
+ 'y(b(Q) e I)G(y /2)} (2.7b)

the function G(-) being defined by the integral

G(x) = €* r 2te ' dr. (2.7¢)

With Egs. (2.7b) and (2.7¢) the standard deviation of
the dynamic tension can be determined, see Eq. (2.6c),
and the normalized envelope r(s,t) can be introduced by
the expression

TD(S, t)

) = S o,

(2.8a)

The related probability density function being given by

PE(r;s)
_ 0'3(5) e«f/z r
¢1(5) Vieas)e ()1 + (D) a2 (Ve (s)1r?
X F(r) e (VEON@D) V= L) ,
24,
ca(s) )2 P(Dos)), )

F(r) = + - + b(QD).
(r) J(q(s) (yzcm T aw T

(2.8b)

As shown by Triantafyllou et al. [4] and discussed in
Ref. [3], either in high frequency limit or else when the
amplitude of the imposed displacement becomes very
large, the cable almost freezes in its equilibrium position,
due to the action of the viscous dissipation, and the imposed
displacement is absorbed elastically by the cable; since
U(t) = oya(t) and {y— o0 as oy does, then one has (see
Eq. (2.9a) in Ref. [3])

Tp(s,t) — T.a(t), (wylwe; oy/D) > 1.

From this expression it follows that {o.(s)—1;
r(s,t)— a(®)} in these limits and, in particular, one has
that pg(r) — pr(r) = rexp(r2/2). These results can be
recovered from the above expressions, as elaborated next.
In fact, when 2 > 1 (but keeping wy/w. < 1) then, with an
error of the form [1 + O((wy/w.)*;1/02?)), it can be seen that
{ci() =1; b)) = cx(s) = 1 + 2 y= 0(2*) > 1} and
SO G(y2/2) = v; from Eq. (2.7b) it follows that o,(s) =1
and from Eq. (2.8b) that pg(r) = pR(r)zrexp(rZ/Z). If
oy— 0 ({(— o) one has that y— 0 and so, again,
{o:(s) =1; pe(r) =pr(n)}.

So far it has been assumed that the dynamic tension is
given by the quasi-harmonic expression (2.6b). As the
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amplitude and frequency increase, however, the dynamic
tension becomes large and the riser can be dynamically
compressed; in this case the compressive force saturates
at the critical value P.(s) defined by (see Ref. [5])

P (s) = Bcr(X(s))\/ (m + myElwy,

where x(s) is the static curvature and S, is the root of the
transcendental equation (2.6) in Ref. [5]. The saturation of
the compressive force at the critical value (2.9a) has been
verified numerically, see for example fig. 3.4 in Ref. [5], and
the experimental results due to Ref. [6], see also fig. 3.1b in
Ref. [3], indicate that the total tension Trorar(s,f) can be
expressed in the form

(2.9a)

1

TroraL(s, 1) = B [1+ sign(T(s) + Tp(s, 1) + Per()I(T(s)

+ Tp(s, 1) — %[1 — sign(T(s) + Tp(s, 1)

+ P ()P (5),
(2.9b)

where 7(s) is the static tension and T (s, 7) is the dynamic
tension (2.6b).

It follows then, from Eq. (2.9b), that the probability
density function of the envelope of the maximum positive
values of the dynamic tension can be approximated, even in
this saturated situation, by Egs. (2.6¢c), (2.7b), (2.8a) and
(2.8b), as if the dynamical tension were effectively given
by the quasi-harmonic expression (2.6b). This point will be
numerically checked in the following section.

3. Numerical results

In all cases simulated the random sea was defined by a
Pierson—Moskowitz spectrum with a cut-off frequency
twice the peak frequency wp, see Ref. [2]. To characterize
the sea state by a single parameter, the significant wave
height Hg, the average wave steepness was assumed
constant and equal to the value related to a fully developed

Table 1

sea, see Ref. [7], or
(3.1a)

The wave spectrum being then given by

H? 1
Sty = — 55 L xp(

51 w
. 0=¢=2 =0
6 wp & ) ¢

4 g4
(3.1b)

In the simulations an actual VLCC, with a turret placed at
0.2L (or at 0.4 L) ahead the midship and anchored in a
water depth 2 = 1000 m, was choosen as a floating system.
The wave direction, measured in relation to the ship’s axis,
was B = 180, 135, 90° and the significant wave height was
taken in the interval 5 m = Hg = 14 m; the cables, hanging
from the turret center, have angles at the suspended end in
the range 50° < 65 = 85°. The transfer function (RAO) was
determined by the program wAMIT and in all cases analyzed
the tangent motion at the cables suspended end have a non-
dimensional bandwidth in the range 0.10 = v, = 0.16, the
smaller values being for 8 =90° and the larger ones for
B =180°. The properties of the cables, if a flexible riser
or a steel riser or even an heterogeneous mooring line, are
defined in Ref. [3], together with the ocean current profile.
The cases selected to be discussed here are defined in Table
1; in all these cases B = 90° since then the imposed motion
is the largest one.

In case 1 the heterogeneous mooring line was not dyna-
mically compressed and the dynamic tension can then be
expressed in the form (2.6b). Fig. 1 shows, in the upper part,
a window of the time series of the dynamic tension obtained
directly from ORCAFLEX. This signal has been filtered then at
the same cut-off frequency 2wp of the wave spectrum,
accordingly to the procedure suggested by Longuet-Higgins
[2]; notice, also, that this filtering process has an experi-
mental support since the presence of higher harmonics
were not noticeable in the experiments done by Andrade
[6]. The filtered signal is shown in the second row of
Fig. 1 and the related envelope, obtained from the Hilbert
transform (see Eqs. (2.3b) and (2.3c¢)), is shown in the third
row; the last row in this figure shows the filtered signal
superposed to the envelope.

Cases simulated. Hg: significant wave height; B: incidence angle; h: water depth; (HL): heterogeneous mooring line; (FR): flexible riser; (SR): steel riser; 605:
angle at the top (before the ocean current is turned on in cases 4 and 6). Turret at 0.2 L (in case 2 at 0.4 L)

Case Environment Cable Tangent motion
Hg (m) B (deg) Curre. Type 05 (deg) h (m) oy (m) wy (rad/s) vy

1 10 90 No (HL) 58 1000 2.60 0.4838 0.10
2 10 90 No (FR) 85 1000 3.45 0.4900 0.10
3 9 90 No (SR) 60 1000 2.24 0.4913 0.10
4 9 90 Yes (SR) 60 1000 2.3 0.4913 0.10
5 9 90 No (SR) 73 1000 2.47 0.4915 0.10
6 9 90 Yes (SR) 73 1000 2.52 0.4916 0.10
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The probability density function was estimated from the
obtained envelope record by observing the frequency of
occurrence of tension’s values at a sequence of discrete
time intervals. To obtain some statistical stability it is desir-
able to average the numerical values, either using distinct
set of simulations or else an extremely long simulation;
since this procedure is very time consuming and several
cases were analysed, the time record was assumed equal
to 20 min in each simulation and some degree of uncertainty
should be expected. Only in one case, just for this hetero-
geneous line, a second random simulation was computed
and the numerical estimate of the probability density func-
tion was obtained from the average of the two simulations.
The result is shown in Fig. 2, where the numerically
estimated pdf, both at the TOP (suspended end) and TDP
(touchdown point), is compared with Eq. (2.8b). The agree-
ment is fair, in the sense that both the numerically estimated
pdf and Eq. (2.8b) deviate from Rayleigh distribution in a
similar way and that the two distributions are closer in the
case where the average of the two simulations was taken.

In the right part of the same Fig. 1 a different plot is
shown: there the cumulative probability function (cpf) is
plotted against the dynamic tension normalized by its rms;
in fact, what was plotted is the variable sqrt[—2 In(1 —
cdf)], that is exactly equal to the normalized tension for a
Rayleigh distribution. In this plot the numerical values of
sqrt[—2 In(1 — cdf)] were computed by determining the
frequency of occurrence of the local maximum values of
the unfiltered Orcaflex time series (first row in Fig. 1))
and, once these discrete values are obtained, a Weibull
distribution was fitted using a minimum square technique,
see Refs. [8,9]. In the same figures the results obtained from
Eq. (2.8b) are also shown and it is not difficult to explain the
necessity of this plot here: in fact, as it will be seen, when
the riser becomes dynamically compressed the approach
based on the envelope ceases to be valid but the one based
on the local maximum continue to be applicable. Further-
more, this plot is useful to check the behavior at the extreme
values, where the probability density function is small.

The agreement between Eq. (2.8b) and the numerical
results (and also with the Weibull distribution) in the plots
of sqrt[—2 In(1 — cdf)] is fair enough: both deviate from
Rayleigh distribution in a similar way and show a relatively
close agreement mainly for the extreme values of the
normalized tensions. Besides eventual numerical inaccura-
cies, the result could be bettered by increasing the simula-
tion time in order to obtain greater statistical stability.

In all remaining cases of Table 1 the cable becomes dyna-
mically compressed both at the TOP and TDP (in case 2
only at the TDP) and this poses some questions in the proce-
dure to estimate numerically the statistical properties. In
fact, as the dynamical tension saturates at the critical
value —P,, in the compressed zone, the signal ceases to be
narrow banded and the approach used to estimate the envel-
ope’s probability density function looses its meaning: the
envelope computed from the Hilbert Transform tries to cope

with the well behaved narrow banded signal in the positive
side and the saturated signal in the compressed part.

One must use then the other approach, based on the
frequency of occurrence of the local maximum of the time
signal, but even here the analysis is not as straight as before.
Indeed, the normalized probability density function (2.8b)
uses the normalized variable r, determined from Eq. (2.8a),
with the rms computed from Eq. (2.6¢), as if the dynamic
tension were not saturated in compression. The point is that
the actual rms should be computed from Eq. (2.9b) and the
rms determined from ORCAFLEX should approach this value
and not from Eq. (2.6¢). Instead of computing the rms from
Eq. (2.9b) an easier approach was followed here: the vari-
able sqrt[—2 In(1 — cdf)] was plotted, in the theoretical
computation, as a function of r* where

« _ (tms)o6c) p
(rms)orca

The theoretical dynamical tension has been normalized
then by the rms obtained directly from ORCAFLEX, in such
way that an eventual agreement between the numerical
results and Eq. (2.8b) in the figures below means equal

(A)

200 250 300 350 400 450 500 550 600 650 700

-
I_
5 0 (B)
o

200 250 300 350 400 450 500 550 600 650 700

200 250 300 350 400 450 500 550 600 650 700
time(s)

Fig. 1. Case 1: (a) (A) Orcaflex time series for the dyanmic tension
(window); (B) filtered Orcaflex time series at 2wp; (C) envelope of (B)
from Hilbert transform; (D) (B) + (C). (b) TOP. Left: envelope pdf: (—)
(2.8b); (*) Orcaflex (20 m); (O) Orcaflex (60 m); (- - -) Rayleigh. Right:
(—) (2.8b); (<) Orcaflex (20 m); (-----) Weibull; (- - -) Rayleigh. (c) TDP.
Left: envelope pdf: (—) (2.8b); () Orcaflex (20 m); (O) Orcaflex (60 m);
(- - -) Rayleigh. Right: (—) (2.8b); (<) Orcaflex (20 m); (-----)
Weibull; (- - -) Rayleigh.
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probability for the same level of the actual (dimensional)
tension.

Fig. 2 shows, for the case 2, the plot of sqrt[—2 In(1 —
cdf)] as a function of the dynamic tension normalized by
(rms)orca- The values have been obtained either from Eq.
(2.8b) or by the frequency of occurrences of the local maxi-
mum in the simulation or else by the Weibull’s fit of the
numerical data; Figs. 3—6 show the same plot for the cases
3—6 defined in Table 1.

The agreement for case 2 (flexible riser) is good at the
TDP and only fair at the TOP. Since the cable is dynami-
cally compressed at the TDP, high frequency components
generated there are propagated to the TOP, as discussed in
Ref. [3], and may be the reason for the observed discre-
pancy. This possible explanation is reinforced by the
following observation: the generation of the high frequency
components are attenuated in a steel riser and, perhaps for
this reason, the results from case 3 to case 6 show now a
good agreement both at the TDP and at the TOP, in
despite of the fact that the riser is dynamically
compressed at both ends in all these cases. Notice

(b) 1

fip fiom maxinaoft,

o9

fdp from maxima of 170

that the agreement is good irrespective of the presence
(or not) of an ocean current.

In general the agreement is fair enough, even more if the
inaccuracies of the numerical solutions are accounted for
and the fact that the time series were relatively short
(20 m) is recalled. The probability density function here
derived may be useful in the fatigue analysis of the cables
and can give an immediate answer to an important question:
to determine the probability for the envelope Tp(s,t) to be
larger than a reference value 7. The inverse question has,
however, a very simple answer as explained next.

In fact, let Ur(a) be the amplitude of the tangent displa-
cement such that Prob[U(r) > Ur(a)] = a; given the
harmonic input {wy; Ur(a)} let then Tr(s;a) be the ampli-
tude of the related tension at the section s. Since the basic
input, the tangent motion, is narrow banded with central
frequency wy and, for a given wy, the amplitude of the
harmonic tension should increase monotonically with the
amplitude of the imposed motion, then one must have,
necessarily, that Prob[Tp(s,t) > Tr(s;a)] = . This result
does not depend on any mechanical model for the cable

=250 AKN

O(orcanexy

l 1 1

[0} 1 2 3
fc -mean tt)]/c,-t

w
n
1

N
n w

sqrt (-2°In(1-Cdf)
o wn
i T

1
O Orcanex) =209.8kN
05
1) 1 ]
0 1 2 3
fr-meanit) ].(5t

Fig. 1. (continued)
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Fig. 2. Case 2. Left: TOP; Right: TDP. (—) (2.8b); (<) Orcaflex (20 m); (-----) Weibull; (- - -) Rayleigh.

dynamics and it is based only on two weak assumptions,
namely: that the imposed motion at the suspended end is
narrow banded and that the amplitude of the tension in an
harmonic problem increases monotonically with the ampli-
tude of the imposed motion. This is a strict justification for a
popular way to estimate maximum tensions, within an accep-
table probability «, using only the Rayleigh distribution for the
tangent motion and the harmonic response of the cable.

4. Conclusions

An analytic approximation for the probability density
function of the dynamic tension envelope was derived in
this work, using the harmonic algebraic approximation
derived in Ref. [3] and the assumption of a narrow banded
input at the suspended end. In despite of possible numerical
inaccuracies, mainly when the cable is dynamically
compressed at the TDP, and eventual statistical fluctuations
due to the short time records used, the agreement with

0s Giorcatex™ 66-44KN
o L 1 ] 1 1 1
o 0.5 1 1.5 2 25 3 as
[t-~mean )}

numerical results is fair in general, becoming in fact fairly
good for the steel risers, where the influence of the spurious
high frequency oscillations in the numerical solutions is
known to be weaker.

The obtained expression can be used even when the cable
becomes dynamically compressed and the total tension
saturates, in the compressed part, at the critical value
(2.9a): as suggested by the experimental results due to
Andrade [6], the maximum positive values of the dynamic
tension are not substantially affected by the saturation
phenomenon and the pdf of the maximum values can be
well estimated by Eq. (2.8b).

The proposed expression may also be useful to address
more involved statistical problems, related to the coupling
analysis of the non-gaussian slow drift motion with the wave
frequency dynamic tension, as addressed in a related context
by Naess [10—12]; furthermore, it may be helpful to check
the order statistics approach, proposed by Liu and Bergdahl
[13], that can be a useful strategy in dealing with a
non-narrow banded input.
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Fig. 3. Case 3. Left: TOP; Right: TDP. (—) (2.8b); (<) Orcaflex (20 m); (-----) Weibull; (- - -) Rayleigh.
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