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Abstract
1. Generalisation and specialisation in species- species interactions are key ecologi-

cal concepts for interpreting the different interaction patterns observed in na-
ture. Hence, finding the best way to operationalise them has been a major quest 
in Ecology. This quest has led to considerable conceptual development, and now 
the observed interaction pattern of a species is assumed to be a combination of 
three factors: its degree of generalisation, abundance- driven neutral effects, and 
sampling effects. Here, we aimed to assess the influence of these factors on the 
performance of previously proposed indices of generalisation.

2. To do so, we used simulated data that allowed us to separate and analyse inde-
pendently the influence of each factor.

3. Our assessment shows that the estimates made by most traditional indices are 
affected by differences in resource abundance distribution, leading to over-  or 
underestimation of how generalised a consumer is. To solve this problem, we pro-
pose a new index that remains unaffected by neutral effects and is robust to 
sampling effects.

4. Our new index may help to understand what interacting species require to keep 
viable populations and how they might respond to changes in resource availability.
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1  |  INTRODUC TION

Generalisation and specialisation are key ecological processes 
(Darwin, 1859, 1862). The former results in an organism interacting with 
(i.e. using) a broad range of potential resources, while the latter involves 
an organism becoming highly adapted to, and increasing the use of, a 
restricted subset of resources (Poisot et al., 2012). Despite food being 
the most common example of resources, they can also include breeding 
habitats and nesting sites (Devictor et al., 2010). Consequently, organ-
isms exist within a generalisation- specialisation continuum for each re-
source dimension (Poisot et al., 2012). Over recent decades, ecologists 
have sought an optimal estimator for the degree of generalisation or an 
organism's position within this continuum (Pierotti et al., 2017).

Early indices for this purpose were adapted from indices developed 
for other applications (e.g. Shannon, 1948; Simpson, 1949). Hence, the 
degree of generalisation of a consumer species used to be quantified as 
the diversity or evenness of its interaction distribution (Levins, 1968). 
However, this operationalisation assumed an even resource abun-
dance distribution, which is unlikely in nature (Schoener, 1974). 
Consequently, a consumer could be misclassified as a specialist when 
it was actually a generalist interacting with unevenly abundant re-
sources. Therefore, such indices provided estimations that merged the 
consumer's “true” degree of generalisation and abundance- driven neu-
tral effects (Devictor et al., 2010), since those effects are independent 
from actual specialisation (Feinsinger et al., 1981).

To disentangle degree of generalisation from neutral effects, 
indices were introduced to account for resource abundances 
(e.g. Hurlbert, 1978; Petraitis, 1979; Smith, 1982). These indices 
quantify the degree of generalisation by comparing a consum-
er's interaction distribution to the resource abundance distribu-
tion, a principle adopted by most contemporary indices (Pierotti 
et al., 2017). Further developments revealed that estimating the 
degree of generalisation was also significantly influenced by sam-
pling effects (Fründ et al., 2016). For instance, insufficient sam-
pling intensity could lead to inaccurate estimations, and different 
methods could yield asymmetrical sampling, heavily favouring 
some interactions over the others. Thus, an organism's observed 
interaction pattern is shaped by its degree of generalisation, neu-
tral effects, and sampling effects.

The ecological literature abounds with generalisation indices 
(Devictor et al., 2010). Each index has its strengths and limitations 
(Fründ et al., 2016; Poisot et al., 2012), offering various strategies 
to address the aforementioned confounding factors (e.g. Pierotti 
et al., 2017; Vázquez & Simberloff, 2002). Here, we investigate how 
neutral and sampling effects (in particular sampling intensity) im-
pact the performance of generalisation indices. We aimed to answer 
three key questions: (1) What do different generalisation indices 
measure? (2) How accurate are their estimations under the influence 
of neutral effects? And (3) how accurate are their estimations under 
variations in sampling intensity? This exploration led us to propose 
a novel index of generalisation that remains unaffected by neutral 
effects and is robust to sampling effects.

2  |  MATERIAL S AND METHODS

Henceforth “consumers” are the organisms or groups of organisms 
for which we measure their degree of generalisation, “resources” 
are the nutrients, habitats, organisms or groups of organisms used 
by the consumers, “to interact with” is the action of a consumer 
to use a resource, “interactions” is the number of recorded events 
of a consumer using a resource (equivalent to link weight in a net-
work), and the sum of all interactions made by a consumer with 
all potential resources is its “sampling intensity”. Nevertheless, we 
understand that not all interactions between organisms represent 
consumer- resource relationships, but this generalisation helps un-
veil the main drivers of specialisation in a multitude of systems by 
focusing on what they have in common with one another (Pinheiro 
et al., 2019). We restrict ourselves to one- dimensional resources, 
as each consumer may be a generalist in one dimension (e.g. habi-
tats), but a specialist in another (e.g. food). Here, we avoid using 
the word “niche” as it represents a more complex concept that 
encompasses resource use and other life- history traits (McInerny 
& Etienne, 2012).

2.1  |  Indices of generalisation

In the quest for efficient ways to operationalise the concept of gen-
eralisation, several indices have been proposed under the name 
of “niche breadth”, “niche width”, “generalisation”, “specialisation”, 
“generalism”, “generality” or “specificity”. Despite other indices being 
available, we considered in our assessment only those that include 
in their formulae information about resource abundance distribution 
(Hurlbert, 1978). As a result, we compiled a list of eight published 
indices (Table 1).

For a given set of R resources, these indices estimate the de-
gree of generalisation of a consumer by quantifying the similarity 
between the interaction distribution (p), given by the proportion of 
interactions p =

[
p1, p2, … , pR−1, pR

]
 so that 

∑R

i=1
pi = 1, and the re-

source abundance distribution (q), given by the relative abundance of 
resources q =

[
q1, q2, … , qR−1, qR

]
 so that 

∑R

i=1
qi = 1. The proportion 

of interactions can be estimated either from continuous (e.g. time on 
a flower, volume of consumed nectar, or occupied area) or discrete 
data (e.g. number of visits, consumption events, or parasites on a 
host). Furthermore, the relative abundance of resources can also be 
estimated either from continuous (e.g. plant cover, biomass, or nec-
tar content) or discrete data (e.g. number of available flowers, fruits, 
prey, or nesting sites).

The values of these indices reach their maximum when the inter-
action distribution exactly follows the resource abundance distribu-
tion (i.e. pi = qi; for each resource i  from 1 to R). With the exception 
of the compositional niche breadth index Wc (Pierotti et al., 2017), 
these indices reach their minimum values when the consumer inter-
acts exclusively with the least abundant resource (i.e. pz = 1; where 
z is the least abundant resource). Wc reaches its minimum when the 
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consumer interacts exclusively with a single resource, regardless of 
its abundance.

We normalised the values of the indices, to [0, 1] (or to (0, 1] 
for Wc), to make them easier to compare within our assessment. 
Since the normalised Kullback–Leibler divergence (d′) is intended to 
measure degree of specialisation (Blüthgen et al., 2006), results are 
presented as 1 − d�. Additionally, the compositional niche breadth 
index (Wc) cannot handle 0 s, requiring Bayesian- multiplicative re-
placement of count zeros (Martín- Fernández et al., 2015). To do so, 
it uses matrices with multiple consumers and resources, making its 
calculation impossible to be used for some data structures.

2.2  |  A new index of generalisation: Alpha paired 
difference index (�PDI)

An additional index of generalisation is the paired difference index 
(PDI) (Poisot et al., 2012). It characterises the decay in preference as a 
consumer interacts with resources increasingly different to its most 
preferred resource (Poisot et al., 2011; Poisot et al., 2012). However, 
it was excluded from Table 1 as it does not account for resource 
abundances. Compared to similar indices, PDI stands out because 
it has some desirable properties (as assessed by Poisot et al., 2012): 
(1) it can use weighted interaction data, (2) it does not assume that 
the data follow a specific statistical distribution and (3) it estimates 
the position of consumers within the generalisation- specialisation 
continuum, with 0.5 as midpoint. The PDI of a consumer is calculated 
as follows:

where, for a set of R potential resources, pi is the proportion of interac-
tions of the consumer with resource i  (so that 

∑R

i=1
pi = 1), p1 is the high-

est proportion of interactions among all resources, and p is the vector 
containing the proportion of interactions (p =

[
p1, p2, … , pR−1, pR

]
 ). 

Note that Equation (1) slightly differs from the original equation for 
PDI proposed by Poisot et al. (2012). This happens because for PDI to 
produce values between 0.0 and 1.0 and to have 0.5 as a midpoint, 
the proportions of interactions (pi) must be divided by their maximum 
(p1) (Poisot et al., 2012). Thus, a value of PDI = 1.0 means that the or-
ganism is a consumer specialised in a single resource, while PDI = 0.0 
indicates that it is interacting evenly with all resources.

Here, we propose a modification to control for neutral effects 
by using the selection ratio � (Manly, 1974). This selection ratio es-
timates the probability that a consumer would use resource i  if the 
resource abundance distribution were even (Manly et al., 2002),

where pi and pj are respectively the proportion of interactions with 
resource i  and j. qi and qj are respectively the relative abundance 
of resource i  and j. This selection ratio, in a few words, provides 
new proportions of interactions (�i), which are corrected by the rel-
ative abundance of resources (qi). Thus, �i can be incorporated into 
Equation (1) by replacing the uncorrected proportions of interactions 

(1)
PDI =

∑R

i=2

�
p1

p1
−

pi

p1

�

R − 1
=

∑R

i=2

�
1 −

pi

p1

�

R − 1
=

∑R

i=1

�
1 −

pi

max(p)

�

R − 1
,

(2)�i =
pi

qi
∑R

j=1

pj

qj

,

TA B L E  1  Generalisation indices that account for resource abundances. These indices estimate how generalised a consumer is by 
comparing proportion of interactions of that consumer with each resource i , that is pi (so that 

∑R

i=1
pi = 1), with the relative abundance of 

each resource i , that is qi (so that 
∑R

i=1
qi = 1), for a set of R potential resources. q is the resource abundance distribution, containing the 

values of the relative abundance of resources: q =
[
q1, q2, … , qR−1, qR

]
. dmin is the minimum theoretical value of d for the given number 

of recorded interactions and the resource abundance distribution, which is calculated using an algorithm that is available in the bipartite 
package for R (Dormann et al., 2008), and it is similar to the first algorithm introduced in Appendix S3. n is the sampling intensity. Normalised 
expressions (used to transform values into the range [0, 1]) were obtained from Blüthgen et al. (2006) and Pierotti et al. (2017), except for Bs, 
FT and gen, for which we provide details in Appendix S1.

Reference Name Formula Normalised expression

Schoener (1974) Weighted reciprocal Simpson index Bs =
1

∑R

i=1

�
pi

qi

�2 Bs� =
Bs−min(q)2

1

R
−min(q)2

Hurlbert (1978) Weighted reciprocal Simpson index B� =
1

∑R

i=1

p2
i

qi

B�� =
B� −min(q)

1−min(q)

Petraitis (1979) Likelihood measure of niche breadth
ln(W) = −

∑R

i=1
pi ln

�
pi

qi

�
W � =

W −min(q)

1−min(q)

Feinsinger et al. (1981) Proportional similarity index PS = 1 −
1

2

∑R

i=1
��pi − qi

�� PS� =
PS−min(q)

1−min(q)

Smith (1982) Matusita measure FT =
∑R

i=1

√
pi × qi FT� =

FT−
√
min(q)

1−
√
min(q)

Blüthgen et al. (2006) Normalised Kullback–Leibler divergence d =
∑R

i=1
pi ln

�
pi

qi

�
d� =

d − dmin

ln(1 ∕min(q)) − dmin

Fort et al. (2016) Generalisation index gen = 1 −
d

ln(n) gen� =
(gen− 1)ln(n) + ln

(
1

min(q)

)

ln

(
1

min(q)

)

Pierotti et al. (2017) Compositional niche breadth index Wc =
1

∑R

i=1

⎛⎜⎜⎝
ln

�
pi

qi

�
−ln

⎛⎜⎜⎝

R
√∏R

i=1
pi

R
√∏R

i=1
qi

⎞⎟⎟⎠

⎞⎟⎟⎠

2 Wc� = e
−1

Wc
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4  |    MONTOYA-BUSTAMANTE et al.

(pi) to obtain a version of PDI that accounts for resource abundance 
distribution:

where � is the vector containing the corrected proportions of interac-
tions � =

[
�1, �2, … , �R−1, �R

]
. If there is an even resource abundance 

distribution, then wPDI = PDI.
Finally, considering that PDI aims at measuring degree of speciali-

sation, we can obtain an index of generalisation by subtracting wPDI 
from 1. Thus, we define the generalisation index �PDI as:

The values of �PDI vary from 0.0 to 1.0. Unlike other indices, �PDI is 
symmetric with respect to its midpoint (Appendix S2), which means 
that values higher than 0.5 suggest generalisation, and values lower 
than 0.5 suggest specialisation. Therefore, a value of �PDI = 0.0 means 
that the consumer is interacting exclusively with a single resource, 
while �PDI = 1.0 means that the probability of that consumer to in-
teract with all resources is fully explained by the resource abundance 
distribution. As for the previously mentioned indices, �PDI accepts the 
proportion of interactions and the relative abundance of resources to 
be calculated from either continuous or discrete data.

To control for sampling effects, the values of �PDI′ can be cor-
rected using a normalisation approach based on the total number of 
recorded interactions (Blüthgen et al., 2006; Dormann et al., 2008). 
Then, we define �PDI′ as follows:

where �PDImin and �PDImax are the minimum and maximum possible 
theoretical values of �PDI for the given sampling intensity and the re-
source abundance distribution. Independently of the sampling intensity, 
the minimum possible value of �PDI′ is the one obtained by a consumer 
interacting exclusively with a single resource, so that max(p) = 1. 
Therefore, in a hypothetical case of R = 3 potential resources the in-
teraction distribution would be p =

[
1, 0, 0

]
. Consequently, regardless 

of the resource abundance distribution, the minimum possible value 
of �PDI would be

Since for any R > 1 the value of �PDImin is always 0.0, �PDI′ becomes

The value of �PDImax is obtained using two algorithms that 
generate a theoretical interaction distribution (px) to find the 
maximum possible value of �PDI. For a given sampling intensity 
(n , where n ∈ ℕ), the first algorithm distributes the n interactions 
among potential resources by multiplying them by the elements 
of the vector representing the resource abundance distribution: 
px =

[
px1, px2, … , pxR−1, pxR

]
=
[
(n)q1, (n)q2, … , (n)qR−1, (n)qR

]
. If any 

of the elements of px are not integers, the values are rounded down 
to the nearest integer. Rounding down these values will result in 
remaining interactions that come from the difference between the 
sampling intensity (n) and the sum of the elements of px. To reach 
the desired sampling intensity, that is 

∑R

i=1
pxi = n, the algorithm per-

forms a distribution process, where these remaining interactions are 
distributed one by one among the elements of px. Thus, a remaining 
interaction is first added to the first element of px, and �PDI is calcu-
lated. Then, this remaining interaction is added to the next element 
(instead of the previous element) to see if adding the interaction to 
that element increases the value of �PDI, compared to the previ-
ous. This process continues until the remaining interaction is added 
to pxR , and the algorithm chooses the distribution that maximises 
the value of �PDI. Next, it uses this chosen distribution as a new 
px to distribute one by one the remaining interactions, by repeat-
ing the process above. When all remaining interactions are distrib-
uted, the maximum calculated value of �PDI is selected as �PDImax 
(Appendix S3).

The second algorithm is a modification of the first, which adds an 
initial step. In this step, all resources are assigned an interaction that is 
subtracted from n, so that all resources have at least one interaction: 
px =

[
1 + (n − R)q1, 1 + (n − R)q2, … , 1 + (n − R)qR−1, 1 + (n − R)qR

]
  . 

Then, it follows the same procedure of the first algorithm 
(Appendix S3). Finally, the values obtained by both algorithms are 
compared and the highest value is chosen as �PDImax. This process 
of controlling for the total number of recorded interactions acknowl-
edges sampling limitations and helps avoiding misinterpretations ex-
plained alone by the variation in sampling intensity (Blüthgen, 2010). 
Since the calculation of �PDImax is based on integers, �PDI′ only 
accepts discrete data to calculate the proportion of interactions. 
However, the relative abundance of resources can still be calculated 
from discrete or continuous data.

2.3  |  Assessing the performance of the 
generalisation indices

2.3.1  |  The quantitative niche model

To assess the performance of the nine generalisation indices consid-
ered in this study, we utilised the “quantitative niche model” proposed 
by Fründ et al. (2016) to generate theoretical consumer- resource 

(3)

wPDI =

∑R

i=1

�
1 −

�i

max(�)

�

R − 1
=

∑R

i=1

⎛
⎜⎜⎜⎜⎝
1 −

pi

qi
∑R
j=1

pj
qj

max
1 ≤ j ≤ R

�
pj
qj

�

∑R
j=1

pj
qj

⎞
⎟⎟⎟⎟⎠

R − 1
=

∑R

i=1

⎛
⎜⎜⎝
1 −

pi

qi max
1 ≤ j ≤ R

�
pj

qj

�
⎞
⎟⎟⎠

R − 1
,

(4)
�PDI = 1 − wPDI = 1 −

∑R

i=1

⎛
⎜⎜⎝
1 −

pi

qi max
1 ≤ j ≤ R

�
pj

qj

�
⎞
⎟⎟⎠

R − 1
.

(5)αPDI
�
=

�PDI − �PDImin

�PDImax − �PDImin

,

(6)
�PDImin=1−

∑3

i=1

⎛
⎜⎜⎝
1−

pi

qimax
1≤j≤3

�
pj

qj

�
⎞
⎟⎟⎠

R−1

=1−

�
1−

1

q1
1

q1

�
+

�
1−

0

q2
1

q1

�
+

�
1−

0

q3
1

q1

�

3−1

=1−
2

2
=0.0.

(7)αPDI
�
=

�PDI

�PDImax

.
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    |  5MONTOYA-BUSTAMANTE et al.

interactions. This model generates interaction patterns for consum-
ers based on their “true preference” for a set of potential resources 
(Figure 1). The true preference of a consumer for a resource i  (TPi) is 
determined by its specialisation parameter (s) and the pairwise differ-
ence of trait values between the consumer and the resource, that is 
trait matching (ti), representing a normal distribution:

The generalisation- specialisation curve (Figure 1I) is described by the 
true preferences, and its narrowness depends on the specialisation pa-
rameter (s). A consumer with a low specialisation parameter will inter-
act with all resources evenly, regardless of trait matching. Conversely, 
a consumer with a high value of the specialisation parameter will pref-
erentially interact with resources that match its traits. From these true 
preferences, the “true interaction pattern” is generated (Figure 1II): 

TP =

�
TP1∑R

i=1
TPi

,
TP2∑R

i=1
TPi

, … ,
TPR−1∑R

i=1
TPi

,
TPR∑R

i=1
TPi

�
.

To include neutral effects, the model multiplies the elements of 
the true interaction pattern by the resource abundance distribution 
q =

[
q1, q2, … , qR−1, qR

]
, creating the “current interaction pattern” 

(Figure 1III): CP =

�
TP1(q1)∑R

i=1
TPi(qi)

,
TP2(q2)∑R

i=1
TPi(qi)

, … ,
TPR−1(qR−1)∑R

i=1
TPi(qi)

,
TPR(qR)∑R

i=1
TPi(qi)

�
. For 

any given set of R resources, the quantitative niche model generates 
its abundance distribution from the quantile function of a log- normal 
distribution. Hence, for a set of R resources the model uses the r

R+ 1
 

quantile as the abundance for each resource r in 1 to R (Appendix S4).
Finally, to simulate sampling effects, the model mimics the pro-

cess of sampling discrete interactions (e.g. flower visits) to a given 
sampling intensity (n). This sampling process is done through a mul-
tinomial sampling where the probability of sampling an interaction 
with resource i  depends on the current interaction pattern (CP). The 
result is a theoretical “observed interaction pattern” (Figure 1IV): 
OP =

[
OP1,OP2, … ,OPR−1,OPR

]
, where 

∑R

i=1
OPi = n. The quanti-

tative niche model does not contemplate other possible sampling 
effects besides sampling intensity, such as the influence of spa-
tial aggregation of resources, how interaction detectability varies 
with sampling methods (Bartomeus, 2013), or resource availability 
through time (CaraDonna et al., 2021).

In summary, the stepwise simulation process generates true (TP), 
current (CP), and observed (OP) interaction patterns (Appendix S4), 
allowing us to isolate true preferences from neutral effects and sam-
pling effects (Fründ et al., 2016).

(8)TPi = e
−t2
i (s

2)
2

.

F I G U R E  1  The quantitative niche model. For a given consumer (c) and a set of R potential resources (r1 to rR), the observed interaction 
pattern is a combination of three factors: true preferences, neutral effects, and sampling effects. (I) True preferences result from the 
relationship between the consumer's generalisation- specialisation curve and its trait matching with resources. (II) From these true 
preferences, the true interaction pattern is generated. (III) Neutral effects influence the probability of interaction between a consumer and 
resources, modifying the interaction pattern expected from their true preferences, and creating the current interaction pattern.  
(IV) Sampling effects (sampling intensity) influence what we observe from the current interaction pattern. Lines between consumers and 
resources represent interactions and line width is proportional to its weight (e.g. use frequency). Diamond size is proportional to resource 
abundance. This figure was inspired by Figure 1 from Fründ et al. (2016).
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6  |    MONTOYA-BUSTAMANTE et al.

2.3.2  |  Generating theoretical consumer- resource 
interactions

Using the quantitative niche model, we generated datasets of the-
oretical consumer- resource interactions with R = 5, 15 and 55 po-
tential resources, and 2000 hypothetical consumers per number of 
potential resources (i.e. 3), totalling 6000 consumers. For each value 
of R, consumers were assigned different specialisation parameters 
(s) from 0.1 to 60.0 in a logarithmic spaced sequence. For each com-
bination of consumers and resources, trait matching values were as-
signed from an evenly spaced sequence of R elements from −1.0 to 
1.0, where 0.0 represents a perfect match. With these parameters 
(Table 2), we generated the set of true interaction patterns (TP),  
where consumers varied from interacting exclusively with a single 
resource to interacting with all potential resources.

Next, we introduced neutral effects by generating current inter-
action patterns (CP) by using resource abundance distributions gen-
erated from a log- normal distribution of mean ln(10) and standard 
deviation of 1.5. Then, each current interaction pattern was sampled 
to four levels of sampling intensity (n): 10, 50, 100, 500 interactions. 
Thus, an observed interaction pattern (OP) was generated per num-
ber of potential resources (3), per consumer (2000), and per level of 
sampling intensity (4), for a total of 24,000 vectors. In summary, we 
generated 6000 true, 6000 current, and 24,000 observed interac-
tion patterns (Table 2).

To analyse the performance of Wc′, given its logistical limitation, 
the different interaction patterns we generated were embedded 
into matrices of four new consumers. These matrices were also gen-
erated using the quantitative niche model, maintaining all the pa-
rameters from the original simulation, except for the specialisation 
parameter, which, for each new consumer, was a random number 

from 2000 possible values of a logarithmic spaced sequence from 
0.1 to 60.0. The results were, for each of the generated interaction 
pattern, a 5- by- R matrix. These matrices were used exclusively for 
calculations regarding the Wc′ index.

2.3.3  |  What do different generalisation indices 
measure?

All indices considered in our study intend to quantify the degree of 
generalisation of a consumer. On the one hand, as the generalisation- 
specialisation curve becomes broader (Figure 1I), we expect the val-
ues of these indices to increase. On the other hand, as the curve 
becomes narrower, the values should decrease. Therefore, our first 
assessment consisted in analysing how the degree of generalisa-
tion calculated with every index varied along with variations in the 
specialisation parameter. To do so, we used Spearman correlations 
between each value of specialisation parameter and the degree of 
generalisation calculated from the true interaction pattern (TP) cor-
responding to that parameter (s). We used Spearman correlations 
because we anticipated that indices would vary monotonically with 
the specialisation parameter, but not necessarily linearly. A good 
index of generalisation is expected to exhibit a negative correlation 
with the specialisation parameter.

2.3.4  |  How accurate are their estimations 
under the influence of neutral effects?

Indices of generalisation should provide accurate estimations regard-
less of how uneven the resource abundance distribution is. To assess 

TA B L E  2  Summary of the parameters used to generate the different interaction patterns with the quantitative niche model.

Parameters What it controls for Values used for generating data

Specialisation parameter (s) How narrow the generalisation- specialisation curve is. 
Therefore, the higher the specialisation parameter, the 
narrower the curve

2000 values from 0.1 to 60.0 in a logarithmic 
spaced sequence

Number of potential 
resources (R)

How many resources are available in the area for the 
consumer to interact with

For each value of the specialisation parameter 
(2000), we used 5, 15 and 55 potential 
resources (a total of 6000 combinations)

Trait matching (t) How well a consumer can interact with resources based 
on its traits and the traits of resources. In other words, 
how different other resources are to the most preferred 
resource (e.g. r3 in Figure 1)

An evenly spaced sequence of R values from 
−1.0 to 1.0. Having an odd number of 
potential resources allowed us to have a most 
preferred resource (t = 0.0) in all simulations

Resource abundance 
distribution (q)

How abundant a resource is related to the others, that is, the 
vector of relative abundance of resources

A vector of R values generated from a log- normal 
distribution of mean ln(10) and standard 
deviation of 1.5. For a set of R resources we 
used the r

R+ 1
 quantile as the abundance for 

each resource r  in 1 to R

Sampling intensity (n) How many interactions are sampled to generate the 
observed interaction pattern

For each current interaction pattern, we used 
four levels of sampling intensity: 10, 50, 100 
and 500 interactions. This generated 6000 
vectors of observed interaction patterns per 
level of sampling intensity
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    |  7MONTOYA-BUSTAMANTE et al.

the influence of neutral effects on index performance, we compared 
the degree of generalisation calculated from each of the 6000 true in-
teraction patterns (TP) to the degree calculated from their correspond-
ing current interaction patterns (CP). For each index and number of 
potential resources (R), we calculated the mean squared error (MSE) as 
a measurement of accuracy of the estimation. A good index of gener-
alisation is expected to exhibit values of MSE close to 0.0, indicating it 
is unaffected by neutral effects.

2.3.5  |  How accurate are their estimations under 
variations in sampling intensity?

Sampling effects, specifically sampling intensity, influence the ac-
curacy of estimations provided by any index. Nevertheless, it is 
important to know whether an index requires a smaller or larger 
number of recorded interactions to provide accurate estimations. 
To assess the influence of sampling effects on the estimation of 
degree of generalisation, we analysed how the accuracy of the 
estimation provided by each index changed as sampling intensity 
increased. To do so, we compared the degree of generalisation cal-
culated from each of the observed interaction patterns (OP) to the 
expected degree calculated from their corresponding true inter-
action pattern (TP). We calculated the MSE as a measurement of 
accuracy of the estimation for each index and number of potential 
resources (R).

2.4  |  A test with empirical 
consumer- resource networks

We tested the performance of �PDI′ when estimating the degree of 
generalisation in empirical consumer- resource interactions. To do 
so, we used a data set of 74 host–parasite networks of interactions 
between fleas and mammals across the globe. This extensive data-
base has been analysed in several studies on ecological interactions 
(Felix et al., 2022; Fortuna et al., 2010; Krasnov et al., 2004; Vázquez 
et al., 2007). Additional information on the species involved in these 
interactions and references is available in the Appendix S5.

For each consumer (flea), we calculated its degree of generali-
sation using �PDI′, and used a Spearman correlation to determine 
whether the estimated value of �PDI′ was correlated to sampling 
intensity and the number of potential resources. In our analysis, for 
each host species, we used its total number of captures as a proxy 
for resource abundance (including individuals without fleas), and the 
number of individual parasites collected per host species as a proxy 
for the number of interactions. However, we must recognise that, in 
many cases, the estimation of resource abundance is difficult and 
can be biased. In host–parasite networks, the estimation of host 
abundance may be distorted because different host species have 
different trappability or require different trapping methods (e.g. 
snap-  or live- traps for mice and voles, pitfall traps for shrews, special 
traps for moles, and hunting for squirrels).

All analyses were made in the R language (R Core Team, 2022), 
using the packages bipartite (Dormann et al., 2008), and user- defined 
functions developed by Fründ et al. (2016), Pierotti et al. (2017), and 
us. Code and processed data used in all analyses are available in the 
supplement.

3  |  RESULTS

Our analysis revealed a negative correlation between all indices and 
the specialisation parameter (all indices rho = −1, p < 0.001), which 
indicates that they behave as good indices of generalisation when 
there are no neutral or sampling effects. However, independently 
of the number of potential resources, most indices were influenced 
by neutral effects, yielding inaccurate estimates (Figure 2). Notably, 
inaccuracies were predominantly associated with high values of the 
specialisation parameter, meaning that most indices tend to overes-
timate the degree of generalisation of specialists (Figure 2). Only Wc′ 
and �PDI presented minimum bias and error.

Regarding sampling effects, increasing sampling intensity led to 
decreased bias and MSE, indicating improved accuracy for all indices 
(Figure 3; Appendix S5). However, for most indices, particularly for 
�PDI

′, �PDI and Wc′, estimates were more inaccurate at lower values 
of the specialisation parameter. This means that generalists require 
higher sampling intensity for accurate estimation than specialists 
(Figure 3). Furthermore, higher sampling intensity was also required 
for accurate estimation as the number of potential resources in-
creased. In all cases, �PDI′ outperformed �PDI and Wc′ (Figure 3). 
Four indices (B′′, W ′, PS′ and FT′) were more robust to sampling ef-
fects than others, however it seems to be related to index symme-
try (Appendix S2). Bs′ was the worst performing index in all cases. 
For many simulated consumers it was impossible to calculate Wc′ 
(Figure 3); other indices did not show this problem.

Finally, we observed a slight yet positive correlation between de-
gree of generalisation and sampling intensity when using �PDI′ on em-
pirical consumer- resource interactions (rho = 0.36, p < 0.001). Thus, 
the values of �PDI′ increased with sampling intensity (Figure 4a). 
Conversely, we observed a marginal correlation between degree of 
generalisation and the number of potential resources (rho = −0.05, 
p = 0.052; Figure 4b). Notably, generalists (i.e. 𝛼PDI′ > 0.50) were in-
frequent in the analysed networks, which predominantly comprised 
specialists (Figures S4C and S9–S12).

4  |  DISCUSSION

In general, all indices displayed the desirable correlation with the 
shape of the generalisation- specialisation curve, yielding higher 
values as the curve becomes wider. At first glance, they all seem 
promising as indices of generalisation, as they measure the span of 
resources used by consumers (Roughgarden, 1972). However, re-
garding neutral effects, most indices exhibited unsatisfactory per-
formance. Despite their aim to mitigate the influence of different 
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8  |    MONTOYA-BUSTAMANTE et al.

resource abundances, only Wc′ and �PDI remained unaffected. Such 
contrasting outcomes stem from how indices operationalise extreme 
specialisation and how their values behave towards this extreme.

An extreme specialist is theoretically adapted to interact ex-
clusively with a single resource, reflecting a narrow generalisation- 
specialisation curve (Poisot et al., 2012). Irrespective of resource 
abundance, indices should consistently reflect minimal generalisa-
tion for such a consumer. Yet, most indices operationalise an ex-
treme specialist as a consumer interacting exclusively with the least 
abundant resource, omitting those interacting solely with any other 
more abundant resource. Conversely, the operationalisation of an 
extreme specialist given by Wc′ and �PDI aligns more closely with 
conceptual intuition and definitions such as monophagy or mono-
lecty: a consumer interacting with a single resource, regardless of 

its abundance (Pierotti et al., 2017). This explains why Wc′ and �PDI 
perform optimally under neutral effects, and why inaccuracies from 
other indices are usually related to high values of the specialisation 
parameter.

Regarding sampling effects, all indices yielded more accurate 
estimations with increased sampling intensity. Unlike specialists, 
accurately estimating the degree of generalisation of a generalist re-
quires higher sampling intensity, especially with a larger number of 
potential resources. Thus, most inaccurate estimations correspond 
to low values of the specialisation parameter. Additionally, asym-
metric indices whose values exhibit larger changes towards extreme 
specialisation (all indices but Wc′ and �PDI) are apparently more ac-
curate (Appendix S2), because they are more sensitive to changes 
in underused resources (Smith, 1982). Since these asymmetrical 

F I G U R E  2  Unlike most indices of generalisation, �PDI and Wc′ are not influenced by neutral effects. Plots show how different indices 
perform under neutral effects. Each point represents a consumer using a set of potential resources (5, 15 and 55) based on its specialisation 
parameter (0.1 in orange to 60.0 in blue). For an index with ideal performance, all points should fall on the dashed horizontal line where 
the difference between the observed (calculated on the current interaction pattern) and expected (calculated on the true interaction 
pattern) degree of generalisation is 0.0. Points above the line indicate overestimation of generalisation, while points below the line indicate 
underestimation. The dominant blue points in the plots suggest that most indices tend to overestimate the degree of generalisation of 
specialised consumers. In addition, plots show the bias and the MSE for each number of potential resources. Curves on the right side of the 
coloured grid of the specialisation parameter depict how the shape of the generalisation- specialisation curve changes as the specialisation 
parameter increases.
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    |  9MONTOYA-BUSTAMANTE et al.

indices exhibit smaller changes towards generalisation, the differ-
ence between the observed and expected degree of generalisation 
of generalists will also be smaller, making indices to be seemingly 
more accurate, and clarifying why most indices seem more robust to 
sampling effects than Wc′, �PDI and �PDI′.

When selecting an index of generalisation, we should prioritise 
how well it operationalises the concept of generalisation, includ-
ing what it means to be a generalist and a specialist. Our analysis of 
neutral effects highlights that most indices, except for Wc′ and �PDI
, fail in this respect. Therefore, the choice narrows down to Wc′, �PDI
, and its corrected version �PDI′. However, the logistical limitation of 
Wc′ (i.e. requiring Bayesian- multiplicative replacement) hinders its ap-
plication in various data structures. Although �PDI′ is more robust to 
sampling effects than �PDI, it is not immune to them. Therefore, sta-
tistical techniques, such as confidence intervals through accelerated 

bias- corrected bootstrapping, could help obtaining more reliable esti-
mates (Efron, 1987). However, index performance under other sources 
of sampling effects remains to be investigated. Using, �PDI or �PDI′ 
to classify consumers as generalists or specialists improves previous 
approaches (see Fort et al., 2016; Simmons et al., 2019).

Our test on empirical consumer- resource interactions showed 
that the studied flea- mammal networks are mainly dominated by 
specialists. This finding is consistent with the ubiquity of the power 
law and truncated power law degree distributions in ecological net-
works (Jordano et al., 2003; Vázquez, 2005). Yet, considering that 
our simulations showed that generalists require increased sampling 
intensity for accurate estimation, and noting the weak but positive 
relationship between the values of �PDI′ and sampling intensity, the 
interpretation of these long- tailed degree distributions as specialisa-
tion warrants further investigation.

F I G U R E  3  Under sampling effects, �PDI′ and �PDI perform better than Wc′. Each point represents a consumer using a set of potential 
resources (5, 15 and 55) based on its specialisation parameter (0.1 in orange to 60.0 in blue). For an index with ideal performance, all points 
should fall on the dashed horizontal line where the difference between the observed (calculated on the observed interaction pattern) 
and expected (calculated on the true interaction pattern) degree of generalisation is 0.0. Points above the line indicate overestimation of 
generalisation, while points below the line indicate underestimation. The dominant orange points in the plots suggest that indices tend 
to underestimate the degree of generalisation of generalists. In addition, plots show the bias and the MSE for each number of potential 
resources. For many consumers, Wc′ was unable to estimate their degree of generalisation, for which the proportion of not available 
information is presented (NA). In contrast the values of �PDI’ and �PDI were available for all consumers (all NA = 0.0). Curves on the right 
side of the coloured grid of the specialisation parameter depict how the shape of the generalisation- specialisation curve changes as the 
specialisation parameter increases.
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10  |    MONTOYA-BUSTAMANTE et al.

Despite having tested �PDI′ with flea- mammal networks, all as-
sessed indices estimate a consumer's degree of generalisation in re-
lation to a resource set, independently of coexisting consumers. Not 
being network indices per se (with the exception of a modified version 
of d′; Blüthgen et al., 2006), they do not quantify how coexisting con-
sumers share resources, or the resulting network patterns. Still, in a 
natural context (e.g. an ecological community), these indices assume 
that competition has shaped the generalisation- specialisation curve 
akin to a realised niche (Hutchinson, 1957). Thus, a consumer's degree 
of generalisation varies across different consumer communities.

Moreover, when using �PDI or �PDI′, defining the set of poten-
tial resources is crucial, especially unused ones. Including abundant, 
unused resources may lead to misleading outcomes (Feinsinger 
et al., 1981). However, depending on the ecological question, retain-
ing such resources might be necessary. For example, when studying 
a consumer assemblage, the full resource set used by the assemblage 
might define potential resources (Jorge et al., 2014). Nevertheless, 
the fact that the classification of a consumer either as a generalist 
or specialist using �PDI′ depends on the set of potential resources 
should not be seen as a methodological weakness but as a good ap-
proximation to reality. For instance, a koala, a generalised consumer 
of Eucalyptus leaves (Colwell & Futuyma, 1971), will be classified as 
such, if all Eucalyptus species are considered as potential resources. 
Alternatively, it could be deemed a specialist if leaves from various 
plant genera constitute the potential resource set.

Notably, an individual's degree of generalisation might differ 
from its population's degree (Araújo et al., 2011). However, using 
�PDI and �PDI′ on individuals will not contrast their interactions 
against the population's. While these indices classify individuals 
on the generalisation- specialisation continuum, they do not quan-
tify individual specialisation (but see Bolnick et al., 2002; Pierotti 
et al., 2017; Roughgarden, 1974), or any other type of speciali-
sation in consumer- resource interactions (Blüthgen et al., 2008; 
Dormann, 2011).

Furthermore, �PDI and �PDI′, as many other indices, disregard 
phylogenetic relationships or ecological similarity between re-
sources (Colwell & Futuyma, 1971), which considerably influence 
consumer- resource interactions (Pinheiro et al., 2019). In cases 
where resources are species, strategies like stepwise reduction of 
potential resources by aggregating species into higher taxonomic 
units can be used (Blüthgen et al., 2006). Newer approaches em-
ploy phylogenetic information to quantify generalization (e.g. Jorge 
et al., 2014; Pardo- De la Hoz et al., 2022), though their performance 
under neutral and sampling effects remains unclear.

Lastly, interpreting specialization hinges on interaction type, 
given that many consumers engage in multiple interactions (Mello 
et al., 2015). In trophic interactions like frugivory and flower visita-
tion, consumers can feed on various resources, yielding omnivore 
diets (Brosi, 2016; Muchhala & Tschapka, 2020). Besides, most frugi-
vores, nectarivores, polinivores and pollinators do not see the plants 
as their whole world, except for a few cases of extreme specializa-
tion, such as fig wasps (Janzen, 1979). Therefore, many “specialists” 
in mutualistic interactions might be “tourists”, not relying solely on 
these interactions for survival (Mello et al., 2015). However, ectopar-
asitic interactions, such as those studied here, entail parasites being 
fully dependent on their hosts for food and habitat (Krasnov, 2008). 
Thus, specialization does not always mean dependency. Due to 
these interaction- type disparities, consumer classification as gener-
alist or specialist must consider natural history, with indices serving 
as proxies for ecological generalization concepts, and not the other 
way round.

In conclusion, our assessment suggests that �PDI and �PDI′ are 
good candidates for estimating generalization in consumer- resource 
interactions. These indices can help obtain fresh insight into long-
standing ecological questions like the abundance- generalization 
dilemma (Fort et al., 2016), the link between specialization and dis-
turbance susceptibility (Vázquez & Simberloff, 2002), and keystone 
species in mutualistic networks (Mello et al., 2015). Therefore, they 

F I G U R E  4  Testing �PDI′ on empirical consumer- resource interactions. (a) Degree of generalisation correlates positively with sampling 
intensity, (b) but has no significant correlation with the number of potential resources. Each point represents a consumer (fleas) interacting 
with a set of potential resources (mammals). Colours are associated with the value of �PDI′ , with points becoming more orange or blue as the 
consumer is more generalist or specialist, respectively. (c) The networks analysed are composed mainly of specialists. Each pair of triangles 
(joined by the dashed line) depicts one of the 74 empirical networks.
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may become important tools for many fields, from theoretical ecol-
ogy to conservation biology, aiding in accurate consumer generaliza-
tion measurement.
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